

FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING

(Approved by AICTE & Govt. of Maharashtra)

Ref.: CRCE / 2025 / 105

Date: March 26, 2025.

NOTE

Subject: Implementation of Revised End Semester Examination (ESE) Pattern

As per the resolution passed by the Second Academic Council Meeting held on 14th February, 2025, following rules will be applicable from **AY 2025-26**:

- 1. "ESE will be of 90 Min durations with 30 marks question paper and question paper should be based on the remaining syllabus after MSE"
- 2. "It will not be compulsory to give both MSE and ESE examinations. However, to get higher than Pass 'P' grade it will be compulsory to give both the examinations."

Kindly take note of the above change which will be applicable from AY 2025-26. For any clarifications, please reach out to the Department Exam Coordinators of respective departments.

(DR. S.S. RATHOD)
PRINCIPAL

Phone : (022) 6711 4000, 6711 4101, 6711 4104 • Website : www.fragnel.edu.in • Email : crce@fragnel.edu.in

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

CURRICULUM STRUCTURE FINAL YEAR UG: B.E.

COMPUTER ENGINEERING

REVISION: FRCRCE-1-24

Effective from Academic Year 2024-25

Board of Studies Approval:08/03/2024 Academic Council Approval:16/03/2024

Pahor

Dr. DEEPAK BHOIR
Dean Academics

Dr. Sujata P. Deshmukh HOD (Computer) DR. SURENDRA RATHOD
Principal

Juston

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Preamble:

Greetings and congratulations to all the education partners Fr Conceicao Rodrigues College of Engineering for getting autonomous status to the college from the year 2024-25. University Grant Commission vide letter No. F. 2-10/2023(AC-Policy) dated 23rd Nov 2023 conferred the autonomous status to Fr. Conceicao Rodrigues College of Engineering, Fr. Agnel Ashram, Bandstand, Bandra (West), Mumbai 400050 affiliated to University of Mumbai for a period of 10 years from the academic year 2024-2025 to 2033-2034 as per clause 7.5 of the UGC (Conferment of Autonomous Status Upon Colleges and Measures for Maintenance of Standards in Autonomous Colleges) Regulations,2023. We look towards autonomy as a great opportunity to design and implement curriculum sensitive to needs of Learner, Indian Society and Industries.

All India Council for Technical Education (AICTE) has made implementation of Internship policy mandatory for students. While applying for Extension of Approval (EoA) it is desired that institute has already implemented compulsory internship for all final year students.

The National Education Policy (NEP), 2020 suggests that students must actively engage with the practical side of their learning as part of a holistic education to further improve their employability. It states that students at all HEIs will be provided with opportunities for internships with local industry and businesses as well as research internships with faculty and researchers at their own or other HEIs/research institutions.

In line with the NEP and tracing the provisions of NcrF, Government of Maharashtra has subsequently released two Government Resolutions (GRs) (NEP GR dated -1.20 April 2023, and 2. 4 July 2023) to reinforce NEP implementation and credit revision across Maharashtra HEIs. These GRs lay out detailed guidelines for curriculum interventions.

Fr. CRCE has taken a strategic move as a response to the NEP's call for students to engage with practical learning through internships, a practice proven to enhance employability and refine skill sets for the final year students from academic year 2024-25.

Following two major changes applicable for Final Year Students of 2024-25 and 2025-26 batch:

- 1. Semester long internship option
- 2. Revised assessment in the form of ISE-1, MSE, ISE-2 and ESE to be taken by the college.

Character

Society of St. Francis Xavier, Pilar's

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

I. Internship:

Following are the objectives of the Internships envisaged for the students:

- ✓ Exposing students to industrial environments that cannot be replicated in a classroom or lab.
- ✓ Providing opportunities to acquire and refine analytical and managerial skills crucial for a professional career.
- ✓ Offering hands-on experience in teamwork, thereby enhancing professional skills like communication, work ethics, conflict resolution, etc., with a lasting impact on lifelong learning and professional development.
- ✓ The general idea is to enable students to undertake immersive assignments within the organizations for a limited period.
- ✓ Establishing links between students and potential future job or research opportunities.

Methodology of Implementation of Internship Policy for Final Year Students of 2024-25:

A. Completion of Existing Credits:

- 1. Semester VIII will be conducted in Fast Track Mode during first week of July and winter vacation for completing Institute Level Elective common course to all the departments.
- 2. Each course will be conducted in a continuous training format for 10days (3hrs theory+2hours lab).
- 3. Honors course will be taken for two hours each day during Fast Track Mode.
- 4. Major project will be continued till the official semester end. Assessment of major project will be conducted in phase-wise manner. Students need to compulsorily present in person for each of the phases of assessment.
- 5. If required then provision for SWAYAM courses to be explored by departments
- 6. Assessments to be completed immediately after completion of all courses.
- 7. Release of Gazette and score cards will be only at the end of academic year

B. Internship Details:

- 1. Training and placement department shall contact companies and strive for providing Six months' internship to all the students. Preference should be given to Internship+PPO during regular placement cycle in SEM VII.
- 2. Internships should be an integral part of the academic curricula. But for 2024-25 and 2025-26 batch of Final Year students, credit framework is already given by University of Mumbai. For student of these batches internship is last moment value addition and therefor it will not be a part of credit framework. College is providing this as an additional experiential learning opportunity for the students by considering Market demand, Industry demand, Government Resolutions and Student desire.
- 3. Following are the types of internship opportunities that can be explored by students:
 - a. Offered by Industry Govt./ NGO/MSME
 - b. Research Institutes like BARC, TIFR, SAMEER and IITs
 - c. At various Incubation Centres
 - d. Internships offered through academic collaborations with Foreign Universities
 - e. Internships offered by reputed colleges with whom MoUs are signed for the collaboration and credit exchange
 - f. Or any other internship approved by HoI based on the merit of offer
- 4. All internships are subjected to approval of Head of the Institute. Students must take prior approval from college before starting internship

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 5. Students opting for Entrepreneurship or Start-up are exempted from internship; however, they have to work in the pre-incubation centre of the college to work for their start-up initiative with demonstrable output.
- 6. Students who wish to work on academic / industry research project (Rather than other internships) assigned under a faculty of Fr CRCE is allowed to do so provided details of work to be done and outcomes are clearly stated and approved by the college authorities.
- 7. Students can proceed for Internships from 15th Jan.
- 8. On the request of student college will issue successful completion certificate after achieving predefined approved milestones of Internship/Entrepreneurship/Research Project etc.

Student Resources:

Government Internship Programs:

- ✓ AICTE Internship: https://internship.aicte-india.org/
- ✓ NITI Ayog Internship: https://www.niti.gov.in/internship
- ✓ TULP Internship Program:
 - https://smartcities.gov.in/The_Urban_Learning_Internship_Program
- ✓ Digital India Internship:
 - https://www.meity.gov.in/writereaddata/files/Digital%20Internship%20Scheme%202023%20%281%29.pdf
- ✓ Directorate General of Foreign Trade Internship program:
 - https://www.dgft.gov.in/CP/?opt=intership-scheme
- ✓ National Commission for Scheduled Tribes Internship: https://nest.nic.in/sites/default/files/2021/Internship/367/
- https://ncst.nic.in/sites/default/files/2021/Internship/3677

 ✓ Corporate Affairs Ministry Internship program:
 - https://www.mca.gov.in/bin/dms/getdocument?mds=aC%252B%252F82boz%252FD%252FdHcFkAAJ0A%253D%253D&type=open
- ✓ Finance Ministry Internship program: https://dpe.gov.in/schemes/scheme-internship
- ✓ Women and Child Development Ministry Internship program: https://wcd.nic.in/sites/default/files/Internship%20Guideline.. 0.pdf
- ✓ Ministry of Culture Internship programs: https://nationalmuseumindia.gov.in/en/nationalmuseum-internship-programme

Online Platforms for Internships:

- ✓ Internshala: https://internshala.com/
- ✓ LetsIntern: https://letsintern.in/
- ✓ Twenty19: http://twenty19.com.testednet.com/
- ✓ HelloIntern: https://hellointern.co/
- ✓ Freshersworld: https://www.freshersworld.com/
- ✓ Youth4work: https://www.youth4work.com/
- ✓ Freshersnow: https://www.freshersnow.com/internships-in-delhi/
- ✓ Zuno by Foundit: https://www.foundit.in/zuno/
- ✓ LinkedIn:
 - https://www.linkedin.com/jobs/internshipjobs/?currentJobId=3647611763&originalSubdoma in=in
- ✓ Well Found (earlier, AngelList Talent): https://wellfound.com/location/india
- ✓ Indeed: https://in.indeed.com/jobs?q=internships&l=&vjk=fd2d4f96a2564717
- ✓ Naukri.com: https://www.naukri.com/internship-jobs
- ✓ TimesJobs: https://www.timesjobs.com/jobs-by-roles/intern-jobs

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

✓ NGO Box: https://ngobox.org/job_listing.php

✓ CSR Box: https://csrbox.org/

II. Honours and Minor Degree Eligibility Criteria for Students:

- i. Following is the eligibility criteria for students opting the Honours/ Minor Degree program:
 - a. Students with no backlog in semester I, II, and III
 - b. The CGPI (based on semester I, II, and III) of the students must be 6.75 and above
 - c. For direct second year (DSE) admitted students No backlog in semester III and CGPI must be 6.75 and above
- ii. Each eligible student can opt for maximum one Honour's or one Minor Programs at any time.
- iii. However, it is optional for leaners to take Honours/Minor degree program.
- iv. The Honours/ Minor degree program can be opted only during regular engineering studies
- v. The student have to complete the Honours/ Minor degree program in stipulated four semesters only.

Note:

- 1. Courses offered during internship semester shall be in online mode
- 2. Technical support team for registration of Academic Bank of Credits (ABC), registration of elective/optional courses, registration of online courses, registration for degree options etc. under supervision of Dean Academics.

Fr. Conceicao Rodrigues College of Engineering
Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050
(Autonomous College affiliated to University of Mumbai)

SEMESTERWISE CURRICULUM STRUCTURE

FINAL YEAR Computer Engineering Program:

			Semeste	r VII						
Course Code	Course Name Contact Marks)					Cred				
			Hours	ISE1	MSE	ISE2	ESE	Total	Points	Total
CSC701	Machine Learning	TH	3	20	30	20	30	100	3	3
CSC702	Big Data Analysis	TH	3	20	30	20	30	100	3	3
CSDC701X	Department Level Optional Course-3	TH	3	20	30	20	30	100	3	3
CSDC702X	Department Level Optional Course-4	TH	3	20	30	20	30	100	3	3
ILO 701X	Institute Level Optional Course-1	TH	3	20	30	20	30	100	3	3
CSL 701	Machine Learning Lab	PR	2	25		25	-	50	1	1
CSL 702	Big Data Analytics Lab	PR	2	25	-	25	-	50	1	1
CSDL701X	Department Level Optional Course-3 Lab	PR	2	10	-	15	-	25	1	1
CSDL702X	Department Level Optional Course-4 Lab	PR	2	10	-	15	-	25	1	1
CSP701	Major Project 1	PR	6	25	-	25	25	75	3	3
		Total	TH::PR 15:14=29					725		22

			Sem '	VIII						
Course Code	Course Name		Contact Hours	Examination Marks (1 Credit=50 Marks)				Cred	lits	
				ISE1	MSE	ISE2	ESE	Total	Points	Total
CSC801	Distributed Computing	TH	3	20	30	20	30	100	3	3
CSDC 801X	Department Level Optional Course-5	TH	3	20	30	20	30	100	3	3
CSDC 802X	Department Level Optional Course-6	TH	3	20	30	20	30	100	3	3
ILO801X	Institute Level Optional Course-2	TH	3	20	30	20	30	100	3	3
CSL801	Distributed Computing Lab	PR	2	25		25		50	1	1
CSDL801X	Department Level Optional Course-5 Lab	PR	2	25		25		50	1	1
CSDL802X	Department Level Optional Course-6 Lab	PR	2	25		25		50	1	1
CSP801	Major Project 2	PR	12	50	-	50	50	150	6	6
		Total	TH::PR 12:18=30	-	-	-	1	700	-	21

Semester	Department/Institute	Subject
	Optional Courses and Labs	
VII	Department Optional	CSDC7011: Machine Vision
	Course-3	CSDC7012: Quantum Computing
		CSDC7013: Natural Language Processing
	Department Optional Lab-3	CSDL7011: Machine Vision Lab
		CSDL7012: Quantum Computing Lab
		CSDL7013: Natural Language Processing Lab
	Department Optional	CSDC7021: Augmented and Virtual Reality
	Course-4	CSDC7022: Block chain
		CSDC7023: Information Retrieval
	Department Optional Lab-4	CSDL7021: Augmented and Virtual Reality Lab
		CSDL7022: Block chain Lab
		CSDL7023: Information Retrieval Lab
	Institute level Optional	ILO7011. Product Lifecycle Management
	Courses-I	ILO7012. Reliability Engineering
		ILO7013. Management Information System
		ILO7014. Design Experiments
		ILO7015. Operation Research
		ILO7016. Cyber Security Laws
		ILO7017. Disaster Management & Mitigation Measures
		ILO7018. Energy Audit and Management
		ILO7019. Development Engineering

Semester	Department/Institute	Subject
	Optional Courses and Labs	•
VIII	Department Optional	CSDC8011: Deep Learning
	Course-5	CSDC8012: Digital Forensic
		CSDC8013: Applied Data Science
	Department Optional Lab-5	CSDL8011: Deep Learning Lab
		CSDL8012: Digital Forensic Lab
		CSDL8013: Applied Data Science Lab
	Department Optional	CSDC8021: Optimization in machine Learning
	Course-6	CSDC8022: High Performance Computing
		CSDC8023: Social Media Analytics
	Department Optional Lab-6	CSDL8021: Optimization in machine Learning Lab
		CSDL8022: High Performance Computing Lab
		CSDL8023: Social Media Analytics Lab
	Institute level Optional	ILO8021. Project Management
	Courses-II	ILO8022. Finance Management
		ILO8023. Entrepreneurship Development and Management
		ILO8024. Human Resource Management
		ILO8025. Professional Ethics and CSR
		ILO8026. Research Methodology
		ILO7027. IPR and Patenting
		ILO7028. Digital Business Management
		ILO7029. Environment Management

Course Code	Course	Teaching So (Hrs/we		ne	Credits Assigned				
	Name	L	T	P		L	T	P	Total
	Machine	3				3			3
CSC701					Examination Scheme				
		ISE1		MSE	ISE2	F	ESE		Total
	Learning	20		30	30 20		100 (30%		100
						W	eight	tage)	

Pre-requisite	CSC	301, CSC 401, CSC 303, CSC 402
	CO1	To acquire fundamental knowledge of developing
		machine learning models.
	CO2	, 11 ,
Course Outcomes		machine learning model for the given
	CO3	To demonstrate ensemble techniques to combine
		predictions from different models.
	CO4	To demonstrate the dimensionality reduction
		techniques.

Module	Unit	Topics	Ref.	Hrs.
No.	No.	-		
1		Introduction to Machine Learning		04
	1.1	Machine Learning, Types of Machine Learning, Issues in	[1],	
		Machine Learning, Application of Machine Learning, Steps in	[2],[3]	
		developing a	,[4]	
		Machine Learning Application.		
	1.2	Training Error, Generalization error, Overfitting, Underfitting,		
		Bias Variance trade-off.	[1],[2]	
2		Learning with Regression and Trees		09
	2.1	Learning with Regression: Linear Regression, Multivariate	[1],2]	
		Linear Regression, Logistic Regression.	[6]	
	2.2	Learning with Trees: Decision Trees, Constructing Decision	[1],[2]	
		Treesusing Gini Index (Regression), Classification and	,[3],	
		Regression Trees (CART)	[7]	
	2.3	Performance Metrics: Confusion Matrix, [Kappa Statistics],		
		Sensitivity, Specificity, Precision, Recall, F-measure, ROC curve	[4],[5]	
3		Ensemble Learning		06
	3.1	Understanding Ensembles, K-fold cross validation, Boosting,	[4]	
		Stumping, XGBoost		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	3.2	Bagging, Subagging, Random Forest, Comparison with Boosting,	2],[4]	
	0,2	Different ways to combine classifiers	[5]	
4		Learning with Classification	L- J	08
	4.1	Support Vector Machine Constrained Optimization, Optimal	[1][2]	
		decision	[4]	
		boundary, Margins and support vectors, SVM as constrained		
		optimization problem, Quadratic Programming, SVM for linear		
		and		
		nonlinear classification, Basics of Kernel trick.		
	4.2	Support Vector Regression, Multiclass Classification		
5		Learning with Clustering		07
	5.1	Introduction to clustering with overview of distance metrics and	[2]	
		major clustering approaches.		
	5.2	Graph Based Clustering: Clustering with minimal spanning tree	[2][5]	
		Modelbased Clustering: Expectation Maximization Algorithm,		
		Density Based		
		Clustering: DBSCAN		
6		Dimensionality Reduction		05
	6.1	Dimensionality Reduction Techniques, Principal Component	[1][5]	
		Analysis,		
		Linear Discriminant Analysis, Singular Valued Decomposition.		
			Total	39

Recommended Books:

- 1. Peter Harrington, "Machine Learning n Action", Dream Tech Press
- 2. Ethem Alpaydın, "Introduction to Machine Learning", MIT Press 3 Tom M. Mitchell, "Machine Learning" McGraw Hill
- 3. Stephen Marsland, "Machine Learning an Algorithmic Perspective", CRC Press
- 4. Han Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann Publishers
- 5. Margaret. H. Dunham, —Data Mining Introductory and Advanced Topics, Pearson Education
- 6. Kevin P. Murphy, Machine Learning "A Probabilistic Perspective"
- 7. Samir Roy and Chakraborty, "Introduction to soft computing", Pearson Edition.
- 8. Richard Duda, Peter Hart, David G. Stork, "Pattern Classification", Second Edition, Wiley Publications

Course Assessment:

Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Course Code	Course Name	So	achi chen s/we	ne e		C	Credits Assigned			
		L	T	P		L	T	P	Total	
		3				3			3	
CSC702	Big Data Analysis				Exami	inatio	n Scl	neme		
		ISE1		MSE	ISE2	E	ESE		Total	
		20		30	20	100	(30%	6	100	
						weig	htag	e)		

Pre-requisite	CSC4	103, CSC504
	CO1	Understand the building blocks of Big Data Analytics.
	CO2	Apply fundamental enabling techniques like Hadoop and
		MapReduce in solving real world problems.
	CO3	Understand different NoSQL systems and how it handles
		big data.
Course Outcomes	CO4	Apply advanced techniques for emerging applications like
		stream analytics.
	CO5	Achieve adequate perspectives of big data analytics in
		various applications like recommender systems, social
		media applications, etc.
	CO6	Apply statistical computing techniques and graphics for
		analyzing big data.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Big Data and Hadoop	[1][3]	02
	1.1	Introduction to Big Data - Big Data characteristics and Types of		
		Big Data		
	1.2	Traditional vs. Big Data business approach		
	1.3	Case Study of Big Data Solutions		
	1.4	Concept of Hadoop, Core Hadoop Components; Hadoop		
		Ecosystem		
2		Hadoop HDFS and MapReduce	[2]	08
	2.1	Distributed File Systems: Physical Organization of Compute		
		Nodes, LargeScale File-System Organization		
	2.2	MapReduce: The Map Tasks, Grouping by Key, The Reduce		
		Tasks, Combiners, Details of MapReduce Execution, Coping With		
		Node Failures.		

	2.3	Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce		
	2.4	Hadoop Limitations		
3		NoSQL	[2][3]	10
	3.1	Introduction to NoSQL, NoSQL Business Drivers		
	3.2	NoSQL Data Architecture Patterns: Key-value stores, Graph stores, Column family (Bigtable)stores, Document stores, Variations of NoSQL architectural patterns, NoSQL Case Study		
	3.3	NoSQL solution for big data, Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer-to-peer; NoSQL systems to handle big data problems.		
4		Mining Data Streams	[1][3]	11
	4.1	The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Queries, Issues in Stream Processing.		
	4.2	Sampling Data techniques in a Stream		
	4.3	Filtering Streams: Bloom Filter with Analysis.		
	4.4	Counting Distinct Elements in a Stream, Count Distinct Problem, Flajolet-Martin Algorithm, Combining Estimates, Space Requirements		
	4.5	Counting Ones in a Window: The Cost of Exact Counts, The Datar- Gionis-Indyk-Motwani Algorithm, Query Answering in the DGIM Algorithm, Decaying Windows.		
5			[1][3]	04
	5.1	A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering		
	5.2	Case Study: Product Recommendation		
	5.3	Social Networks as Graphs, Clustering of Social-Network Graphs, Direct Discovery of Communities in a social graph		
6		Data Analytics with R	[1][2]	04
	6.1	Exploring Basic features of R, Exploring RGUI, Exploring RStudio, Handling Basic Expressions in R, Variables in R, Working with Vectors, Storing and Calculating Values in R, Creating and using Objects, Interacting with users, Handling data in R workspace, Executing Scripts, Creating Plots, Accessing help and documentation in R	[6]	

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

6.2	Reading datasets and Exporting data from R, Manipulating and Processing Data in R, Using functions instead of script, built-in functions in R		
6.3	Data Visualization: Types, Applications		
		Total	39

Recommended Books:

- 1 Cre Anand Rajaraman and Jeff Ullman —Mining of Massive Datasets, Cambridge University Press
- 2. Alex Holmes Hadoop in Practicel, Manning Press, Dreamtech Press.
- 3. Dan Mcary and Ann Kelly —Making Sense of NoSQL∥ A guide for managers and the rest of us, Manning Press.
- 4. DT Editorial Services, —Big Data Black Bookl, Dreamtech Press
- 5. EMC Education Services, Data Science and Big Data Analytics, Wiley
- 6. Bill Franks, —Taming The Big Data Tidal Wave: Finding Opportunities In HugeDataStreams with Advanced Analytics, Wiley
- 7. Chuck Lam, —Hadoop in Action, Dreamtech Press
- 8. Jared Dean, —Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners, Wiley India Private Limited, 2014.
- 9. Jiawei Han and Micheline Kamber, —Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 3rd ed, 2010.
- 10. Lior Rokach and Oded Maimon, —Data Mining and Knowledge Discovery Handbookl, Springer, 2nd edition, 2010.
- 11. Ronen Feldman and James Sanger, —The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Datall, Cambridge University Press, 2006.
- 12. Vojislav Kecman, —Learning and Soft Computing, MIT Press, 2010.

Useful Links

- 1. https://nptel.ac.in/courses/106104189
- 2. https://www.coursera.org/specializations/big-data#courses
- 3. https://www.digimat.in/nptel/courses/video/106106169/L01.html
- **4.** https://www.coursera.org/learn/nosql-databases#syllabus
- **5.** https://www.coursera.org/learn/basic-recommender-systems#syllabus

Course Assessment:

Theory:

<u>ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSF.

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Course Code	Course Name	Teaching Scheme (Hrs/week)				C	Credits Assigned			
		L	T	P		L	T	P	Total	
		3				3			3	
CSDC7011	Machine Vision	Examination Scheme								
		ISE1		MSE	ISE2	F	SE		Total	
		20		30	20	100	(30%	6	100	
						weig	htag	e)		

Pre-requisite	CSC 3	305
	CO1	Elaborate the components of Machine Vision Application
	CO2	Perform image ,video preprocessing operations
	CO3	Explain various transformations, interpolation.
Course Outcomes	CO4	Elaborate motion tracking in video.
	CO5	Analyze and Implement appropriate filtering techniques
		for a given problem.
	CO6	Develop applications based on machine vision.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Machine Vision		4
		Computer and Human Vision Systems., The Human Eye,	[1][2]	
		Computerversus Human Vision Systems, Evolution of Computer	[3]	
		Vision, Computer/Machine Vision and Image Processing,		
		Applications of Computer Vision		
2		Digital Image Fundamentals		8
		Digital Image, Monochrome and Color Images, Image	[2][3]	
		Brightness and Contrast., 2D, 3D, and 4D Images, Digital Image	[4]	
		Representation, Digital Image File Formats, Fundamental Image		
		Operations, Points, Edges, and Vertices, Point Operations,		
		Thresholding ,Brightness, Geometric Transformations , Spatial		
		Transformation, Affine Transformation, Image Interpolation		
		,Nearest-Neighbor Interpolation ,Bilinear Interpolation , Bi-cubic		
		Interpolation ,Fundamental Steps in Digital Image Processing.		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

3		Machine Vision and System Components		8
		<u> </u>	[1][2]	
		-	[3][6]	
		Cameras, Line Scan Cameras, Smart Cameras, Camera Lens		
		Resolution, Contrast and Sharpness, Lenses and their parameters:		
		Types of Lenses, Lens Mounts, Lens Selection Examples-Field		
		of View Much larger than Camera sensor size or Smaller or close		
		to Camera Sensor size, Machine Vision Lighting: Lighting: Light		
		Sources in Machine Vision, Illumination Techniques-		
		Backlighting, Front Lighting, Diffused Lighting, Oblique		
		Lighting, Dark Field Lighting, Infrared and Ultraviolet Light,		
		Filters, Machine Vision Software, Machine Vision Automation,		
		Integration of Machine Vision Components.		
4		Digital Image Processing for Machine Vision Applications		10
			[2][3]	
		<u> </u>	[4][5]	
			[6]	
		Segmentation, Threshold Based Segmentation Edge-Based		
		Segmentation First-Order Derivative Edge Detection. Second-		
		Order Derivative Operators, Comparison of Edge Detection		
		Techniques, Region-Based Segmentation Region Growing		
		Methods, Region Split and Merge Method, Morphological		
		Image Processing: Dilation, Erosion, Opening, Closing, Hit-or-		
		Miss transformation, Object Recognition. Template Matching.		
		Blob Analysis		
5		Motion Analysis		4
		Differential motion Analysis, Optical Flow, Analysis based on		
		correspondence of interest points, Detection of specific motion	[4][5]	
		Patterns, Video Tracking		
6		Emerging Trends in Machine Vision		5
	6.1	History of Industrial Revolution(s), Machine Vision and Industry		
			[5][6]	
		Emerging Vision Trends in Manufacturing, 3D Imaging,		
		Emerging Vision Trends in Manufacturing,		
	6.2	Applications in Machine/ Computer Vision: Face detection, face		
		recognition, eigen faces, car on roads		
			Total	39

Recommended Books:

- 1. Sheila Anand and L.Priya , —A Guide for Machine Vision in Quality Controll, Taylor & Francis Inc, Imprint CRC Press Inc, Dec 2019
- 2. Rafael C. Gonzalez and Richard E. Woods, —Digital Image Processingl, Pearson
- 3. Carsten Stegar, Markus Ulrich, and Christian Wiedemann, —Machine Vision Algorithms and Applications, Second completely Revised and Enlarged Edition

SOCIAL DE LA COLLEGA DE LA COL

Society of St. Francis Xavier, Pilar's

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 4. Milan Sonka, Vaclav Hlavac, Roger Boyle, —Image Processing Analysis and Machine Vision, Second Edition, Cengage Learning.
- 5. Chiranji Lal Chowdhary, Mamoun Alazab, Ankit Chaudhary, Saqib Hakak and Thippa Reddy Gadekallu , Computer Vision and Recognition Systems Using Machine and Deep Learning Approaches, Fundamentals, technologies and applications, IET COMPUTING SERIES 42
- 6. Joe Minichino Joseph Howse , Learning OpenCV 3 Computer Vision with Python , Second Edition, Packt Publishing Ltd.
- 7. Alexander Hornberg,, Handbook of Machine and Computer Vision The Guide for Developers and Users,

Useful Links

- 1. https://nptel.ac.in/courses/108103174
- 2. https://www.coursera.org/learn/introduction-computer-vision-watson-opency
- 3. https://www.udacity.com/course/introduction-to-computer-vision--ud810
- 4. https://onlinecourses.nptel.ac.in/noc21_ee23/preview

Course Assessment:

Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Course Code	Course Name	Teaching Scheme (Hrs/week)				C	Credits Assigned			
		L	T	P		L	T	P	Total	
		3				3			3	
CSDC7012	Quantum Computing	Examination Scheme								
		ISE1		MSE	ISE2	E	CSE		Total	
		20		30	20	100	(30%	6	100	
						weig	htag	e)		

Pre-requisite	CSC 301, CSC 401, CSC 303, CSC 402, CSL 405		
	CO1 Understand basic concepts of quantum computing	CO1	
	CO2 Illustrate building blocks of quantum computing through architecture and programming models	CO2	rough
Course Outcomes	CO3 Appraise various mathematical models required for quantum computing	CO3	r
	CO4 Discuss various quantum hardware building principles.	CO4	ples.
	CO5 Identify the various quantum algorithms	CO5	
	CO6 Describe usage of tools for quantum computing.	CO6	

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Quantum Computing		07
	1.1	Motivation for studying Quantum Computing Origin of	[1][2]	
		Quantum Computing Quantum Computer vs. Classical		
		Computer Introduction to Quantum mechanics Overview of		
		major concepts in Quantum Computing		
	1.2	Qubits and multi-qubits states Bloch Sphere representation		
		Quantum Superposition Quantum Entanglement Major players in		
		the industry (IBM, Microsoft, Rigetti, D-Wave etc.)		
2		Mathematical Foundations for Quantum Computing		05
	2.1	Matrix Algebra: basis vectors and orthogonality, inner product	[1][2]	
		and Hilbert spaces, matrices and tensors, unitary operators and	[3]	
		projectors, Dirac notation, Eigen values and Eigen vectors.		

SUPPLIES COLLEGE OF STORE STOR

Society of St. Francis Xavier, Pilar's

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4.1 Quantum Algorithms, Shor's Algorithm, Grover's Algorithm. Deutsch's Algorithm, Deutsch -Jozsa Algorithm 4.2 Quantum error correction using repetition codes 3 qubit codes, Shor's 9 qubit error correction Code Quantum Hardware 5.1 Ion Trap Qubits ,The DiVincenzo Criteria , Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating [5] Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]	3		Building Blocks for Quantum Program		8					
States Quantum superposition of qubits (valid and invalid superposition) Quantum Entanglement Useful states from quantum algorithmic perceptive e.g. Bell State Operation on qubits: Measuring and transforming using gates. Quantum Logic gates and Circuit No Cloning Theorem and Teleportation. 3.2 Programming model for a Quantum Computing Program Steps performed on classical computer Steps performed on Quantum Computer Moving data between bits and qubits. 4 Quantum Algorithms and Error correction 4.1 Quantum Algorithms, Shor's Algorithm, Grover's Algorithm. Deutsch's Algorithm, Deutsch - Jozsa Algorithm [5] 4.2 Quantum error correction using repetition codes 3 qubit codes, Shor's 9 qubit error correction Code 5 Quantum Hardware 5.1 Ion Trap Qubits, The DiVincenzo Criteria, Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating [5] Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]		3.1	Architecture of a Quantum Computing platform Details of q-bit	[2][3]						
superposition) Quantum Entanglement Useful states from quantum algorithmic perceptive e.g. Bell State Operation on qubits: Measuring and transforming using gates. Quantum Logic gates and Circuit No Cloning Theorem and Teleportation. 3.2 Programming model for a Quantum Computing Program Steps performed on classical computer Steps performed on Quantum Computer Moving data between bits and qubits. 4 Quantum Algorithms and Error correction Quantum Algorithms, Shor's Algorithm, Grover's Algorithm. [1][2] Deutsch's Algorithm, Deutsch -Jozsa Algorithm [5] 4.2 Quantum error correction using repetition codes 3 qubit codes, Shor's 9 qubit error correction Code 5 Quantum Hardware 5.1 Ion Trap Qubits, The DiVincenzo Criteria, Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]			•	[5]						
quantum algorithmic perceptive e.g. Bell State Operation on qubits: Measuring and transforming using gates. Quantum Logic gates and Circuit No Cloning Theorem and Teleportation. 3.2 Programming model for a Quantum Computing Program Steps performed on classical computer Steps performed on Quantum Computer Moving data between bits and qubits. 4 Quantum Algorithms and Error correction 4.1 Quantum Algorithms, Shor's Algorithm, Grover's Algorithm. Deutsch's Algorithm, Deutsch -Jozsa Algorithm [5] 4.2 Quantum error correction using repetition codes 3 qubit codes, Shor's 9 qubit error correction Code Quantum Hardware 5.1 Ion Trap Qubits, The DiVincenzo Criteria, Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]										
qubits: Measuring and transforming using gates. Quantum Logic gates and Circuit No Cloning Theorem and Teleportation. 3.2 Programming model for a Quantum Computing Program Steps performed on classical computer Steps performed on Quantum Computer Moving data between bits and qubits. 4 Quantum Algorithms and Error correction 4.1 Quantum Algorithms, Shor's Algorithm, Grover's Algorithm.										
gates and Circuit No Cloning Theorem and Teleportation. 3.2 Programming model for a Quantum Computing Program Steps performed on classical computer Steps performed on Quantum Computer Moving data between bits and qubits. 4 Quantum Algorithms and Error correction 4.1 Quantum Algorithms, Shor's Algorithm, Grover's Algorithm. Deutsch's Algorithm, Deutsch -Jozsa Algorithm [5] 4.2 Quantum error correction using repetition codes 3 qubit codes, Shor's 9 qubit error correction Code 5 Quantum Hardware 5.1 Ion Trap Qubits, The DiVincenzo Criteria, Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating [5] Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]										
3.2 Programming model for a Quantum Computing Program Steps performed on classical computer Steps performed on Quantum Computer Moving data between bits and qubits. 4 Quantum Algorithms and Error correction 4.1 Quantum Algorithms, Shor's Algorithm, Grover's Algorithm. Deutsch's Algorithm, Deutsch -Jozsa Algorithm Quantum error correction using repetition codes 3 qubit codes, Shor's 9 qubit error correction Code Quantum Hardware 5.1 Ion Trap Qubits, The DiVincenzo Criteria, Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating [5] Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]										
performed on classical computer Steps performed on Quantum Computer Moving data between bits and qubits. 4 Quantum Algorithms and Error correction 4.1 Quantum Algorithms, Shor's Algorithm, Grover's Algorithm. Deutsch's Algorithm, Deutsch -Jozsa Algorithm. 4.2 Quantum error correction using repetition codes 3 qubit codes, Shor's 9 qubit error correction Code 5 Quantum Hardware 5.1 Ion Trap Qubits, The DiVincenzo Criteria, Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 7.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 7.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]			gates and Circuit No Cloning Theorem and Teleportation.							
Computer Moving data between bits and qubits. Quantum Algorithms and Error correction 4.1 Quantum Algorithms, Shor's Algorithm, Grover's Algorithm. [1][2] Deutsch's Algorithm, Deutsch -Jozsa Algorithm [5] 4.2 Quantum error correction using repetition codes 3 qubit codes, Shor's 9 qubit error correction Code 5 Quantum Hardware 5.1 Ion Trap Qubits, The DiVincenzo Criteria, Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating [5] Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]		3.2	Programming model for a Quantum Computing Program Steps							
4.1 Quantum Algorithms, Shor's Algorithm, Grover's Algorithm. 4.1 Quantum Algorithms, Shor's Algorithm, Grover's Algorithm. 5.2 Quantum Hardware 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Arificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7] [8]			performed on classical computer Steps performed on Quantum							
4.1 Quantum Algorithms, Shor's Algorithm, Grover's Algorithm. Deutsch's Algorithm, Deutsch -Jozsa Algorithm 4.2 Quantum error correction using repetition codes 3 qubit codes, Shor's 9 qubit error correction Code Duantum Hardware 5.1 Ion Trap Qubits ,The DiVincenzo Criteria , Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating [5] Rotor Equantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]			Computer Moving data between bits and qubits.							
Deutsch's Algorithm, Deutsch -Jozsa Algorithm 4.2 Quantum error correction using repetition codes 3 qubit codes, Shor's 9 qubit error correction Code 5 Quantum Hardware 5.1 Ion Trap Qubits ,The DiVincenzo Criteria , Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating [5] Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]	4		Quantum Algorithms and Error correction		06					
4.2 Quantum error correction using repetition codes 3 qubit codes, Shor's 9 qubit error correction Code 5 Quantum Hardware 5.1 Ion Trap Qubits, The DiVincenzo Criteria, Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating [5] Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]		4.1	Quantum Algorithms, Shor's Algorithm, Grover's Algorithm.	[1][2]						
Shor's 9 qubit error correction Code Quantum Hardware 5.1 Ion Trap Qubits ,The DiVincenzo Criteria , Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating [5] Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]			Deutsch's Algorithm, Deutsch -Jozsa Algorithm	[5]						
5.1 Ion Trap Qubits ,The DiVincenzo Criteria , Lagrangian and [1][3] Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating [5] Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]		4.2	Quantum error correction using repetition codes 3 qubit codes,							
5.1 Ion Trap Qubits ,The DiVincenzo Criteria , Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating [5] Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]			Shor's 9 qubit error correction Code							
Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating [5] Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]	5		Quantum Hardware		10					
Rotor 5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]		5.1	Ion Trap Qubits ,The DiVincenzo Criteria , Lagrangian and	[1][3]						
5.2 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]			Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating	[5]						
Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]			Rotor							
Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]		5.2	Quantum Mechanics of a Free Rotor: A Poor Person's Atomic							
 5.3 The Cirac-Zoller Mechanism: Quantum Theory of Simple Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7] 			Model:							
Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]			Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates							
Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]		5.3	The Cirac-Zoller Mechanism: Quantum Theory of Simple							
Sørenson Coupling 5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]			Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light							
5.4 Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7]			Induced Rotor- Phonon Interactions, Trapped Ion Qubits, Mølmer							
Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7] [8]			Sørenson Coupling							
LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7] [8]		5.4								
computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7] [8]			Jaynes- Cummings Hamiltonian Circuit QED (cirQED): Quantum							
exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7] [8]			LC Circuits, Artificial Atoms, Superconducting Qubits Quantum							
universal quantum gate. 6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7] [8]			computing with spins: Quantum inverter realized with two							
6 OSS Toolkits for implementing Quantum program 6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7] [8]			exchange coupled spins in quantum dots, A 2-qubit spintronic							
6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7] [8]			universal quantum gate.							
6.1 IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM) [4][7] [8]	6		OSS Toolkits for implementing Quantum program		03					
		6.1	IBM quantum experience Microsoft Q Rigetti PyQuil QPU/QVM)							
					39					

Recommended Books:

- 1. Michael A. Nielsen, —Quantum Computation and Quantum Information , Cambridge University Press.
- 2. David McMahon, —Quantum Computing Explainedl, Wiley ,2008
- 3. Qiskit textbook https://qiskit.org/textbook-beta/
- 4. Vladimir Silva, Practical Quantum Computing for Developers, 2018

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 5. Bernard Zygelman, A First Introduction to Quantum Computing and Information, 2018 2 Supriyo Bandopadhyay and Marc Cahy, —Introduction to Spintronics, CRC Press, 20083 La Guardia, Giuliano Gladioli —Quantum Error correction codes Springer, 2021
- 6. Supriyo Bandopadhyay and Marc Cahy, —Introduction to Spintronics, CRC Press, 2008
- 7. The Second Quantum Revolution: From Entanglement to Quantum Computing and Other Super-Technologies, Lars Jaeger
- 8. La Guardia, Giuliano Gladioli —Quantum Error correction

Digital References:

https://onlinecourses.nptel.ac.in/noc21_cs103/preview

https://www.coursera.org/courses?query=quantum%20computing

https://www.cl.cam.ac.uk/teaching/1617/QuantComp/

Course Assessment:

Theory:

<u>ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigne				Scheme		igned	
		L	T	P		L	T	P	Total
	Natural Language	3				3			3
CSDC7013	Processing	Examination Scheme							
		ISE1 N		MSE	ISE2	F	CSE		Total
		20		30	20	100	(30%	6	100
						weig	htag	e)	

Pre-requisite	CSC:	501, CSC 601
	CO1	Describe the linguistic preliminaries necessary for various phases in NLP.
	CO2	Perform Word-Level and Syntax-Level analysis on a text.
Course Outcomes	CO3	Analyze the textual input at Semantic Level in NLP.
	CO4	Develop a basic understanding of Pragmatics in NLP
	CO5	Apply NLP techniques to design real-world NLP applications
	CO6	Describe the linguistic preliminaries necessary for various phases in NLP.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to NLP		03
	1.1	Origin & History of NLP; Language, Knowledge and Grammar	[1][[3	
		inlanguage processing; Stages in NLP; Ambiguities and its types		
		inEnglish and Indian Regional L languages; Challenges of NLP;		
		Applications of NLP		
	1.2	Self-Learning topics: Variety types of tools for regional	[1] [3]	
		languages pre-processing and other functionalities		

2		Word Level Analysis		9
	2.1	Basic Terms: Tokenization, Stemming, Lemmatization; Survey of English Morphology, Inflectional Morphology, Derivational Morphology; Regular expression with types; Morphological Models: Dictionary lookup, finite state morphology; Morphological parsing with FST (Finite State Transducer); Lexicon free FST Porter Stemmer algorithm; Grams and its variation: Bigram, Trigram; Simple (Unsmoothed) Ngrams; N-gram Sensitivity to the Training Corpus; Unknown Words: Open versus closed vocabulary tasks; Evaluating Ngrams: Perplexity; Smoothing: Laplace Smoothing, Good-Turing Discounting;		
	2.2	Self-Learning topics: Noisy channel models, various edit distance, Advance Issues in Language Modelling	3] [4]	
3		Syntax analysis		10
	3.1	Part-Of-Speech tagging(POS); Tag set for English (Upenn Treebank); Difficulties /Challenges in POS tagging; Rule-based, Stochastic and Transformation-based tagging; Generative Model: Hidden Markov Model (HMM Viterbi) for POS tagging; Issues in HMM POS tagging; Discriminative Model: Maximum Entropy model, Conditional random Field (CRF);Parsers: Top down and Bottom up; Modelling constituency; Bottom Up Parser: CYK, PCFG (Probabilistic Context Free Grammar), Shift Reduce Parser; Top Down Parser: Early Parser, Predictive Parser		- 5
	3.2	Self-Learning topics: Evaluating parsers, Parsers based language modelling, Regional languages POS tree banks	[3][4]	
4	0.2	Semantic Analysis		7
	4.1	Introduction, meaning representation; Lexical Semantics; Corpus study; Study of Various language dictionaries like WorldNet, Babel net; Relations among lexemes & their senses –Homonymy, Polysemy, Synonymy, Hyponymy; Semantic Ambiguity; Word Sense Disambiguation (WSD); Knowledge based approach (Lesk's Algorithm), Supervised (Naïve Bayes, Decision List),Introduction to Semi-supervised method (Yarowsky) Unsupervised (Hyperlex)		
		Distributional Semantics, Topic Models	[4]	
5		Pragmatic & Discourse Processing		5
	5.1	Discourse: Reference Resolution, Reference Phenomena, Syntactic & Semantic constraint on coherence; Anaphora Resolution using Hobbs and Cantering Algorithm	[5] [6]	
	5.2		5] [6]	
		resolution		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

6		Applications of NLP		5						
	6.1	Case studies on (preferable in regional language):Machine 1][[3]							
		translation; Text Summarization; Sentiment analysis; Information								
		leval; Question Answering system								
	6.2	Self-Learning topics: Applications based on Deep Neural Network[1][[3]							
		with NLP such as LSTM network, Recurrent Neural network etc.								
	•	Tot	tal	39						

Recommended Books:

- 1. Daniel Jurafsky, James H. and Martin, Speech and Language Processing, Second Edition, Prentice Hall, 2008.
- 2. Christopher D. Manning and Hinrich Schutze, Foundations of Statistical Natural Language Processing, MITPress, 1999.
- 3. Siddiqui and Tiwary U.S., Natural Language Processing and Information Retrieval, Oxford UniversityPress, 2008.
- 4. Daniel M Bikel and Imed Zitouni Multilingual natural language processing applications: from theory to practice, IBM Press, 2013.
- 5. Alexander Clark, Chris Fox, Shalom Lappin The Handbook of Computational Linguistics and Natural Language Processing, John Wiley and Sons, 2012.
- 6. Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing, Second Edition, Chapman and Hall/CRC Press, 2010.

Course Assessment:

Theory:

<u>ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

ISE-2

Two hours 20 Marks Activity: Quiz and assignments/Seminar on research paper

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Course Code	Course Name	Se	achi chem s/we	ıe		C	redit	s Assi	igned
		L	T	P		L	T	P	Total
	Augmented and	3				3			3
CSDC7021	Virtual Reality				Exami	amination Scheme			
		ISE1		MSE	ISE2	E	SE		Total
		20		30	20	100	(30%	o	100
						weig	htag	e)	

Pre-requisite	CSC	305
	CO1	Describe how VR systems work and list the applications
		of VR
	CO2	Elaborate geometric presentation of the virtual world and
		its operations.
Course Outcomes	CO3	Explain the concepts of motion and tracking in VR
		systems.
	CO4	Design and implementation of the hardware that enables
		VR systems to be built
	CO5	Describe how AR systems work and analyze the hardware
		requirement of AR
	CO6	Analyze and understand the working of various state of
		the art AR devices.

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Introduction to Virtual Reality		5
		What is virtual reality? ,The beginnings of VR , VR	[1][5]	
		paradigms, Collaboration, Virtual reality systems,		
		Representation, User interaction		
2		The Geometry of Virtual Worlds		6
		Geometric Models, Changing Position and Orientation, Axis-	[1][2]	
		Angle Representations of Rotation, Viewing Transformations,		
		Chaining the Transformations		
3		Motion in Real and Virtual Worlds		6
		Velocities and Accelerations, The Vestibular System, Physics	[3][4][5	
		in the Virtual World, Mismatched Motion and Vection]	

COLLEGE COLLEG

Society of St. Francis Xavier, Pilar's

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		ı
4	Applying Virtual Reality	7
	Virtual reality: the medium, Form and genre, What makes an [3][4][5	
	application a good candidate for VR, Promising application	
	fields, Demonstrated benefits of virtual reality, More recent	
	trends in virtual reality application development, A	
	framework for VR application development	
5		8
5	Augmented Reality	o
	Terminology, Simple augmented reality, Augmented reality as [1][6][7	
	an emerging technology, Augmented reality applications,	
	Marker detection, Marker pose, Marker types and	
	identification: Template markers, 2D bar-code markers,	
	Imperceptible markers: Image markers, Infrared markers,	
	Miniature markers, Discussion on marker use, General marker	
	, , , , , , , , , , , , , , , , , , ,	
	detection application	
6	AR Development & Applications	8
	User interfaces, Avoiding physical contacts, Practical [3][4][6	
	experiences with head-mounted displays, Authoring and	
	dynamic content ,AR applications and future visions, How to	
	design an AR application, Technology adoption and	
	acceptance, Where to use augmented reality	
		20
	Total	39

Recommended Books:

- 1. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016
- 2. Understanding Virtual Reality: Interface, Application and Design, William R Sherman and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics). Morgan Kaufmann Publishers, San Francisco, CA,2002
- 3. Developing Virtual Reality Applications: Foundations of Effective Design, Alan B Craig, William RSherman and Jeffrey D Will, Morgan Kaufmann, 2009.
- 4. Theory and applications of marker-based augmented reality Sanni Siltanen
- 5. AR Game Development , 1st Edition , Allan Fowler, A press Publications, 2018, ISBN 978-14842361782
- 6. Augmented Reality: Principles & Practice by Schmalstieg / Hollerer, Pearson Education India; First edition (12 October 2016),ISBN-10: 9332578494
- 7. Learning Virtual Reality, Tony Parisi, O'Reilly Media, Inc., 2015, ISBN-9781491922835

Digital Useful Links

- 1. https://freevideolectures.com/course/3693/virtual-reality
- 2. https://www.vrlabacademy.com/
- 3. https://arvr.google.com/ar/
- 4. https://konterball.com/

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

Theory:

<u>ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

<u> ISE-2:</u>

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Course Code		Course N	ame		Sc (Hr	achii hem s/we	e ek)		Credits Assigned					
					L 3	T	P		1 L 3	T	P	Total 3		
CSDC70	022	Blockcha	in		3			Exami	_	n Sch		3		
		Dioenene			ISE1		MSE	ISE2		ESE		'otal		
					20		30	20		(30%	_	100		
										htage				
Pre-requ	iisite		CSC (
			CO1	_		ockel	nain co	ncepts in t	he co	ntext	of dist	ributed		
			G 0 4	led										
Cor	O-	-4.00.	CO2					cryptocurr						
Cot	arse Ot	itcomes	CO3					with secus						
			003					en applica		ang S	Juity			
			CO4							orking	as a p	rivate		
				Explore Hyperledger Fabric and its working as a private blockchain.										
			CO5	Exp	olain bas	sic w	orking	principles	of Et	hereu	m.			
			CO6	Co	mpare v	ariou	ıs tools	of BCT u	sing	case st	udies.			
Module No.	Unit No.	Topics	I								Ref.	Hrs.		
1	110.	Introduction	n to Rle	ncke	hain							6		
	1.1	What is a bl				bloc	kchain	(cryptogr	aphic	allv	[1],	1		
		securehash f									[4]			
	1.2	Components	of blo	ckch	ain, Blo	ck ir	block	chain, Ty _l	pes:		[2],			
		Public, Priva				,		sus Proto	col,		[4]			
		Limitations		allen	ges of b	locko	chain							
2	2.1	Cryptocurr		:4a='	. A 14		J T	alvana (TT	4:1:4	an 1	F13	6		
	2.1	Cryptocurrer Security), (•						-		[1], [4]			
		Cryptocurrer			•						ן ניין			
		double spend	•	_		. 5110	2100							
			Bitcoin blockchain: Consensus in Bitcoin, Proof-of-Work (PoW), [1],											
	2.2	Bitcoin bloc	Proof-of-Burn (PoB), Proof-of-Stake (PoS), and Proof-of-Elapsed [4]									1		
	2.2	Proof-of-Bu	rn (PoB		oof-of-S	Stake				-				
	2.2	Proof-of-But Time (PoET	rn (PoB		oof-of-S	Stake				-				
	2.2	Proof-of-But Time (PoET its methods	rn (PoB), Life (of a r	oof-of-S niner, M	Stake				-		0		
3		Proof-of-But Time (PoET its methods Programmi	rn (PoB), Life o	of a r	oof-of-S niner, M kchain	Stake Iinin	g diffic	ulty, Mini	ng po	ool and	l	8		
3	3.1	Proof-of-But Time (PoET its methods	rn (PoB), Life (ng for l to Sn	of a r Blochart	oof-of-S niner, M kchain Contrac	Stake Iinin ets,	g diffic	ulty, Mini	ng po	racts,	[2]	8		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		Introduction to Programming: Solidity Programming – Basics,		
	3.2	functions, Visibility and Activity Qualifiers, Address and	[2]	
		Address Payable, Bytes and Enums, Arrays-Fixed and Dynamic	L— J	
		Arrays, Special Arrays-Bytes and strings, Struct, Mapping,		
		Inheritance, Error handling		
	3.3	Case Study – Voting Contract App, Preparing for smart contract	[2]	
		Development	r—1	
4		Public Blockchain		8
	4.1	Introduction to Public Blockchain, Ethereum and its	[3]	
		Components, Mining in Ethereum, Ethereum Virtual Machine		
		(EVM), Transaction, Accounts, Architecture and Workflow,		
		Comparison between Bitcoin		
		and Ethereum		
	4.2	Types of test-networks used in Ethereum, Transferring Ethers	[3]	
		usingMetamask, Mist Wallet, Ethereum frameworks, Case study		
		of Ganache for Ethereum blockchain. Exploring etherscan.io and		
		ether block structure		
5		Private Blockchain		8
	5.1	Introduction, Key characteristics, Need of Private Blockchain,		
		Smart Contract in a Private Environment, State Machine		
		Replication, Consensus Algorithms for Private Blockchain -		
		PAXOS and RAFT, Byzantine Faults: Byzantine Fault Tolerant		
		(BFT) and Practical BFT		
	5.2		[3]	
			[6]	
		& Other Technologies		
	5.3	Hyperledger Fabric Architecture, Components of Hyperledger		
		Fabric: MSP, Chain Codes, Transaction Flow, Working of		
		Hyperledger Fabric, Creating Hyperledger Network, Case Study		
		of Supply Chain Management using Hyperledger		
6		Tools and Applications of Blockchain		3
	6.1	Corda, Ripple, Quorum and other Emerging Blockchain Platforms,		
		Blockchain in DeFi: Case Study on any of the Blockchain		
		Platforms.		
			Total	39

Recommended Books:

- 1. Blockchain Technology, Chandramouli Subramanian, Asha A. George, Abhillash K. A and Meena Karthikeyen, Universities Press.
- 2. Mastering Ethereum, Building Smart Contract and Dapps, Andreas M. Antonopoulos Dr. Gavin Wood, O'reilly.
- 3. Imran Bashir, Mastering Blockchain: A deep dive into distributed ledgers, consensus protocols, smartcontracts, DApps, cryptocurrencies, Ethereum, and more, 3rd Edition, Packt Publishing
- 4. Blockchain for Beginners, Yathish R and Tejaswini N, SPD
- 5. Blockchain Basics, A non Technical Introduction in 25 Steps, Daniel Drescher, Apress.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

6. Blockchain with Hyperledger Fabric, Luc Desrosiers, Nitin Gaur, Salman A. Baset, VenkatramanRamakrishna, Packt Publishing

Digital Useful Links

- 1. Blockchain By Example, Bellaj Badr, Richard Horrocks, Xun (Brian) Wu, November 2018, Implement decentralized blockchain applications to build scalable Dapps.
- 2. Blockchain for Business, https://www.ibm.com/downloads/cas/3EGWKGX7.
- 3. https://www.hyperledger.org/use/fabric
- 4. NPTEL: https://onlinecourses.nptel.ac.in/noc19_cs63/preview

Course Assessment:

Theory:

<u>ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments/Seminar on research paper

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Course Code		Course N	lame	So (Hr	achir chem s/we	e ek)			Credits Assign				
				L	T	P		L	T	P	Total		
CSDC70	123 I	nformation R	atrioval	3			Exam	3	n Sol		3		
CSDC70	123 1	moi manon K	cuievai	ISE1		MSE	ISE2		otal				
				20		30	20	100 (SE 30%		100		
								`	htage				
Pre-requ	isite		CSC 3	03, CSC 40	2		I.						
			CO1	Define and	desc	ribe the	e basic co	ncepts	of th	e Infor	mation		
				retrieval sy									
				Design the			deling tecl	hnique	es for	inform	ation		
Con	. 	utcomes		retrieval sy			4	1					
Cou	irse O	outcomes	1	Understand operations	i ine (query s	aructure a	na vai	nous (luery			
				Analyzing the indexing and scoring operation in									
				information		_		ms op	Clutio	11 111			
				Perform the				ation	retrie	val sys	tems		
									_				
				Analyze va		inforn	nation retr	rieval	for rea	ıl worl	d		
Module	Unit	Tonias		application						Ref.	IIma		
No.	No.	Topics								Kei.	Hrs.		
1	110.	Introductio	n to Info	rmation R	etrie	val					4		
•	1.1	Introduction		nformation		etrieval	, Basic	Coı	ncepts	,[1][2]	-		
		Information					•		-				
		information											
	1.2	The retrieva	_	, Information	on ret	rieval	in the libra	ary, w	eb				
		and digital li											
2	2.1	Modeling in					C1 ' I	·		[0][0]	8		
	2.1	Taxonomy of Retrieval, A											
		models, Alte				,	AIGHIAHV	Aig	coraic	[+]			
	2.2	Structured to					r browsin	σ		-			
3	2,2	Query and						5			8		
	3.1	Query struct	_					natchi	ng,	[2][3]	-		
		Structured q		•	1-	, 0			٠,	[4]			

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		User relevance feedback, Automatic local analysis, Automatic		
	3.2	globalanalysis		
4		Indexing and Scoring in Information Systems		8
	4.1	Introduction, Inverted Files, Other Indices for Text, Boolean	[1][2]	
		queries and Introduction to Sequential searching	[3]	
	4.2	Scoring, term weighting and the vector space model, Parametric		
		and zone indexes, Weighted zone scoring, Learning weights, The		
		optimal weight, Term frequency and weighting, Inverse		
		document frequency, Tf-idf weighting. The vector space model		
		for scoring, Queries as vectors, Computing vector scores,		
		Efficient scoring and ranking, Inexact top K document retrieval		
5		Evaluation of Information Retrieval Systems		6
	5.1	Information retrieval system evaluation, Standard test collections,		
		Evaluation of unranked retrieval sets, Evaluation of ranked		
		retrieval results, Assessing and justifying the concept of relevance		
	5.2	System quality and user utility, System issues, Refining a		
		deployed system		
6		Applications of Information Retrieval Systems	[5][6]	5
	6.1	Introduction to Multimedia Information Retrieval		
	6.1	Introduction to Multimedia Information Retrieval Introduction to Distributed Information Retrieval		

Recommended Books:

- 1. Modern information retrieval, Baeza-Yates, R. and Ribeiro-Neto, B., 1999. ACM press.
- 2. Introduction to Information Retrieval By Christopher D. Manning and Prabhakar Raghavan, Cambridge University Press
- 3. Information Storage & Retrieval By Robert Korfhage John Wiley & Sons
- 4. Storage Network Management and Retrieval, Vaishali Khairnar
- 5. Introduction to Modern Information Retrieval. G.G. Chowdhury. Neal Schuman
- 6. Natural Language Processing and Information Retrieval by Tanveer Siddiqui, U.S Tiwarey

Useful Digital Links

- 1. https://web.stanford.edu/class/cs276/
- 2. https://www.coursera.org/learn/text-retrieval

Course Assessment:

Theory:

<u> ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

<u> ISE-2:</u>

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Course Code		Course Name Teaching Scheme (Hrs/week) Credits Assign								ned				
					L	T	P		L	T	P	Total		
	P	roduct Life (Cycle		3				3			3		
ILO 701	11	Manageme	nt					Exam	inatio	n Scł	neme	eme		
					ISE1		MSE	ISE2	F	ESE	Γ	otal		
					20		30	20	100 (weig	30% htage		100		
Pre-requ	isite							I.			<u> </u>			
•			CO1	Gai	n knowl	ledge	about	phases of	PLM,	PLM	strateg	gies		
				and	method	olog	y for P	LM feasil	oility s	study	and PI	DΜ		
			lementa											
					Illustrate various approaches and techniques for designing									
Cou	ırse Ou	itcomes		and developing products.										
			CO3											
				designing products for moulding, machining, sheet metal working etc.										
			GO 4				1 1	•	1 .		, 1	1		
			CO4	Acquire knowledge in applying virtual product development tools for components, machining and										
				manufacturing plant										
Module	Unit	Topics	1	mai	<u>IIuIuctui</u>	111 <u>5</u> F	rant				Ref.	Hrs.		
No.	No.	Topics									101.			
1	1.1	Introduction	n to Pr	oduc	t Lifecy	cle I	Manag	ement (P	LM)		[1][2]	10		
		Product Lif								M,				
		Product Life	cycle P	hases	s, Öppoi	rtuni	ties of (Globalizat	ion, P	re-				
		PLM Enviro				_	-							
		PLM, Wides		-										
		PLM Projec		_										
		PLM Strates	_			_		0.						
		identification				eme	ntation	, Develop	ing PL	₋ M				
		Vision and F		_	•									
	2.1	Change man		it for	PLM						[0][0]			
2	2.1	Product Des	sign								[2][3]	9		

SOADON BOMENTO BOX OF MALTON

Society of St. Francis Xavier, Pilar's

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process		
3	3.1	Product Data Management (PDM)	[2][3]	5
		Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation		
4	4.1	Virtual Product Development Tools	[2][3]	5
		For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies		
5	5.1	Integration of Environmental Aspects in Product Design	[3] [4]	5
		Sustainable Development, Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life Extension Strategies, End- of-Life Strategies, Introduction of Environmental Strategies into the Design Process, Life Cycle Environmental Strategies and Considerations for Product Design		
6	6.1	Life Cycle Assessment and Life Cycle Cost Analysis	[3][4]	5
		Properties, and Framework of Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach, General Framework for LCCA, Evolution of Models for Product Life Cycle Cost Analysis		
			Total	39

Recommended Books:

- 1. John Stark, —Product Lifecycle Management: Paradigm for 21st Century Product Realisation, Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, —Product Design for the environment A life cycleapproachl, Taylor & Francis 2006, ISBN: 0849327229
- 3. Saaksvuori Antti, Immonen Anselmie, —Product Life Cycle Management||, Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, —Product Lifecycle Management: Driving the next generation of lean

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

thinking||, Tata McGraw Hill, 2006, ISBN: 0070636395

Course Assessment:

Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Course Code		Course Name			Se	achi chem s/we	ie		Credits Assigned					
					L 3	T	P		L	T	P	Total		
		Reliabilit	•						3			3		
ILO 701	.2	Engineering						Exam	_					
					ISE1	l	MSE	ISE2	ESE			otal		
			20		30	20 100 (30%								
D	<u> </u>								weig	htage)			
Pre-requi	isite		CO1	Lin	Understand and apply the concept of Probability to									
			COI					me concep	ol Ol P	100a0	mity ic	,		
Con	rse Ant	tcomes	CO2	engineering problemsApply various reliability concepts to calculate different										
Course Outcomes				reliability parameters										
			CO3					liability of	f simn	le and	l comn	lex		
					tems		P							
	CO4	_		ity Analysis										
Module	Unit	Topics									Ref.	Hrs.		
No.	No.	_												
1		Probability theory: Probability: Standard definitions and concepts; [1][2]								8				
		Conditional Probability, Baye's Theorem. Probability								·				
		Distributions: Central tendency and Dispersion; Binomial,												
			Normal, Poisson, Weibull, Exponential, relations between them											
		_	and their significance. Measures of Dispersion: Mean, Median,											
		Mode, Range, Mean Deviation, Standard Deviation, Variance, Skewness and Kurtosis.												
2	1				Reliabili	ity c	lefiniti	one Impe	ortance	e of	[11[2]	1 8		
4			Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve.											
			Failure Data Analysis: Hazard rate, failure density, Failure Rate,											
			Mean Time To Failure (MTTF), MTBF, Reliability Functions.											
			Reliability Hazard Models: Constant Failure Rate, Linearly											
		increasing, Time Dependent Failure Rate, Weibull Model.												
		Distribution functions and reliability analysis.												
3			System Reliability: System Configurations: Series, parallel, [2][3] 5											
	1	mixed configuration, k out of n structure, Complex systems.												
4		•	Improvement: Redundancy Techniques: Element [2][3] 8								8			
		redundancy,			•		-							
		analysis. Sy			•	•								
		Cut-set method, Success Path method, Decomposition method.												

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

6	effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fau1t tree analysis and	[5] [2][3] [6]	5
	Event tree Analysis	Total	30

Recommended Books:

- 1. L.S. Srinath, —Reliability Engineering||, Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, —Reliability and Maintainability Engineering, Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, —Engineering Reliability, John Wiley & Sons, 1980.
- 4. P.D.T. Conor, —Practical Reliability Engg. I, John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, —Reliability in Engineering Design, John Wiley & Sons.
- 6. Murray R. Spiegel, —Probability and Statistics, Tata McGraw-Hill Publishing Co. Ltd.

Course Assessment:

Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Course Code		Course Name			Teaching Scheme (Hrs/week)						Credits Assigned			
20			4		L 3	T		P		1 L 3	T	P	Total	
ILO 7013 Management Information System				3				Evon		n Sak	3			
			Stem		ISE1		1	ISE	ISE2		ination Scheme ESE Total			
							30	20	100 (30%			100		
				20			50	20	1	htage		.00		
Pre-requ	isite								I 2-8		/			
CO				Explain how information systems Transform Business										
			CO2	Identify the impact information systems have on an										
				organization										
Cou	ırse Ou	tcomes	CO3	Describe IT infrastructure and its components and its										
			rent											
		trer		.1			1. 1	1, 1	- 1	• •				
							al tools a							
		accessing information from databases to improve business performance and decision making												
						e ai	IU							
No.	No.	Topics Ref. Hrs.											1115.	
1		Introduction To Information Systems (IS): Computer Based [1],[2] 4											4	
		Information Systems, Impact of IT on organizations, Importance												
		of IS to Society. Organizational Strategy, Competitive												
		Advantages and IS												
2		Data and Knowledge Management: Database Approach, Big [1] 7									7			
		Data, Data warehouse and Data Marts, Knowledge Management												
		Business intelligence (BI): Managers and Decision Making, BI												
3		for Data analysis and Presenting Results Ethical issues and Privacy: Information Security. Threat to IS, [1],[3] 7												
		and Security Controls									,			
		•			XX7 1	2.0		1.2	0 00 :	1 .		F13	7	
4		Social Computing (SC): Web 2.0 and 3.0, SC in business- [1] 7									/			
		shopping, Marketing, Operational and Analytic CRM, E-business and E-commerce – B2B B2C. Mobile commerce.												
5													6	
										[3]				
6											[1],[3]	8		
		Systems, Functional Area Information System, ERP and ERP									L 37L~3			
		support of Business Process. Acquiring Information Systems and												
		Applications: Various System development life cycle models									ls			
												Total	39	

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Recommended Books:

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008.

Course Assessment:

Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Course Code		Course Na	ame		So (Hr	achi chem s/we	ek)				s Assig	
					L	T	P		L	T	P	Total
W 0 =0					3				3			3
ILO 70.	14 D	esign of Exper	ıments		TOPA		NECE	1	<u>inatio</u>			
					ISE1	L	MSE	ISE2		ESE		otal
					20		30	20		30%		100
Pre-requ	icito								weig	htage	9	
11e-requ	115116		CO1	Pla	n data c	ollec	tion to	turn data	into i	nform	ation a	nd to
Cor	irse (Outcomes	COI					id to appr				iid to
	iise (Jucomes	CO2					ght to rea				
			CO3	1				rpret the r				nts
Module	Uni	t Topics	1		,	- , 30		1		·	Ref.	Hrs.
No.	No.	-										
1		Introductio	n								[1][2]	6
	1.1	Strategy of I	Experin	enta	tion							
	1.2	Typical App	lication	s of	Experin	nenta	l Desig	n				
	1.3						ts					
	1.4		Response Surface Methodology									
2			Fitting Regression Models									8
	2.1										[3]	
	2.2							ession M	odels			
	2.3	7 1										
	2.4							1				
	2.5					ervatı	on					
	2.6				ostics							
2	2.7				•						[0][0]	7
3	2.1	Two-Level		ai D	esigns						[2][3]	7
	3.1										[4]	
	3.3			σn							-	
	3.4				e 2k De	sion					-	
	3.5						2k Des	ign			-	
	3.6						2K D00	-5··			1	
	3.7	Split-Plot D				~- 					1	
4		Two-Level		nal l	Factoria	al De	signs				[2][3]	7
	4.1										[4]	
	4.2										1	
	4.3							;n				
	4.4											
	4.5	Resolution I	V and V	/ De	signs				-			
	4.6	Fractional F	actorial	Spli	t-Plot D	esign	ıs					

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

5		Response Surface Methods and Designs	[2]	7
	5.1	Introduction to Response Surface Methodology	[3][4]	
	5.2	The Method of Steepest Ascent		
	5.3	Analysis of a Second-Order Response Surface		
	5.4	Experimental Designs for Fitting Response Surfaces		
6		Taguchi Approach		4
	6.1	Crossed Array Designs and Signal-to-Noise Ratios	[3][4]	
	6.2	Analysis Methods	[5]	
	6.3	Robust design examples		
	•		Total	39

Recommended Books:

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3 rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Practical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T. Voss

Course Assessment:

Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Course Code	Course N	ame		So	achi chem s/we	ie		C	redit	s Ass	igned		
0000			F	L	T	P		L	Т	P	Total		
				3				3			3		
ILO 7015	Operations Res	search			ı		Exam	inatio	n Scl	heme			
				ISE1	-	MSE	ISE2	E	ESE		Total		
				20		30	20	100 (30%		100		
			weightage)										
Pre-requisit	e												
	•			Understand the theoretical workings of the simplex method,									
				the relationship between a linear program and its dual,									
			including strong duality and complementary slackness.										
		CO2	Perform sensitivity analysis to determine the direction and										
			_			ange o	f a model	's opti	mal s	olutic	on as the		
Course	Outcomes			change									
		CO3		_							s like the		
				-			•	-			network		
							st path, mi	nimun	n spai	nning	tree, and		
				imum f									
		CO4											
			and	-		_	del and	com	pute	imp	ortant		
			perf	ormanc	e me	easures							

No. N	No.	Introduction to Operations Research		
1		Introduction to Operations Describe		
		introduction to Operations Research	[1][2]	14
		Introduction, Structure of the Mathematical Model, Limitations		
		of Operations Research		
		Linear Programming: Introduction, Linear Programming		
		Problem, Requirements of LPP, Mathematical Formulation of		
		LPP, Graphical method, Simplex Method Penalty Cost Method		
		or Big M-method, Two Phase Method, Revised simplex method,		
		Duality , Primal – Dual construction, Symmetric and		
		Asymmetric Dual, Weak Duality Theorem, Complimentary		
		Slackness Theorem, Main Duality Theorem, Dual Simplex		
		Method, Sensitivity Analysis		
		Transportation Problem: Formulation, solution, unbalanced		
		Transportation problem. Finding basic feasible solutions –		
		Northwest corner rule, least cost method and Vogel's		
		approximation method. Optimality test: the stepping stone		
		method and MODI method.		
		Assignment Problem: Introduction, Mathematical Formulation		

STATE OF THE PARTY OF THE PARTY

Society of St. Francis Xavier, Pilar's

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		Total	39
	Classical EOQ Models, EOQ Model with Price Breaks, EOQ withShortage, Probabilistic EOQ Model,	[5]	
6	Inventory Models	[3][4]	5
	X 2 games	5035 15	
	Rectangular games without saddle point – mixed strategy for 2		
	Solution of games with saddle points, dominance principle.		
	(maximin) method of optimal strategies, value of the game.		
	Competitive games, rectangular game, saddle point, minimax	[م]	
5	Game Theory	[3][4] [5]	5
_	Reliability problems	FO 1F 43	_
	cargo loading and		
	smoothening, capital budgeting, Stage Coach/Shortest Path,		
	programming approach for Priority Management employment		
	Characteristics of dynamic programming. Dynamic	[4]	
4	Dynamic programming	[2][3]	5
	Advantages 05 of Simulation, Limitations of Simulation		
	Simulation,		
	Method: Introduction, Monte-Carlo Simulation, Applications of		
	Simulation Procedure, Application of Simulation Monte-Carlo		
		[4]	
3	Simulation	[2][3]	5
	finite and infinite population		
	models, Poisson input, exponential service, constant rate service,		
-	queuing systems and structures, single server and multi-server	[3]	
2	Queuing models	[1][2]	5
	and Bound Technique. Introduction to Decomposition algorithms.		
	Gomory's cutting plane Algorithm, Branch		
	Travelling Salesman Problem Integer Programming Problem: Introduction, Types of Integer Programming Problems,		
	Method of Two Jobs m Machines Problem Routing Problem,		
	Jobs Through Two Machines and m Machines, Graphical		

Recommended Books:

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willeyand Sons, 2nd Edition, 2009
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

Theory:

<u>ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

<u> ISE-2:</u>

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Course Code		Course Na	nme	So	achii chem s/we	e		C	redits	s Assi	gned	
				L	T	P		L	T	P	Tota	
								_			l	
II O 701		Cyber Security	and	3				3			3	
ILO 701	lo	Laws		ISE1		MCT	Exam ISE2		on Scr ESE		Total	
				20		MSE 30	20	100 (10tai 10	
				20		30	20	,	30 % htage)	0	
Pre-requ	isite							weigi	iruge	<u>/ </u>	•	
			CO1 Une	derstand	l the	concep	t of cyber	crime	and it	s effe	ect on	
				side wo		•	J			ts circut on		
Cou	ırse O	utcomes	CO2 Inte	erpret an	ıd ap	oly IT	law in var	ious le	egal is	ssues		
				Distinguish different aspects of cyber law								
			1 .				urity Stan		comp	liance	e during	
			soft	tware de	esign	and de	velopmen	t		1		
Module No.	Unit No.	Topics								Ref	f. Hrs.	
1	110.	Introduction	n to Cyberd	rime							4	
-				and origins of the world, Cybercrime and						[1],[
		information		_						L + J,L		
		and the India										
2		Cyber offen								[1],[2] 9	
		How crimin	al plan the	attacks	, Soc	ial En	gg, Cybe	r stalk	king,			
		Cyber café a	•									
		computing,										
		Trends in M	•									
		Computing I	•		_		•					
		Registry Set	_									
		Security, At Security In	tacks on r nplications									
		Measures for	-		_		_					
		Issues, Organ		-					-			
		Computing I		-	0110	ios and	1.1045410	, 1111/1	20110			

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

3	Tools and Methods Used in Cyberline	[1],[2]	6
		,[4]	
	Phishing, Password Cracking, Key loggers and Spywares, Virus		
	and Worms, Steganography, DoS and DDoS Attacks, SQL		
	Injection, Buffer Over Flow, Attacks on Wireless Networks,		
	Phishing, Identity Theft (ID Theft)		
4	The Concept of Cyberspace		8
	E-Commerce, The Contract Aspects in Cyber Law, The Security	[1],[3]	
	Aspect of Cyber Law ,The Intellectual Property Aspect in Cyber		
	Law, The Evidence Aspect in Cyber Law, The Criminal Aspect		
	in Cyber Law, Global Trends in Cyber Law, Legal Framework		
	for Electronic Data Interchange Law Relating to Electronic		
	Banking, The Need for an Indian Cyber Law		
5	Indian IT Act.	[3],[8]	6
	Cyber Crime and Criminal Justice: Penalties, Adjudication and		
	Appeals Under the IT Act, 2000, IT Act. 2008 and its		
	Amendments		
6	Information Security Standard compliances		6
	SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	[6],[9]	
1	·	Total	39

Recommended Books:

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security &Global Information Assurance Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- 9. Website for more information, A Compliance Primer for IT professional https://www.sans.org/reading-room/whitepapers/compliance/compliance-primerprofessionals-33538

Course Assessment:

Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Course Code		Course Na	ame		Sc (Hr	achii hem s/we	e				s Assig				
					L	T	P		L	T	P	Total			
		Disaster Mana	_		3				3			3			
ILO 702	17 an	d Mitigation	Measui	res				Exam	inatio	n Scl	neme				
					ISE1		MSE	ISE2	ESE]	otal			
					20		30	20	100 (30%		100			
									weig	htage)				
Pre-requ	isite														
			CO1	Get	to know	v nat	ural as	well as m	anma	de dis	aster a	nd their			
	ext							ects on the							
Cor	irse Oi	ıtcomes	CO2		n of nati vious his			ance struc	ctures	based	upon	the			
Cot	1150 00	iteomes	CO3					wernment	nolici	ies ac	acts and vario				
							t acquainted with government policies, acts and various ganizational structure associated with an emergency								
			CO4					do's and				•			
					nts and				GOII t	3 111 50	2011 0211	reme			
Module	Unit	Topics						<u> </u>			Ref.	Hrs.			
No.	No.	_													
1		Introduction	n								[1][2]	3			
	1.1	Definition of	of Disa	ster,	hazard	, glo	bal ar	nd Indian	scen	ario,					
		general pers	pective	, imp	portance of study in human life, Direct										
		and indirect	effects	of d	isasters,	long	g term	effects of	disas	ters.					
		Introduction	to												
		global warm	ing and	clin	nate chai	nge									
2		Natural Dis	aster a	nd N	I anmad	e dis	sasters				[1][2]	9			
	2.1	Natural Disa	ster: M	eanii	ng and n	ature	e of nat	ural disas	ter, Fl	ood,	[3]				
		Flash flood,	droug	ht,	cloud b	urst,	Earth	iquake, L	andsl	ides,					
		Avalanches,	Volca	nic (eruption	s, N	Iudflov	v, Cyclor	ie, St	orm,					
		Storm Surge	, climat	te											
		change, glob													
	2.2	Manmade D)isaster	s: C	hemical	, Inc	lustrial	, Nuclear	and	Fire					
		Hazards. R							-						
		industrializa							of hu	man					
		beings in fre	quento	ccurr	ences of	f mai	nmade	disasters.							

3		Disaster Management, Policy and Administration	[1][2]	6
	3.1	Disaster management: meaning, concept, importance, objective	[3][4]	
		of disaster management policy, disaster risks in India, Paradigm		
		shift in disaster management		
	3.2	Policy and administration: Importance and principles of disaster		
		management policies, command and co-ordination of in disaster		
		management, rescue operations-how to start with and how to		
		proceed in due course of time, study of flowchart showing the		
		entire process.		
4		Institutional Framework for Disaster Management in India:	[1][2]	6
	4.1	Importance of public awareness, Preparation and execution of	[3][4]	
		emergency management program. Scope and responsibilities of		
		National Institute of Disaster Management (NIDM) and National		
		disaster management authority (NDMA) in India. Methods and		
		measures to avoid disasters, Management of casualties, set up of		
		emergency facilities, importance of effective communication		
		amongst different agencies in such situations.		
	4.2	Use of Internet and softwares for effective disaster management.		
		Applications of GIS, Remote sensing and GPS in this regard.		
5			[1][2]	9
	5.1	Ways to miss finance for miles averaged them and of accommend	[3][4]	
	5.1	Ways to raise finance for relief expenditure, role of government		
		agencies and NGO's in this process, Legal aspects related to		
		finance raising as well as overall management of disasters.		
		Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these		
		teams		
	5.2	International relief aid agencies and their role in extreme events.		
	5.2	<u> </u>		
6		Preventive and Mitigation Measures:		6
	6.1	Pre-disaster, during disaster and post-disaster measures in some	[3][4]	
		events in general	[5]	
	6.2	Structural mapping: Risk mapping, assessment and analysis, sea		
		walls and embankments, Bio shield, shelters, early warning and		
		communication		
	6.3	Non Structural Mitigation: Community based disaster		
		preparedness, risk transfer and risk financing, capacity		
		development and training,		
		awareness and education, contingency plans.		
	6.4	Do's and don'ts in case of disasters and effective implementation		
		of relief aids.		
	<u> </u>			

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Recommended Books:

- 1. Disaster Management' by Harsh K. Gupta, Universities Press Publications.
- 2. Disaster Management: An Appraisal of Institutional Mechanisms in India' by O. S. Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elsevier Publications.
- 4. Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Course Assessment:

Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

<u>ISE-2:</u>

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Course Code		Course Na	ıme		Sc	achir them s/wee	e		C	redits	s Assiş	gned
	<u> </u>	7 A 1°4	1		L	T	P		L	T	P	Total
ILO 701		Energy Audit Manageme			3			Exam	3	n Sol		3
	10	Manageme	111		ISE1		MSE	ISE2		ESE		Total
					20		30	20		(30%	_	100
										htag		
Pre-requ	isite											
			CO1		-			e present	state o	of ene	rgy se	curity
					and its importance							
			CO2		To identify and describe the basic principles and							
~	_						l in energy					
Cou	irse Ou	itcomes	CO3					performa				
				common thermal installations and identify the energy saving opportunities								rgy
		CO.4					<u> </u>		1 4			
	CO4							performa				
					ing oppe			allations a	na 1ae	enury	tne en	ergy
Module	Unit	Topics		sav.	ing oppi	Jituii	iues.				Ref	Hrs.
No.	No.	Topics									Kei	1115.
1	110.	Energy Scer	nario:								[1][2	1 4
•		Present Ene		cena	rio. En	ergv	Prici	ng. Energ	v Se	ector	_[][,
		Reforms, E						-	-			
		Importance,										
		Basics of E										
		balance	•									
2		Energy Aud	lit Princ	ciple	es:						[1][2] 8
		Definition, E				• •		0.			[3]	
		management										
		Bench mark										
			quirement, Maximizing system efficiencies, Optimizing t									
			out energy requirements, Fuel and energy substitution ements of monitoring& targeting; Energy audit Instrumen									
		Data and in			•			•	_			
		Simple payb	-			Kett	im on	investme	ın (K	OI),		
		Internal rate	oi retur	11 (11	KK)							

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

3	Energy Management and Energy Conservation in Electrical	[1][2]	10
	System:	[3]	
	Electricity billing, Electrical load management and maximum		
	demand Control; Power factor improvement, Energy efficient		
	equipments and appliances, star ratings.		
	Energy efficiency measures in lighting system, Lighting		
	control: Occupancy sensors, daylight integration, and use of		
	intelligent controllers. Energy conservation opportunities in:		
	water pumps, industrial drives, induction motors, motor		
	retrofitting, soft starters, variable speed drives.		
4	Energy Management and Energy Conservation in Thermal	[4][5]	10
	Systems:	[6]	
	Review of different thermal loads; Energy conservation		
	opportunities in: Steam distribution system, Assessment of		
	steam distribution losses, Steam leakages, Steam trapping,		
	Condensate and flash steam recovery system. General fuel		
	economy measures in Boilers and furnaces, Waste heat recovery,		
	10 use of insulation- types and application. HVAC system:		
	Coefficient of performance, Capacity, factors affecting		
	Refrigeration and Air Conditioning system performance and		
	savings opportunities.		
5	Energy Performance Assessment:		4
	On site Performance evaluation techniques, Case studies based		
	on: Motors and variable speed drive, pumps, HVAC system		
	calculations; Lighting System: Installed Load Efficacy Ratio		
	(ILER) method, Financial Analysis		
6	Energy conservation in Buildings:	[4][5]	3
	Energy Conservation Building Codes (ECBC): Green Building,	[6]	
	LEED rating, Application of Non-Conventional and Renewable		
	Energy Sources		
		Total	39

Recommended Books:

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute(TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

Theory:

<u>ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Course Code		Course Na	ame		Sc	achir chem s/we	e		C	redit	s Assig	gned
					L	T	P		L	Т	P	Total
		Developme	ent		3				3			3
ILO 701	19	Engineerin	ng					Exami	inatio	n Scl	heme	
					ISE1		MSE	ISE2	F	ESE]	otal
					20		30	20	100	(30%	6	100
									weig	ghtag	e)	
Pre-requ	isite			ı								
			CO1									
	0 0							I anageme				
Cou	Course Outcomes							nitiatives a				
			CO4	Dev	velop ac	umei	n for hi	gher educa	ation a	and re	esearch	
Module	Unit	Topics	1	ı							Ref.	Hrs.
No.	No.	_										
1		Introduction	to Rura	ıl De	velopme	ent M	leaning	, nature ar	nd sco	pe of	[1][2]	4
		development					•			•		
		settlements;										
		development										
		reconstruction										
		Impact of vo										
		development										
		Panchayati						ig and c	comm	unity		
2		development						olyyont D	oi N	Nobto	[1][2]	1 0
<i>_</i>		Post-Indeper Committee -				-						8
		and scope for			•							
		Mehta Cor		_				Pancha				
		participation					J. 11 OOI	i i anona	. y a.c.i	ruj,		
3		Rural Devel					ive Ye	ar Plans I	Five `	Year	[2][3	10
		Plans and R									[4]	
		State, Regio			-							
		implementin						_	_			
		Urban and ru	-		_	_			_			
		Developmen	ıt initi	ative	es and	the	ir cor	vergence;	Spe	ecial		
		component p			-							
		zones; Data			-		_	d for dec	entral	lized		
		planning; Su	stainab	le ru	ral deve	lopm	ent.					

STATE OF THE PARTY OF THE PARTY

Society of St. Francis Xavier, Pilar's

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4	Post 73rd Amendment Scenario 73rd Constitution Amendment	[1][2]	10
	Act, including - XI schedule, devolution of powers, functions	[5][6]	
	and finance; Panchayati Raj institutions - organizational	[7]	
	linkages; Recent changes in rural local planning; Gram Sabha -		
	revitalized Panchayati Raj; Institutionalization; resource		
	mapping, resource mobilization including 04 social		
	mobilization; Information Technology and rural planning; Need		
	for further amendments.		
5	Values and Science and Technology Material development and		4
	its values; the challenge of science and technology; Values in		
	planning profession, research and education. Types of Values		
	Psychological values — integrated personality; mental health;		
	Societal values — the modern search for a good society; justice,		
	democracy, rule of law, values in the Indian constitution;		
	Aesthetic values — perception and enjoyment of beauty; Moral		
	and ethical values; nature of moral judgment; Spiritual values;		
	different concepts; secular spirituality; Relative and absolute		
	values; Human values— humanism and human		
	values; human rights; human values as freedom, creativity, love		
	andwisdom		
6	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of	[2][3]	3
	responsibility; Work ethics; Professional ethics; Ethics in	[9][10	
	planningprofession, research and education]	
<u>-</u>		Total	39

Recommended Books:

- 1. ITPI, Village Planning and Rural Development, ITPI, New Delhi
- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rd GoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. Planning Commission, Five Year Plans, Planning Commission
- 5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi
- 6. Planning Guide to Beginners
- 7. Weaver, R.C., The Urban Complex, Doubleday.
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.
- 9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.
- 10. Watson, V., Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theoryand Practice, Vol. 4, No.4, pp.395 407

Course Assessment:

Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Cours	e	Course	Name		Teach	ing Sch	eme	Credits Assigned				
Code	!					rs/week			C			
					L	T	P	L	T	P	Total	
							2			1	1	
CSL7001	11	Machine Le	Machine Learning Lab			F	Examina	ation So	cheme			
						ISE1	MSE	ISE2	ESE	Total		
					Theory							
					Lab	25		25		-	50	
Pre-requ	isite	Course	CSC 3	03, CS	SC 402							
Codes			ļ.,									
			CO1		nplement		opriate	machin	e learni	ng moo	lel for	
_					given application.							
Cou	rse C	Outcomes	CO2		implement ensemble techniques to combine predictions n different models.							
			000									
			CO3	To 11	mplement the dimensionality reduction techniques							
Sr. No.	Top	nics										
51. 110.	101	, in the second										
1	Toi	implement Lin	ear Reg	ressio	n							
2		implement Log										
3		implement Ens				g/boosti	ing)					
4	Toi	implement mul	tivariate	e Line	ar Regres	sion.						
5	Toi	implement SVI	M									
6	To i	implement PC	A/SVD/	LDA								
7	To i	implement Gra	ph Base	ed Clu	stering							
8	To	implement DB	Scan									
9	To i	implement CA	RT									
10	To	implement LD	A									

Course Assessment:

Lab:

ISE:

1. **ISE-1**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments

2. **ISE-2**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments

Course Code	Course	Course Name			Teaching Scheme (Hrs/week) Credits Assigned					ed
Couc				L	T	P	L	Т	P	Total
						2			1	1
	alytics	Lab		F	Examin	ation So	cheme			
CSL7012					ISE1	MSE	ISE2	ESE	To	otal
				Theory						
				Lab	25		25		4	50
Pre-requisite Course FEL 204)4							
Codes										
		CO1	To interpret business models and scientific computing							
			paradigms, and apply software tools for big data analytics.							
		CO2		mplement	_			Iap Red	luce to	apply
			on st	ructured a	ınd unst	ructure	d data			
Course (Outcomes	CO3	-	erform ha		_		ses sucl	n as Cas	ssandra,
			Hado	oop HBase	e, Mong	goDB, e	tc.			
		CO4	To implement various data streams algorithms.							
		CO5	To develop and analyze the social network graphs with data							
		visualization techniques.								

Sr. No.	Topics							
	(Select a case study and perform the experiments 1 to 8.).							
	Star (*) marked experiments are compulsory.							
	Hadoop HDFS Practical:							
	 HDFS Basics, Hadoop Ecosystem Tools Overview. 							
1*	Installing Hadoop.							
	Copying File to Hadoop.							
	 Copy from Hadoop File system and deleting file. 							
	 Moving and displaying files in HDFS. 							
	Programming exercises on Hadoop							
	Use of Sqoop tool to transfer data between Hadoop and relational database servers.							
2	Sqoop - Installation.							
	To execute basic commands of Hadoop eco system component Sqoop							
3*	To install and configure MongoDB/ Cassandra/ HBase/ Hyper table to execute							
	NoSQL commands							

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	Experiment on Hadoop Map-Reduce:
4	 Write a program to implement a word count program using MapReduce.
	Experiment on Hadoop Map-Reduce: -Implementing simple algorithms in Map-
5	Reduce: Matrix multiplication, Aggregates, Joins, Sorting, Searching, etc
6	Create HIVE Database and Descriptive analytics-basic statistics.
7*	Data Stream Algorithms (any one):
	 Implementing DGIM algorithm using any Programming Language
	 Implement Bloom Filter using any programming language
	Implement Flajolet Martin algorithm using any programming
	language
8	Social Network Analysis using R (for example: Community Detection Algorithm)
0	Social Network Analysis using K (for example, Community Detection Algorithm)
9	Data Vigualization using Histo/DIC/D/Takloou/
9	Data Visualization using Hive/PIG/R/Tableau/.
4.0	
10	Exploratory Data Analysis using Spark/ Pyspark.
	Mini Project: One real life large data application to be implemented (Use standard
	Datasets available on the web).
11	• Streaming data analysis – use flume for data capture, HIVE/PYS park for
	analysis of twitter data, chat data, weblog analysis etc.
	 Recommendation System (for example: Health Care System, Stock Market
	• • • • • • • • • • • • • • • • • • • •
	Prediction, Movie Recommendation, etc.) Spatio Temporal Data Analytics

Course Assessment:

Lab: ISE:

1. **ISE-1**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments.

2. **ISE-2**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments.

Course	Course	Course Name			Teaching Scheme			Credits Assigned			
Code				(H 1	(Hrs/week)						
	CSDL7011 Machine Vision Lab			L	T	P	L	T	P	Total	
						2			1	1	
CSDL7011				Examination Scheme							
					ISE1	MSE	ISE2	ESE	To	otal	
			Theory								
					10		15		4	25	
Pre-requisite		CSC 30	05, CS	5, CSDLO6012, CSL 405							
CourseCodes	}										
		CO1	Students will be able to read image and video file, perform.								
			diffe	rent proce	essing						
Course (Outcomes	CO2	Stud	ents will b	e able t	to do ed	ge detec	ction, de	epth est	timation	
		CO3	Stud	ents will b	e able t	o choos	e appro	priate a	lgo		
			for se	egmentatio	on						
		CO4	CO4 Students will be able to implement object detectio					tection			
		technique									

Sr. No.	Topics
	Handling Files, Cameras, and GUIs
1	Basic I/O scripts ,Reading/writing an image file ,Converting between an image and
	raw bytes ,Accessing image data with numpy array ,Reading/writing a video file
	,Capturing camera frames, Displaying images in a window, Displaying camera
	frames in a window
2	Processing Images with OpenCV 3 Converting between different color spaces, The
	Fourier Transform, High pass filter, Low pass filter,
	Edge detection with Canny, Contour detection, Contours – boundingbox, minimum
3	area rectangle, and minimum enclosing circle, Contours – convex contours and the
	Douglas-Peucker algorithm
	Depth Estimation
4	Capturing frames from a depth camera Creating a mask from a disparity map
	Masking a copy operation Depth estimation with a normal camera
	Object segmentation using the Watershed and Grab Cut algorithms Example of
5	foreground detection with Grab Cut Image segmentation with the Watershed
	algorithm
	Detecting and Recognizing faces
6	Conceptualizing Haar cascades Getting Haar cascade data Using OpenCV to
	perform face detection Performing face detection on a still image

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

7	Performing face detection on video Performing face recognition Generating the data for face recognition Recognizing faces Preparing the training data Loading the data and recognizing faces Performing an Eigenfaces recognition
	Retrieving Images and Searching
	Using Image Descriptors, Feature detection algorithms, Defining features etecting
8	features – corners Feature extraction and description using DoG and SIFT Anatomy
	of a keypoint
	Detecting and Recognizing Objects
	Object detection and recognition techniques HOG descriptors. The scale issue The
	location issue Non-maximum (or on-maxima) suppressionSupport vector machines
9	People detection
10	Creating and training an object detector
	Bag-of-words BOW in computer vision Detecting cars in a scene

Reference & Useful Links:

- 1. Learning OpenCV 3 Computer Vision with Python Second Edition, by Joe Minichino Joseph Howse Published by Packt Publishing Ltd.
- 2. http://iitk.ac.in/ee/computer-vision-lab
- 3. https://nptel.ac.in/courses/108103174
- 4. https://docs.opencv.org/3.4/d9/df8/tutorial_root.html

Course Assessment:

Lab:

ISE:

1. **ISE-1**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments.

2. **ISE-2**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course	Course	Course Name			Teaching Scheme			Credits Assigned			
Code				(Hrs/week)							
			L	T	P	L	T	P	Total		
						2			1	1	
	Quantum Computing			Examination Scheme							
CSDL7012	Lab				ISE1	MSE	ISE2	ESE	To	otal	
				Theory							
		Lab	10		15		2	25			
Pre-requisite CSL 405			05								
CourseCode	S										
		CO1	Implement basic quantum computing logic by building								
			dice	and rando	om num	ibers us	ing ope	n sourc	e simu	ılation	
			tools	S.							
Course	Outcomes	CO2	Und	erstand q	uantum	logic	gates	using	open s	source	
			simu	lation too	ls.						
	CO3	Impl	ement qua	antum c	ircuits u	sing ope	en sour	ce simu	ılation		
		tools	3								
CO4 ii			implement quantum algorithms using open source								
			simu	lation too	ls.						

Sr. No.	Topics
1	Building Quantum dice
2	Building Quantum Random No. Generation
3	Composing simple quantum circuits with q-gates and measuring the
	output into classical bits
4	Implementation of Shor's Algorithms
5	Implementation of Grover's Algorithm
6	Implementation of Deutsch's Algorithm
7	Implementation of Deutsch-Jozsa's Algorithm
8	Quantum Circuits
9	Qubit Gates
10	Bell Circuit & GHZ Circuit
11	Accuracy of Quantum Phase Estimation
12	Mini Project such as implementing an API for efficient search using
	Grover's Algorithms or Integer factorization using Shor's Algorithm.

Course Assessment:

Lab:

ISE:

1. **ISE-1**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments

2. **ISE-2**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments

Course Code		Name			ing Sch rs/week		C	credits	Assign	ed			
				L	T	P	L	T	P	Total			
						2			1	1			
	Natural L		~ ~		F	Examina	ation S	cheme					
CSDL70	13 process	ing Lab)		ISE1	MSE	ISE2	ESE	T	otal			
				Theory									
				Lab	10		15			25			
	isite Course	CSL 30	04/ CS	SL 405									
Codes													
			CO1 Apply various text processing techniques.										
		CO2		gn langua									
		CO3		el linguist									
C		CO4		gn, implei						1 111 5			
Cou	rse Outcomes	CO5		apply NL									
				ications s									
				ysis, text				ormatio	n extr	action,			
		CO6	_	stion Answ		•		odolog	y for tr	oining			
		100	Implement proper experimental methodology for training and evaluating empirical NLP systems										
Sr. No.	Topics		and	. varuatiiig	, cmpm	cai ivili	System.	13					
51.110.	Topics												
	(Select a case stud	y and p	erfor	m the exp	erimen	ts 1 to 8	8.).						
	Study various app	olication	s of I	NLP and	Formula	ate the	Problen	n State	ment f	or Mini			
	Project based on	chosen	real v	world NL	P appli	cations:	[Mach	ine Tra	nslatio	n, Text			
1	Categorization, T	ext sun	nmari	zation, cl	nat Bot	, Plaga	rism, S	pelling	& G	rammar			
	checkers, Sentime	-	ion ai	nalysis, Qı	uestion	answeri	ng, Pers	sonal A	ssistan	t,			
	Tutoring Systems,												
2	Apply various tex					ıny give	n text:						
	Tokenization and												
3	Apply various oth	_	-	_	-		y given	text:					
1	Stop Word Remov												
4	Perform morpholo	gicai an	arysis	and word	genera	uon Ior	any giv	en					
5	text. Implement N-Gra	m model	l for +1	ne given to	avt innu	f							
6	Study the differen						a on the	<u> </u>					
0	given text.	i i OS ta	55018	and I CHO	11111 00	, inggill	5 011 1110	,					
7	Perform Chunking	for the	given	text input	 t								
8	Implement Named		_			n text in	nput						
9	Implement Text S							nents.					
10	Exploratory data a												
11	Mini Project Repo						applica	tion.					
12	Implementation as												
13	Implementation a					-							

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

Lab: ISE:

1. **ISE-1**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments.

2. **ISE-2**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments.

Cours	e Course	Name		Teach	Credits Assigned							
Code				,	rs/week	ŕ				_		
	Augmente			L	T	P	L	T	P	Total		
	Virtual Rea	ality La	b			2			1	1		
~~~~~				Examination Scheme								
CSDL70	21				ISE1	MSE	ISE2	ESE	Total			
				Theory								
		1		Lab	10		15			25		
_	isite Course	CSC 30	05, CS	SDLO601	2, CSL	405						
Codes												
		CO1		p VR deve								
		CO2		HTC Vive	_	le Cardt	oard/ C	Google l	Daydre	eam and		
Course Outcomes		000		sung gear								
		CO3		elop VR so								
G 37	I	CO4	Wor	k with Au	gmente	d Faces	features	8		11		
Sr. No.	Topics											
1	In at all at an af II.		17:	-1. C4 1'-	44:	TI	· · · · · · · · · · · · · · · · · · ·	. VD	1 1	4		
1	Installation of Un					g up U	nity 10	rvko	ieveioj	oment,		
	understanding doc					a ala Ca		Casa	la Davi	ducous		
2	Demonstration of and Samsung gear		king (	DI HIC V	ive, Go	ogie Ca	raboara	, Goog	ie Day	aream		
	Develop a scene		itsy th	nat includ	lect i	a cube	nlane	and c	nhere	annly		
3	transformations on		-				-	and s	phere,	арргу		
3	audio source	i the 3 g	anne c	ojects. II.	add a v	ideo an	1					
	Develop a scene	in Unity	v that	includes	a cube	nlane	and sn	here. C	reate	a new		
	material and textu	-				-	-					
4	and texture of each	-	•			•	_					
	studio to change th											
	button click					8	J	J				
	Develop a scene	in Unity	y that	includes	a sphe	re and	plane .	Apply	Rigid	body		
5	component, mater											
	grab and throw the	sphere	using	vr contro	ller.	-			_			
	Develop a simple					images,	canvas	s, sprite	s and b	outton.		
6	Write a C# program	m to inte	eract v	with UI m	enuthro	ough VR	k triggei	button	such t	hat on		
	each successful tri	gger inte	eractio	on display	a score	on scei	ne.					
7	Place a three-dime	nsional	ARC	ore pawn	on detec	cted AR	plane s	urfaces				
8	Using the Augmer	ited Face	es fea	ture in vo	ur own	apps.						
	Using the Augmented Faces feature in your own apps.											



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

## **Course Assessment:**

Lab: ISE:

1. **ISE-1** 

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments.

2. **ISE-2** 

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments.



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course	C	Course Name			Teaching Scheme				Credits Assigned			
Code				(H:	rs/week							
				L	T	P	L	T	P	Total		
					2			1	1			
	В	lockchain Lab			F	Examina	ation So	cheme				
CSDL7022				ISE1	MSE	ISE2	ESE	To	otal			
			Theory									
					10		15		(4	25		
Pre-requisite		CSC 602										
Course Codes	S											
		CSDL7022.1	Crea	ate cryptographic hash using Merkle tree.								
		CSDL7022.2	CSDL7022.2 Design smart contract using solidity for a given									
Course			app	plication.								
Outcome	es	CSDL7022.3	Impl	ement Eth	ereum l	blockch	ain usin	g any c	of the E	thereum		
				orms.								
CSDL7022.4 Explore Hyper						ore Hyperledger Fabric and its working.						
			Demonstrate the concepts of blockchain in real world applications.									

Sr. No.	Topics
1	Cryptography in Blockchain, Merkle root tree hash
2	Creating Smart Contract using Solidity and Remix IDE.
3	Creating Transactions using Solidity and Remix IDE
4	Embedding wallet and transaction using Solidity
5	Blockchain platform Ethereum using Geth.
6	Blockchain platform Ganache.
7	Case Study on Hyperledger
8	Case Study on Other Blockchain platforms.
9	Creating a blockchain Application

## **Course Assessment:**

Lab:

**ISE:** 

#### 1. **ISE-1**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments.

#### 2. **ISE-2**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments.



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course	Course	Name			ing Sch	Credits Assigned				
Code					rs/week					
				L	T	P	L	T	P	Total
						2			1	1
	Information	<b>Information Retrieval</b>			E	Examina	ation So	cheme		
CSDL7023	CSDL7023 Lab				ISE1	MSE	ISE2	ESE	To	otal
				Theory	ŀ					
				Lab	10		15		4	25
Pre-requisite	Course	CSL 30 ²	4, CS	SL 405						
Codes										
		CO1 To frame queries for information retrieval								
Course (	<b>Course Outcomes</b>		To ir	nplement	modelii	ng techn	iques			
		CO3	To p	erform qu	ery exp	ansion t	echniqu	ies		
	To demonstrate evaluation techniques for IR									

Sr. No.	Topics
	Suggested Experiments: Students are required to perform any 5 experiments from
	the suggested list along with <b>a case study</b> (* indicates compulsory experiment)
1	To understand the query structure and execute various structured queries
2	To implement any IR modeling technique
3	To implement Pattern matching method used for IR
4	To execute query expansion technique (Local/Global)
5	To design inverted indices for any information retrieval model
6	To implement tf-id weighting
7	To evaluate the system/application under study
8*	To understand the Case Study and generate a report for the same

#### **Course Assessment:**

Lab: ISE:

#### 1. **ISE-1**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments

#### 2. **ISE-2**

Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments

# STATE AND WALLS

#### Society of St. Francis Xavier, Pilar's

# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course 1	Name		Teaching Scheme (Hrs/week)			Credits Assigned			
Code			1.	T	P	L	Т	P	Total	
					6			3	3	
	Major P									
CSP701	<b>7</b>						ESE	To	otal	
			Theory							
			Lab	25		25	25	7	75	
Pre-requisite	Course		•	•	•					
Codes										
			To develop the understanding of the problem domain							
			through extensive review of literature.							
			scope with pro							
			Γo know vari		_		_			
Course (	Outcomes		selected proble		related t	echnica	ıl skills	through	h	
			easibility ana							
			Γo design so				-	ems th	at will	
			ositively imp							
			To develop clarity of presentation based on							
			communication, teamwork and leadership skills							
		6	To inculcate professional and ethical behavior.							

#### **Guidelines:**

#### 1. Project Topic Selection and Allocation:

- Project topic selection Process to be defined and followed:
  - o Project orientation can be given at the end of sixth semester.
  - Students should be informed about the domain and domain experts whose guidance can be taken before selecting projects.
  - O Student's should be recommended to refer papers from reputed conferences/ journals like IEEE, Elsevier, ACM etc. which are not more than 3 years old for review of literature.
  - Students can certainly take ideas from anywhere, but be sure that they should evolve them in the unique way to suit their project requirements.
     Students can be informed to refer DigitalIndia portal, SIH portal or any other hackathon portal for problem selection.
- Topics can be finalized with respect to following criterion:
  - Topic Selection: The topics selected should be novel in nature (Product based, Application based or Research based) or should work towards removing the lacuna in currently existing systems.
  - Technology Used: Use of latest technology or modern tools can be encouraged.
  - Students should not repeat work done previously (work donein the last three years).
  - o Project work must be carried out by the group of at least 2

# SOURCE AND THE WATCH

## Society of St. Francis Xavier, Pilar's

# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- students and maximum 4.
- The project work can be undertaken in a research institute or organization/Industry/any business establishment. (out-house projects)
- The project proposal presentations can be scheduled according to the domains and should be judged by faculty who are expert in the domain.
- Head of department and senior staff along with project coordinators will take decision regarding final selection of projects.
- o Guide allocation should be done and students have to submit weekly progress report to the internal guide.
- Internal guide has to keep track of the progress of the project and also has to maintain attendance report. This progress report can be used for awarding term work marks.
- In case of industry/ out-house projects, visit by internal guide will be preferred and external members can be called during the presentation at various levels

#### 2. Project Report Format:

At the end of semester, each group needs to prepare a project report as perthe guidelines issued by the University of Mumbai.

## A project report should preferably contain at least following details:

- Abstract
- o Introduction
- o Literature Survey/ Existing system
- o Limitation Existing system or research gap
- Problem Statement and Objective
- Proposed System
  - o Analysis/Framework/ Algorithm
  - o Design details
  - o Methodology (your approach to solve the problem) Proposed System
- Experimental Set up
  - o Details of Database or details about input to systems or selected data
  - o Performance Evaluation Parameters (for Validation)
  - o Software and Hardware Set up

# SOUND COLLEGE OF STATE OF STAT

#### Society of St. Francis Xavier, Pilar's

# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- Implementation Plan for Next Semester
  - Timeline Chart for Term1 and Term-II (Project Managementtools can be used.)
  - References

#### Desirable

Students can be asked to undergo some Certification course (for thetechnical skill set that will be useful and applicable for projects.)

#### 3. In Semester Evaluation:

Distribution of marks for term work shall be done based on following:

- Weekly Log Report
- o Project Work Contribution
- o Project Report (Spiral Bound) (both side print)
- o Term End Presentation (Internal)

The final certification and acceptance of TW ensures the satisfactoryperformance on the above aspects.

#### 4. End Sem Evaluation:

Oral and Practical examination (Final Project Evaluation) of Project 1 should be conducted by Internal examiners approved by University of Mumbai at the end of the semester.

Suggested quality evaluation parameters are as follows:

- Quality of problem selected
- o Clarity of problem definition and feasibility of problem solution
- o Relevance to the specialization / industrial trends
- o Originality
- o Clarity of objective and scope
- Quality of analysis and design
- o Quality of written and oral presentation
- o Individual as well as team work

## **Course Assessment:**

1. ISE-1

midterm presentation will be carried out and evaluation is based on rubrics decided by the department.

2. ISE-2

midterm presentation will be carried out and evaluation is based on rubrics decided by the department.

3. ESE -

Oral examination will be carried out at the end of the semester by the panel of the department.



Course Code	Cours	se Nam	Teaching Scheme (Hrs/week)	Т	P	ı		C L	redit	s Ass	igned Total	
				3		-			3			3
						-						
CSC801	Distributor	1 Comr	tina		•			Exami	natio	n Scl	neme	;
CSCoul	Distributed	ı Comp	puung	ISE1		MS	E	ISE2		ESE		Total
				20		30	)	20		(30		100
		1							weightage)			
Pre-requis	ite	CSC :	503, CSC	C 404								
Course Ou	itcomes	CO1		monstrate the knowledge of basic elements and concepts related to tributed system technologies.								
		CO2		Illustrate the middleware technologies that support distributed applications such as RPC, RMI and Object-based middleware.								
		CO3	-	alyze the various techniques used for clock synchronization, mutual lusion and deadlock.								
		CO4	Demon	emonstrate the concepts of Resource and Process management.								
				monstrate the concepts of Consistency, Replication Management and It Tolerance.								
					the knowledge of Distributed File systems in building large-scale buted applications.							

Module	Unit	Topics	Ref.	Hrs.
		Topics	Kei.	1115.
No.	No.			
1		Introduction to Distributed Systems		4
	1.1	Characterization of Distributed Systems: Issues, Goals,	[1][4]	
		Types of distributed systems, Grid and Cluster computing		
		Models, Hardware and Software Concepts:NOS, DOS.		
	1.2	Middleware: Models of middleware, Services offered by	[1][4]	
		middleware.		
2		Communication		4
	2.1	Interposes communication (IPC): Remote Procedure Call	[1][4]	
		(RPC), Remote Method Invocation (RMI).		
	2.2	Message-Oriented Communication, Stream Oriented	[1][4]	
		Communication, Group Communication.		
3		Synchronization		10
	3.1	Clock Synchronization: Physical clock, Logical Clocks,	[1][2]	
		Election Algorithms	_	

# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	3.2	Distributed Mutual Exclusion, Requirements of Mutual	[1][2]	
		Exclusion Algorithms and Performance measures.	L 3L 3	
		Non- token Based Algorithms: Lamport, Ricart-Agrawala_s		
		and Maekawa_s Algorithms; Token-based Algorithms:		
		Suzuki-Kasami_s Broadcast Algorithms and Raymond_s		
		Tree-based Algorithm; and Comparative Performance		
		Analysis.		
	3.3	Deadlock: Introduction, Deadlock Detection: Centralized	[2][5]	
		approach, Chandy - Misra_Hass Algorithm.	L JL J	
4		Resource and Process Management		7
	4.1	Desirable Features of Global Scheduling algorithm, Task	[2][3]	
		assignment approach, Load balancing approach and load		
		sharing approach.		
	4.2	Introduction to Process Management, Process Migration,	[2][3]	
		Code Migration.		
5		Replication, Consistency and Fault Tolerance		8
	5.1	Distributed Shared Memory: Architecture, design issues.	[1][2][5]	
	5.2	Introduction to replication and consistency, Data-Centric	[1][2][5]	
	J.2	and Client-Centric Consistency Models, Replica	[1][2][0]	
		Management.		
	5.3	Fault Tolerance: Introduction, Process resilience, Recovery.	[1][2][5]	
		1 4020 1 51414110 1 11115 300 11011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[-][-][0]	
6		Distributed File Systems		6
	6.1	Introduction and features of DFS, File models, File Accessing	[1][2][5]	
		models, File-		
		Caching Schemes, File Replication, Case Study: Network		
		File System (NFS).		
	6.2	Designing Distributed Systems: Google Case Study.	[1][2][5]	
			Total	39

### **Recommended Books:**

- 1. Andrew S. Tanenbaum and Maarten Van Steen, Distributed Systems: Principles and Paradigms, 2nd edition, Pearson Education.
- **2.** Mukesh Singhal, Niranjan G. Shivaratri, "Advanced concepts in operating systems: Distributed, Database and multiprocessor operating systems", MC Graw Hill education.
- 3. Pradeep K. Sinha, "Distributed Operating System-Concepts and design", PHI.
- 4. M. L. Liu, —Distributed Computing Principles and Applications^{II}, Pearson AddisonWesley, 2004
- **5.** George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems: Concepts and Design", 4th Edition, Pearson Education, 2005.

#### **Useful Links:**

- 1. <a href="https://nptel.ac.in/courses/106106107">https://nptel.ac.in/courses/106106107</a>
- 2. https://nptel.ac.in/courses/106106168
- 3. <a href="http://csis.pace.edu/~marchese/CS865/Lectures/Chap7/Chapter7fin.htm">http://csis.pace.edu/~marchese/CS865/Lectures/Chap7/Chapter7fin.htm</a>
- 4. https://nptel.ac.in/courses/106104182



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

## **Course Assessment:**

Theory:

<u>ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

**ISE-2**:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:

Three hours 100 Marks (30% weightage) written examination based on entire syllabus



	Cour	Sc	achi hem s/we	ie e		Credits Assigned						
				L	T	P		L	T	P	Total	
				3				3			3	
<b>CSDC8011</b>	Deep Learning						Exam	inatio	n Sc	heme		
				ISE1		MSE	ISE2	E	SE		Total	
				20		30	20	100	(30%	o	100	
								weig	htag	e)		
Pre-requisit	te	FEC :	101, FEC	202, C	SC 4	01, CS	C 701					
		CO1	Gain ba	Gain basic knowledge of Neural Networks.								
		CO2	Acquire	in dept	h un	derstan	ding of tra	ining	Deep	)		
Course C	outcomes		Neural I	Network	ζS.			_	-			
		CO3	Design	appropr	iate ]	DNN m	odel for s	uperv	ised,			
	unsupervised and sequence learning applications.											
	ain familiarity with recent trends and											
				pplications of Deep Learning.								

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Fundamentals of Neural Network	[1][2]	04
	1.1	Biological neuron, Mc-Culloch Pitts Neuron, Perceptron,		
		Perceptron Learning, Delta learning, Multilayer Perceptron:		
		Linearly separable,		
		linearly non-separable classes		
	1.2	Deep Networks: Fundamentals, Brief History, Three Classes of		
		Deep		
		Learning Basic Terminologies of Deep Learning		
2		Training, Optimization and Regularization of Deep Neural	[1][2]	10
		Network	[3]	
	2.1	Training Feedforward DNN Multi Layered Feed Forward		
		Neural Network, Learning Factors, Activation functions: Tanh,		
		Logistic, Linear, Softmax, ReLU, Leaky Re LU, Loss		
		functions: Squared Error loss, Cross Entropy, Choosing output		
		function and loss function		

# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	2.2	Optimization Learning with backpropagation, Learning Parameters: Gradient Descent (GD), Stochastic and Mini Batch		
		GD, Momentum Based GD, Nesterov Accelerated GD, Ada Grad, Adam, RMS Prop		
	2.3	Regularization Overview of Overfitting, Types of biases, Bias Variance Tradeoff Regularization Methods: L1, L2 regularization, Parameter sharing, Dropout, Weight Decay, Batch normalization, Early stopping, Data Augmentation, Adding noise to input and output		
		Autoencoders: Unsupervised Learning	[1][2]	06
	3.1	Introduction, Linear Autoencoder, Undercomplete Autoencoder, Overcomplete Autoencoders, Regularization in Autoencoders	[3]	
	3.2	Denoising Autoencoders, Sparse Autoencoders, Contractive Autoencoders		
	3.3	Application of Autoencoders: Image Compression		
4		Convolutional Neural Networks (CNN): Supervised Learning	[2][3] [4][6]	07
	4.1	Convolution operation, Padding, Stride, Relation between input, output and filter size, CNN architecture: Convolution layer, Pooling Layer, Weight Sharing in CNN, Fully Connected NN vs CNN, Variants of basic Convolution function	[7]	
	4.2	Modern Deep Learning Architectures: LeNET: Architecture, AlexNET: Architecture		
5		Recurrent Neural Networks (RNN)	[3][4]	08
	5.1	Sequence Learning Problem, Unfolding Computational graphs, Recurrent Neural Network, Bidirectional RNN, Backpropagation Through Time (BTT), Vanishing and Exploding Gradients, Truncated BTT		
	5.2	Long Short Term Memory: Selective Read, Selective write, Selective Forget, Gated Recurrent Unit		
6		Recent Trends and Applications	[2][3]	04
	6.1	Generative Adversarial Network (GAN): Architecture	[4]	
	6.2	Applications: Image Generation, DeepFake		
			Total	39

#### **Recommended Books:**

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville. —Deep Learning, MIT Press Ltd, 2016
- 2. Li Deng and Dong Yu, —Deep Learning Methods and Applications , Publishers Inc.
- 3. Satish Kumar "Neural Networks A Classroom Approach" Tata McGraw-Hill.
- 4. JM Zurada —Introduction to Artificial Neural Systems^{||}, Jaico Publishing House 5 M. J. Kochenderfer, Tim A. Wheeler. —Algorithms for Optimization^{||}, MIt Press
- 5. Buduma, N. and Locascio, N., —Fundamentals of deep learning: Designing next-generation machine intelligence algorithms" 2017. O'Reilly Media, Inc.".



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 6. François Chollet. —Deep learning with Python —(Vol. 361). 2018 New York: Manning.3 Douwe Osinga. —Deep Learning Cookbook|, O'REILLY, SPD Publishers, Delhi.
- 7. Simon Haykin, Neural Network- A Comprehensive Foundation- Prentice Hall International, Inc 5 S.N. Sivanandam and S.N. Deepa, Principles of soft computing-Wiley India

#### **Useful Links**

- 1. https://nptel.ac. https://deeplearning.cs.cmu.edu/S21/index.html
- 2. http://www.cse.iitm.ac.in/~miteshk/CS6910.html
- 3. https://nptel.ac.in/courses/106/106/106106184
- 4. https://www.deeplearningbook.org/

#### **Course Assessment:**

#### Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

<u>ISE-2:</u>

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:



Course Code	Course Name	So	achi chen s/we	ie		C	redit	s Assi	igned
		L	T	P		L	T	P	Total
		3				3			3
CSDC8012	<b>Digital Forensics</b>				Exam	<b>Examination Scheme</b>			
		ISE1		MSE	ISE2	ESE			Total
		20		30	20	100	(30%	ó	100
						weig	ghtag	e	

Pre-requisite	CSC :	CSC 503, CSC 602						
	CO1	Discuss the phases of Digital Forensics and methodology to handle the computer security incident.						
<b>Course Outcomes</b>	CO2	Describe the process of collection, analysis and recovery of the digital evidence						
	CO3	Explore various tools to analyze malwares and acquired images of RAM/hard drive						
	CO4	Acquire adequate perspectives of digital forensic investigation in mobile devices						

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Digital Forensics	[1][2]	10
	1.1	Digital Forensics Definition, Digital Forensics Goals, Digital		
		Forensics Categories - Computer Forensics, Mobile Forensics,		
		Network Forensics, Database Forensics		
	1.2	Introduction to Incident - Computer Security Incident, Goals		
		of Incident Response, CSIRT, Incident Response		
		Methodology, Phase after detection of an incident		
2		Digital Evidence, Forensics Duplication and Digital	[1][2]	06
		Evidence Acquisition		
	2.1	Digital evidence, Types of Digital Evidence, Challenges in		
		acquiring Digital evidence, Admissibility of evidence,		
		Challenges in evidence handling, Chain of Custody		

	2.2	Digital Forensics Examination Process - Seizure, Acquisition, Analysis, Reporting. Necessity of forensic duplication, Forensic image formats, Forensic duplication techniques,		
	2.3	Acquiring Digital Evidence - Forensic Image File Format, Acquiring Volatile Memory (Live Acquisition), Acquiring Nonvolatile Memory(Static Acquisition), Hard Drive Imaging Risks and Challenges, Network Acquisition		
3		Forensics Investigation		07
	3.1	Analyzing Hard Drive Forensic Images, Analyzing RAM Forensic Image, Investigating Routers	[1][2]	
	3.2	Malware Analysis - Malware, Viruses, Worms, Essential skills and tools for Malware Analysis, List of Malware Analysis Tools and Techniques		
4		Windows and Unix Forensics Investigation		08
	4.1	Investigating Windows Systems - File Recovery, Windows Recycle Bin Forensics, Data Carving, Windows Registry Analysis, USB Device Forensics, File Format Identification, Windows Features Forensics Analysis, Windows 10 Forensics, Cortana Forensics	[1][2] [3]	
	4.2	Investigating Unix Systems - Reviewing Pertinent Logs, Performing Keyword Searches, Reviewing Relevant Files, Identifying Unauthorized User Accounts or Groups, Identifying Rogue Processes, Checking for Unauthorized Access Points, Analyzing Trust Relationships		
5		Mobile Forensics		08
	5.1	Android Forensics, Mobile Device Forensic Investigation – Storage location, Acquisition methods, Data Analysis	[1][2] [3]	
	5.2	GPS forensics - GPS Evidentiary data, GPS Exchange Format (GPX), GPX Files, Extraction of Waypoints and TrackPoints, Display the Tracks on a Map.		
	5.3	SIM Cards Forensics - The Subscriber Identification Module (SIM), SIM Architecture, Security, Evidence Extraction.		
6		Browser, Email Forensic & Forensic Investigation Reporting		04
	6.1	Web Browser Forensics, Google chrome, Other web browser investigation Email forensics - Sender Policy Framework (SPF), Domain Key Identified Mail (DKIM), Domain based Message Authentication Reporting and Confirmation (DMARC)	[1][2]	
	6.2	Investigative Report Template, Layout of an Investigative Report, Guidelines for Writing a Report		
		report, outdomes for writing a report	Total	39

# SQUARE SOLIDO ON THE STATE OF T

## Society of St. Francis Xavier, Pilar's

# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

#### **Recommended Books:**

- 1. Kevin Mandia, Chris Prosise, —Incident Response and computer forensics, Tata McGraw-Hill, 2006
- 2. Digital Forensics Basics A Practical Guide Using Windows OS Nihad A. Hassan, A Press Publication, 2019
- 3. Xiaodong Lin, —Introductory Computer Forensics: A Hands-on Practical Approach^{||}, Springer Nature, 2018

## **Suggested MOOC Course Links**

- 1. Course on —Ethical Hacking https://nptel.ac.in/courses/106/105/106105217/
- 2. Course on —Digital Forensics https://onlinecourses.swayam2.ac.in/cec20_lb06/preview
- 3. Course on Cyber Incident Response https://www.coursera.org/learn/incident-response
- 4. Course on —Penetration Testing, Incident Responses and Forensics https://www.coursera.org/learn/ibm-penetration-testing-incident-response-forensics

#### **Course Assessment:**

## **Theory:**

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:



Course Code	Course Name	So	achi chen s/we	1e		C	redit	s Ass	igned
		L	T	P		L	T	P	Total
		3				3			3
CSDC8013	<b>Applied Data Science</b>				<b>Examination Scheme</b>				;
		ISE1	ISE1 MSE ISE2 ESE			Total			
		20		30	20	100 (30%			100
						weig	htag	e	

Pre-requisite	CSC '	701, CSC 303, CSC 402
	CO1	To gain fundamental knowledge of the data science process.
	CO2	To apply data exploration and visualization techniques.
<b>Course Outcomes</b>	CO3	To apply anomaly detection techniques.
	CO4	To apply anomaly detection techniques.
	CO5	Apply different methodologies and evaluation strategies.
	CO6	Apply different methodologies and evaluation strategies.

Module No.	Unit No.	Topics	Ref.	Hrs.
1	110.	Introduction Data Science	General	2
	1.1	Introduction to Data Science, Data Science Process	Topic All	
			Books	
	1.2	1 /	General Topic All Books	
	1.3	Overview of Data Preparation, Modeling, Difference between Data science and data analytics	[1]	
2		Data Exploration		8
	2.1	Types of data, Properties of data  Descriptive Statistics: Univariate Exploration: Measure of Central Tendency, Measure of Spread, Symmetry, Skewness: Karl Pearson Coefficient of skewness, Bowley's Coefficient, Kurtosis Multivariate Exploration: Central Data Point, Correlation, Different forms of correlation, Karl Pearson Correlation Coefficient forbivariate distribution	[2],[4] [8]	

	2.2	Inferential Statistics:	[2],[4] [7]	
		Overview of Various forms of distributions: Normal, Poisson, Test Hypothesis, Central limit theorem, Confidence Interval, Z- test, t-test, Type-I, Type-II Errors, ANOVA		
3		Methodology and Data Visualization		6
	3.1	Methodology: Overview of model building, Cross Validation, K-fold cross validation, leave-1 out, Bootstrapping	[1],[2]	
	3.2	Data Visualization Univariate Visualization: Histogram, Quartile, Distribution Chart Multivariate Visualization: Scatter Plot, Scatter Matrix, Bubble chart, Density Chart Roadmap for Data Exploration	[1],[2]	
	3.3	<b>Self-Learning Topics:</b> Visualizing high dimensional data: Parallel chart, Deviation chart, Andrews Curves.	[1],[2]	-
4		<b>Anomaly Detection</b>		6
	4.1	Outliers, Causes of Outliers, Anomaly detection techniques, Outlier Detection using Statistics	[ 1]	
	4.2	Outlier Detection using Distance based method, Outlier detection using density-based methods, SMOTE	[1]	
5		Time Series Forecasting		4
	5.1	Taxonomy of Time Series Forecasting methods, Time Series Decomposition	[1]	
	5.2	Smoothening Methods: Average method, Moving Average smoothing, Time series analysis using linear regression, ARIMA Model, Performance Evaluation: Mean Absolute Error, Root Mean Square Error, Mean Absolute Percentage Error, Mean Absolute Scaled Error	[1]	
	5.3		[1]	
6	6.1	Applications of Data Science	[1]	4
		Predictive Modeling: House price prediction, FraudDetection Clustering: Customer Segmentation Time series forecasting: Weather Forecasting Recommendation engines: Product recommendation		
	l	1	1	39

# SCHOOL SC

## Society of St. Francis Xavier, Pilar's

# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

#### **Recommended Books:**

- 1. Vijay Kotu, Bala Deshpande. —Data Science Concepts and Practicell, Elsevier, M.K. Publishers.
- 2. Steven Skiena, —Data Science Design Manuall, Springer International Publishing AG
- 3. Samir Madhavan. —Mastering Python for Data Sciencell, PACKT Publishing
- 4. Dr. P. N. Arora, Sumeet Arora, S. Arora, Ameet Arora, —Comprehensive Statistical Methodsl, S.Chand Publications, New Delhi.
- 5. Jake VanderPlas. -Python Data Science Handbook||, O'reilly Publications.
- 6. Francesco Ricci, LiorRokach, BrachaShapira, Paul B. Kantor, -Recommender Systems Handbookl, Springer.
- 7. S.C. Gupta, V. K. Kapoor -Fundamentals of Mathematical Statistics, S. Chand and Sons, New Delhi
- 8. B. L. Agrawal. -Basic Statistics, New Age Publications, Delhi.

#### **Useful Links**

- 1. https://onlinecourses.nptel.ac.in/noc22_cs32/preview
- 2. https://onlinecourses.nptel.ac.in/noc21_cs69/preview

#### **Course Assessment:**

## **Theory:**

#### <u>ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

#### <u>ISE-2:</u>

Two hours 20 Marks Activity: Quiz and assignments

#### MSE:

Two hours 30 Marks written examination based on 50% syllabus.

#### ESE:



	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				igned
		L	T	P		L	T	P	Total
		3				3			3
CSDC8021	Optimization in Machine				Exam	inatio	n Scl	heme	
	Learning	ISE1		MSE	ISE2	F	SE		Total
		20		30	20	100 (	<del>30%</del>		100
						weig	htage	(e)	

Pre-requisite	CSC 301CSC 401, CSC 303. CSC					
	CO1	Understand foundational optimization ideas including gradient descent, stochasticgradient methods				
	CO2 Apply convex optimization algorithm					
	CO3	Analyze and demonstrate several population methods in				
Course Outcomes		Evolutionary Computation				
	CO4	Apply advanced evolutionary algorithms such as particle				
		swarm andant colony optimization				

Module	Unit	Topics	Ref.	Hrs.
No.	No.	_		
1		Introduction and Background to Optimization Theory	[1][2]	4
	1.1	Basic Ingredients of Optimization Problems, Optimization		
		Problem Classifications, Optima Types, Optimization Method		
		Classes, Overview of Unconstrained and Constrained		
		Optimization, Basics of convex optimization		
2		Derivative based Optimization	[1][2]	10
	2.1	The Basics of Optimization (univariate, bivariate and		
		multivariate optimization), Convex Objective Functions		
	2.2	First-Order optimization Methods : Gradient Descent,		
		Conjugate Gradient, Momentum, Nesterov Momentum,		
	2.3	Second order optimization: Newton method		
3		Stochastic Methods	[1][2]	6
	3.1	Noisy Descent, Mesh Adaptive Direct Search, Cross-Entropy		_
		Method, Natural Evolution Strategies, Covariance Matrix		
		Adaptation		



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4		Convex Optimization		6
	4.1	Optimization problems, Convex optimization, Linear		
		optimization problems, Quadratic optimization problems,		
		Geometric programming, Overview of Generalized inequality		
		constraints and Vector optimization		
5		Evolutionary Methods	[1][2]	8
	5.1	Introduction to Evolutionary Computation: Generic Evolutionary Algorithm, Representation: The Chromosome, Initial Population, Fitness Function, Selection: Selective Pressure, Random Selection, Proportional Selection, Tournament Selection, Rank-Based Selection, Elitism and Evolutionary Computation versus Classical Optimization, Stopping conditions	[3]	
	5.2	Canonical Genetic Algorithm, Binary Representations of Crossover and Mutation: Binary Representations, Control Parameters		
6		Advance Evolutionary Methods	[1][2]	5
	6.1	Basic Particle Swarm Optimization, Global Best PSO, Local Best PSO, g-best versus l-best PSO, Velocity Components, Geometric Illustration, Algorithm Aspects, Social Network Structures	[3]	
	6.2	Ant Colony Optimization Meta-Heuristic, Foraging Behavior of Ants, Stigmergy and Artificial Pheromone, Simple Ant Colony Optimization, Ant System, Ant Colony System		
Total				39

#### **Recommended Books:**

- 1. Suvrit Sra, Sebastian Nowozin, Stephen J. Wright, Optimization for Machine Learning, The MIT Press
- 2. Xin-She Yang Middlesex ,Optimization techniques and applications with examples, Wiley
- 3. A.E. Eiben, J. E. Smith, Introduction to Evolutionary Computing, Springer

#### **Useful Links**

- 1. Convex optimization (NPTEL)
- 2. Constrained and Unconstrained optimization (NPTEL)
- 3. Machine-learning-model-performance (Coursera)
- 4. Deep-neural-network optimization (Coursera)

## **Course Assessment:**

## Theory:

#### ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

#### ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

#### MSE:

Two hours 30 Marks written examination based on 50% syllabus.



Course Code	Course Name	Teaching Scheme (Hrs/week)				C	redit	s Assi	igned	
		L	T	P		L	T	P	Total	
		3				3			3	
CSDC8022	<b>High Performance</b>				Exam	inatio	nation Scheme			
	Computing	ISE1		MSE	ISE2	E	SE		Total	
		20		30	20	100 (30%			100	
						weig	htage	•		

Pre-requisite	CSC	304, CSC 404, CSL 605
	CO1	Understand parallel and pipeline processing approaches
	CO2	Design a parallel algorithm to solve computational problems and identify issues in parallel programming.
Course Outcomes	CO3	Analyze the performance of parallel computingsystems for clusters in terms of execution time, total parallel overhead, speedup.
	CO4	Develop efficient and high-performance parallel algorithms using OpenMP and message passing paradigm
	CO5	Develop high-performance parallel programming using OpenCL and CUDA framework
	CO6	Perform the range of activities associated with High Performance Computing in Cloud Computing

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Parallel Computing		5
	1.1	Parallelism (What, Why, Applications), Levels of parallelism (instruction, transaction, task, thread, memory, function)	[1][2]	

	1.2	Classification Models: Architectural Schemes (Flynn's,	[1][2]	
		Shore's, Feng's,handler's)		
	1.3	Memory Access: Distributed Memory, Shared Memory,		
		Hybrid Distributed shared memory)		
	1.4	Parallel Architecture: Pipeline Architecture: Arithmetic		
		pipelines, Floating point, Array Processor		
2		Parallel Programming Platform and Algorithm Design		11
	2.1	Parallel Programming Platform: Physical Organization of	[1][2]	
		Parallel Platforms, Communication Costs in Parallel Machines	[3]	
	2.2	Algorithm Design: Preliminaries, Decomposition		
		Techniques, Characteristics of Tasks and Interactions,		
		Mapping Techniques for Load Balancing, Methods for		
		Containing Interaction Overheads, Parallel Algorithm Models.		
3		Performance Measures		3
	3.1	<b>Performance Measures:</b> Speedup, execution time, efficiency,	[1][2]	
		cost, scalability, Effect of granularity on performance,	[3]	
		Scalability of Parallel Systems, Amdahl_s Law, Gustavson_s		
		Law, Performance Bottlenecks, The Karp Flatt Metric.		
4		HPC Programming: OpenMP and MPI		08
	4.1	Introduction: Threads, Share memory Architecture, Multi-	[2][3]	
		core processors and Hyper threading, Fork and join model.	[4]	
	4.2	OpenMP directives: #pragma omp parallel, Hello worldwith		
		openMP, #pragma omp for, #pragma omp for schedule. Serial		
		vs Parallel PI program.		
	4.3	Synchronisation: Introduction, Private vs Shared variables. and		
		Synchronous		
	4.4	Introduction: Processes, Multiprocessor programming model,		
		Distributed system programming model, Inter- process		
		communication using message passing: Asynchronous and		
		Synchronous		
	4.5	MPI Programming: Hello world problem, mpi_ initMPI_		
		send MPI_ Recv, Synchronisation: MPI_ Barrier		
	4.6	Hybrid (MPI + OpenMP) programming, Hardware		
		requirement, Threads inside Processes, Hybrid Matrix		
		multiplication		



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	4.7	Message passing vs Share memory communication:					
		Advantages and disadvantage					
5		Parallel programming using accelerators		04			
	5.1	An Overview of GPGPUs, Introduction to CUDA, Introductionto Heterogeneous Computing using OpenCL, An Overview of OpenCL API, Heterogeneous Programming in OpenCL.	[3][4]				
6		High Performance Computing in the Cloud					
	6.1	Virtualization and Containerization, Parallel Computing Frameworks, Scaling, HPC in the Cloud Use Cases.	[5]				
	•			39			

#### **Recommended Books:**

- 1. Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar —Introduction to Parallel Computing, 2nd edition, Addison Wesley, 2003.
- 2. Shane Cook, Morgan Kaufmann —CUDA Programming: A Developer's Guide to Parallel Computing with GPUsl, 2012.
- 3. M. R. Bhujade —Parallel Computing, 2nd edition, New Age International Publishers, 2009.
- 4. Kai Hwang, Naresh Jotwani, —Advanced Computer Architecture: Parallelism, Scalability, Programmability McGraw Hill, Second Edition, 2010.
- 5. Georg Hager, Gerhard Wellein, Chapman —Introduction to High Performance Computing for Scientists and Engineers Hall/CRC Computational Science Series, 2011.

#### **Useful Links**

- 1. https://nptel.ac.in/courses/112105293
- 2. https://archive.nptel.ac.in/courses/128/106/128106014/

#### **Course Assessment:**

### Theory:

<u>ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:



Course Code	Course Name	Teaching Scheme (Hrs/week)				C	redit	s Assi	igned
		L	T	P		L	T	P	Total
	Social Media	3				3	-		3
CSDC8023	Analytics				Exam	Examination Scheme			
		ISE1 MSE		ISE2	ESE			Total	
		20		30	20	100 (	30%		100
						weigl	htage	<u> </u>	

Pre-requisite	CSC 3	CSC 305, CSC 504, CSL 405					
	CO1	Understand the concept of Social media					
Course Outcomes	CO2	Understand the concept of social media Analytics and its significance.					
	CO3	Learners will be able to analyze the effectiveness of social media					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Social Media Analytics: An Overview	[1]	06
		Core Characteristics of Social Media, Types of Social Media,		
		Social media landscape, Need for Social Media Analytics		
		(SMA), SMA in small & large organizations. Purpose of Social		
		Media Analytics, Social Media vs. Traditional Business		
		Analytics, Seven Layers of Social Media Analytics, Types of		
		Social Media Analytics, Social Media Analytics Cycle,		
		Challenges to Social Media Analytics, Social		
		Media Analytics Tools		
2		Social Network Structure, Measures & Visualization	[1],[2]	06
		Basics of Social Network Structure - Nodes, Edges & Tie		
		Describing the Networks Measures - Degree Distribution,		
		Density, Connectivity, Centralization, Tie Strength & Trust		
		Network Visualization - Graph Layout, Visualizing Network		
		features, Scale Issues. Social Media Network Analytics -		
		Common Network Terms, Common Social		
		Media Network Types, Types of Networks, Common Network		
		Terminologies, Network Analytics Tools.		
3		Social Media Text, Action & Hyperlink Analytics	[1],[3]	08
		Social Media Text Analytics - Types of Social Media Text,		
		Purpose of Text Analytics, Steps in Text Analytics, Social		
		Media Text 8 Analysis Tools Social Media Action Analytics -		
		What Is Actions Analytics?		
		Common Social Media Actions, Actions Analytics Tools		
		Social Media Hyperlink Analytics - Types of Hyperlinks,		
		Types of Hyperlink Analytics, Hyperlink Analytics Tools		



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4	Social Media Location & Search Engine Analytics	[2],[3]	06
	Location Analytics - Sources of Location Data, Categories of		
	Location Analytics, Location Analytics and Privacy Concerns,		
	Location Analytics Tools Search Engine Analytics - Types of		
	Search Engines, Search Engine Analytics, Search Engine		
	Analytics Tools		
5	Social Information Filtering	[2],[3]	06
	Social Information Filtering - Social Sharing and filtering,		
	Automated Recommendation systems, Traditional Vs social		
	Recommendation Systems Understanding Social Media and		
	Business Alignment, Social Media KPI, Formulating a Social		
	Media Strategy, Managing Social Media Risks		
6	Social Media Analytics Applications and Privacy	[1],[3]	07
	Social media in public sector - Analyzing public sector social		
	media, analyzing individual users, case study. Business use of		
	Social Media - Measuring success, Interaction and monitoring,		
	case study. Privacy - Privacy policies, data ownership and		
	maintaining privacy online		
Total			39

#### **Recommended Books:**

- 1. Social Media Analytics [2015], Techniques and Insights for Extracting Business Value Out of social media, Matthew Ganis, Avinash Kohirkar, IBM Press
- 2. Social Media Analytics Strategy_ Using Data to Optimize Business Performance, Alex Gonçalves, A Press Business Team
- 3. Social Media Data Mining and Analytics, Szabo, G., G. Polatkan, O. Boykin & A. Chalki opoulus (2019), Wiley, ISBN 978-1-118-82485-6

#### **Course Assessment:**

#### **Theory:**

I<u>SE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

<u> ISE-2:</u>

Two hours 20 Marks Activity: Quiz and assignments

MSE

Two hours 30 Marks written examination based on 50% syllabus.

ESE:



Course Code	Course Name	Sc	Teaching Scheme (Hrs/week)			Scheme			C	redit	s Ass	igned
		L	T	P		L	T	P	Total			
	Project	3				3			3			
ILO 8021	Management	Examination Scheme										
		ISE1	ISE1 MSE		ISE2	ESE			Total			
		20		30	20	100 (	30%		100			
						weig	htage	•				

CO1	Apply selection criteria and select an appropriate project from different options
CO2	Write work break down structure for a project and develop a schedule based on it.
CO3	Identify opportunities and threats to the project and decide an approach to deal with them strategically.
	CO2

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Project Management Foundation:	[1],[2]	06
		Definition of a project, Project Vs Operations, Necessity of		
		project management, Triple constraints, Project life cycles		
		(typical & atypical) Project phases and stage gate process. Role		
		of project manager, Negotiations and resolving conflicts,		
		Project management in various organization structures, PM		
		knowledge areas as per Project Management Institute (PMI)		
2		Initiating Projects:	[1],[2]	08
		How to get a project started, Selecting project strategically,		
		Projectselection models (Numeric /Scoring Models and Non-		
		numeric models), Project portfolio process, Project sponsor		
		and creating charter; Project proposal. Effective project team,		
		Stages of team development & growth (forming, storming,		
		norming &performing), team dynamics		
3		Project Planning and Scheduling:	[1],[2]	06
		Work Breakdown structure (WBS) and linear responsibility		
		chart, Interface Co-ordination and concurrent engineering,		
		Project cost estimation and budgeting, Top down and bottoms		
		up budgeting, Networking and Scheduling techniques. PERT,		
		CPM, GANTT chart, Introduction to Project Management		
		Information System (PMIS).		



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4	Planning Projects:	[1],[2]	08
	Crashing project time, Resource loading and levelling,		
	Goldratt's critical chain, Project Stakeholders and		
	Communication plan Risk Management in projects: Risk		
	management planning, Risk identification and risk register,		
	Qualitative and quantitative risk assessment, Probability and		
	impact matrix. Risk response strategies for positive and		
	negative risks		
5		[1],[2]	08
	cycle, Information needs and reporting, engaging with all	,[3]	
	stakeholders of the projects, Team management,		
	communication and project meetings		
	<b>5.2 Monitoring and Controlling Projects:</b> Earned Value		
	Management techniques for measuring value of work		
	completed; Using milestones for measurement; change		
	requests and scope creep, Project audit		
	<b>5.3 Project Contracting</b> : Project procurement management,		
	contracting and outsourcing,		
6	6.1 Project Leadership and Ethics: Introduction to project	[1],[2]	06
	leadership, ethics in projects, Multicultural and virtual projects	,[5]	
	<b>6.2 Closing the Project:</b> Customer acceptance; Reasons of		
	project termination, Various types of project terminations		
	(Extinction, Addition, Integration, Starvation), Process of		
	project termination, completing a final report; doing a lessons		
	learned analysis; acknowledging successes and failures;		
	Project management		
	templates and other resources; Managing without authority;		
	Areas of further study		
Total			39

#### **Recommended Books:**

- 1. Project Management: A managerial approach, Jack Meredith & Samuel Mantel, 7th Edition, Wiley India
- 2. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 5th Ed, Project Management Institute PA, USA
- 3. Project Management, Gido Clements, Cengage Learning
- 4. Project Management, Gopalan, Wiley India
- 5. Project Management, Dennis Lock, 9th Edition, Gower Publishing England

#### **Course Assessment:**

#### Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.



Course Code	Course Name	Teaching Scheme (Hrs/week)				C	redit	s Assi	igned
		L	T	P		L	T	P	Total
	Finance	3				3			3
ILO 8022	Management				Exam	inatio	n Scl	heme	
		ISE1 MSE IS		ISE2	F	SE		Total	
		20 3		30	20	100 (30%			100
						weig	htage	e)	

Pre-requisite								
	CO1	Gain comprehension of the Indian financial system and						
Course Outcomes		corporate finance						
	CO2	Make choices regarding investments, finances, and						
		dividend distribution						

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Overview of Indian Financial System: Characteristics,	[1],[2]	06
		Components and Functions of Financial System.	,[3]	
		Financial Instruments: Meaning, Characteristics and		
		Classification of Basic Financial Instruments — Equity Shares,		
		Preference Shares, Bonds-Debentures, Certificates of Deposit,		
		and Treasury Bills.		
		Financial Markets: Meaning, Characteristics and		
		Classification of Financial Markets — Capital Market, Money		
		Market and ForeignCurrency Market		
		Financial Institutions: Meaning, Characteristics and		
		Classification of Financial Institutions — Commercial Banks,		
		Investment-Merchant Banks and Stock Exchanges		
2		_	[1],[2]	06
		Returns and Expected Returns of a Single Security and a Two-		
		security Portfolio; Measurement of Historical Risk and		
		Expected Risk of a Single Security and a Two-security		
		Portfolio.		
		Time Value of Money: Future Value of a Lump Sum,		
		Ordinary Annuity, and Annuity Due; Present Value of a Lump		
		Sum, Ordinary Annuity, and Annuity Due; Continuous		
		Compounding and Continuous Discounting		



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		Total	39
	Miller Approach		
	Gordon's Approach, Walter's Approach, and Modigliani		
	Overview of Dividend Policy Theories and Approaches—	,נדן	
U	Policy; Factors Affecting an Entity's Dividend Decision;	[1],[2]	05
6	Value; Concept of Optimal Capital Structure <b>Dividend Policy</b> : Meaning and Importance of Dividend	[1],[2]	03
	Approach. Relation between Capital Structure and Corporate		
	Approach; Traditional Approach, and Modigliani-Miller		
	Approaches— Net Income Approach, Net Operating Income		
	Structure; Overview of Capital Structure Theories and		
	Capital Structure: Factors Affecting an Entity's Capital		
	Project Finance.		
	Finance—Trade Credit, Bank Finance, Commercial Paper;	,[~]	
3	Hybrids; Mezzanine Finance; Sources of Short Term	[1],[2],[3]	05
5	Management of Cash and Marketable Securities.  Sources of Finance: Long Term Sources—Equity, Debt, and	[1],[2]	05
	Management of Inventories; Management of Receivables; and		
	Capital Needs; Estimation of Working Capital Requirements;		
	Management; Factors Affecting an Entity's 10 Working		
	Working Capital; Importance of Working Capital		
	Working Capital Management: Concepts of Meaning		
	and Modified Internal Rate of Return (MIRR)		
	Value(NPV), Profitability Index, Internal Rate of Return (IRR),		
	Payback Period, Discounted Payback Period, Net Present		
	Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return,		
4	Capital Budgeting: Meaning and Importance of Capital	[1],[2]	10
	Limitations of Ratio Analysis.	F43 F03	1.0
	Ratios; Capital Structure Ratios; Stock Market Ratios;		
	Liquidity Ratios; Efficiency or Activity Ratios; Profitability		
	Cash Flow Statement; Purpose of Financial Ratio Analysis;		
	Statements— Balance Sheet, Profit and Loss Account, and		
	Financial Ratio Analysis: Overview of Financial		
	Finance; Functions of Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision.		
	Linongo: Functions of Cornerate Finance Investment		

#### **Recommended Books:**

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGrawHill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) &



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

CompanyLimited, New Delhi

## **Course Assessment:**

Theory:

<u>ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:



Course Code	Course Name	Teaching Scheme (Hrs/week)				C	redit	s Assi	igned	
		L	T	P		L	T	P	Total	
	Entrepreneurship	3				3			3	
Development and					Examination Scheme					
ILO 8023	Management	ISE1		MSE	ISE2	F	CSE		Total	
		20		30	20	100 (	30%		100	
						weig	htage	e)		

Pre-requisite								
CO1 Understand the concept of business plan and owne								
Course Outcomes	CO2	Interpret key regulations and legal aspects of entrepreneurship in India						
	CO3	Understand government policies for entrepreneurs						

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Overview Of Entrepreneurship: Definitions, Roles and	[1][2]	04
		Functions/Values of Entrepreneurship, History of		
		Entrepreneurship Development, Role of Entrepreneurship in		
		the National Economy, Functions of an Entrepreneur,		
		Entrepreneurship and Forms of Business Ownership Role of		
		Money and Capital Markets in Entrepreneurial Development:		
		Contribution of Government		
		Agencies in Sourcing information for Entrepreneurship		
2		<b>Business Plans And Importance Of Capital To</b>	[1][2]	09
		Entrepreneurship: Preliminary and Marketing Plans,		
		Management and Personnel, Start-up Costs and Financing as		
		well as Projected Financial Statements, Legal Section,		
		Insurance, Suppliers and Risks, Assumptions and Conclusion,		
		Capital and its Importance to the Entrepreneur		
		<b>Entrepreneurship And Business Development:</b> Starting a		
		New Business, Buying an Existing Business, New Product		
		Development, Business Growth and the Entrepreneur Law and		
		its Relevance to Business Operations		
3		Women's Entrepreneurship Development, Social	[1][2]	05
		entrepreneurship-role and need, EDP cell, role of sustainability	[3]	
		and sustainabledevelopment for SMEs, case studies, exercises		



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	[3]	08
5	Effective Management of Business: Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing		08
6	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business		05
		Total	<b>39</b>

#### **Recommended Books:**

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi

#### **Course Assessment:**

#### Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:



Course Code	Course Name	Teaching Scheme (Hrs/week)			Sch			C	redit	s Assi	igned
		L	T	P		L	T	P	Total		
	Human Resource	3				3			3		
ILO 8024	Management			Examination Scheme							
		ISE1 MSE		ISE2	ESE			Total			
		20		30	20	100 (	30%		100		
						weig	htage	e)			

Pre-requisite										
	CO1	Understand the concepts, aspects, techniques and								
	practices of the human resource management.									
Course Outcomes	CO2 Understand the Human resource management (HF									
	processes, functions, changes and challenges i									
		emerging organizational perspective								
	CO3	Gain knowledge about the latest developments and								
		trends in HRM								

Module No.	Unit No.	Topics	Ref.	Hrs.
1		<ul> <li>Introduction to HR</li> <li>Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRM functions</li> <li>Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues</li> </ul>	[1][2]	05
2		<ul> <li>Organizational Behaviour (OB)</li> <li>Introduction to OB Origin, Nature and Scope of Organizational Behaviour, Relevance to Organizational Effectiveness and Contemporary issues</li> <li>Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness</li> <li>Perception: Attitude and Value, Effect of perception on Individual Decisionmaking, Attitude and Behaviour</li> <li>Motivation: Theories of Motivation and their Applications for Behavioural Change (Maslow, Herzberg, McGregor);</li> <li>Group Behaviour and Group Dynamics: Work groups</li> </ul>	[1][2]	07

3	formal and informal groups and stages of group development, Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team.  • Case study  Organizational Structure & Design  • Structure, size, technology, Environment of organization; Organizational Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress.  • Leadership: Concepts and skills of leadership, Leadership andmanagerial roles, Leadership styles and contemporary issues inleadership.  • Power and Politics: Sources and uses of power; Politics atworkplace, Tactics and strategies.	[1][2]	06
4	<ul> <li>Human resource Planning</li> <li>Recruitment and Selection process, Job-enrichment, Empowerment - Job Satisfaction, employee morale</li> <li>Performance Appraisal Systems: Traditional &amp; modern methods, Performance Counselling, Career Planning</li> <li>Training &amp; Development: Identification of Training Needs, TrainingMethods</li> </ul>	[1][2] [3]	05
5	<ul> <li>Emerging Trends in HR</li> <li>Organizational development; Business Process Reengineering (BPR), BPR as a tool for organizational development, managing processes &amp; transformation in HR. Organizational Change, Culture, Environment</li> <li>Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation</li> </ul>	[[2][3 ][4][5 ]	06
6	HR & MIS: Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries Strategic HRM: Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic Management Process, Approaches to Strategic Decision Making; Strategic Intent – Corporate Mission, Vision, Objectives and Goals  Labor Laws & Industrial Relations: Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act	[[2][3 ][4][6 ]	10
		Total	39



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

#### **Recommended Books:**

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

#### **Course Assessment:**

#### **Theory:**

**ISE-1**:

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:



Course Code	Course Name	Teaching Scheme (Hrs/week)				Cı	redit	s Ass	signed
		L	T	P		L	T	P	Total
	Professional Ethics and	3				3			3
	Corporate Social				Exami	natio	n Sc	hem	e
ILO	Responsibility (CSR)	ISE1		MSE	ISE2	F	CSE		Total
8025		20		30	20	100	(30%	o	10
						weig	htag	ge)	0

Pre-requisite							
Commo Ontonio	CO1	Understand rights and duties of business					
Course Outcomes	CO2	Distinguish different aspects of corporate social responsibility					
	CO3	Demonstrate professional ethics					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Professional Ethics and Business: The Nature of Business	[1][2]	04
		Ethics; Ethical Issues in Business; Moral Responsibility and		
		Blame; Utilitarianism: Weighing Social Costs and Benefits;		
		Rights and Duties of Business		
2		Professional Ethics in the Marketplace: Perfect Competition;	[1][2]	08
		Monopoly Competition; Oligopolistic Competition;		
		Oligopolies and Public Policy Professional Ethics and the		
		Environment: Dimensions of Pollution and Resource		
		Depletion; Ethics of Pollution Control; Ethics of Conserving		
		Depletable Resources		
3		Professional Ethics of Consumer Protection: Markets and	[1][2]	06
		ConsumerProtection; Contract View of Business Firm's Duties	[3]	
		to Consumers; Due Care Theory; Advertising Ethics;		
		Consumer Privacy Professional Ethics of Job Discrimination:		
		Nature of Job Discrimination; Extent of Discrimination;		
		Reservation of Jobs.		
4		Introduction to Corporate Social Responsibility: Potential	[1][2]	05
		Business Benefits—Triple bottom line, Human resources, Risk	[3]	
		management, Supplier relations; Criticisms and concerns—		
		Nature of business; Motives; Misdirection. Trajectory of		
		Corporate Social Responsibility		
		in India		



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

5	Corporate Social Responsibility: Articulation of Gandhian Trusteeship Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India, Corporate Social		
	Responsibility and Public-Private Partnership (PPP) in India		
6	Corporate Social Responsibility in Globalizing India: Corporate Social Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs, Government of India, Legal Aspects of Corporate Social Responsibility—Companies Act, 2013.	[1][2] [3][4]	08
		Total	39

#### **Recommended Books:**

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, DirkMatten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi

#### **Course Assessment:**

#### Theory:

<u>ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

FSF.



Course Code	Course Name	Teaching Scheme (Hrs/week)				C	redit	s Assi	igned
		L	T	P		L	T	P	Total
	Research	3				3			3
ILO 8026	Methodology		<b>Examination Scheme</b>				,		
		ISE1	l	MSE	ISE2	E	CSE		Total
		20		30	20	100	(30%	<b>6</b>	100
						weig	htage	e)	

Pre-requisite						
CO1 Prepare a preliminary research design for project						
Course Outcomes		their subject matter areas				
	CO2	Accurately collect, analyze and report data				
	CO3	Present complex data or situations clearly				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction and Basic Research Concepts	[1][2]	09
		1.1. Research – Definition; Concept of Construct,		
		Postulate, Proposition, Thesis, Hypothesis, Law,		
		Principle.Research methods vs Methodology		
		1.2. Need of Research in Business and Social Sciences		
		1.3. Objectives of Research		
		1.4. Issues and Problems in Research		
		1.5. Characteristics of Research:Systematic, Valid,		
		Verifiable, Empirical and Critical		
2		Types of Research	[1][2]	07
		2.1. Basic Research		
		2.2. Applied Research		
		2.3. Descriptive Research		
		2.4. Analytical Research		
		2.5. Empirical Research		
		2.6. Qualitative and Quantitative Approaches		
3		Research Design and Sample Design	[1][2]	07
		3.1. Research Design – Meaning, Types and Significance	[3]	
		3.2. Sample Design – Meaning and Significance Essentials		
		of a goodsampling Stages in Sample Design Sampling		
		methods/techniques Sampling Errors		



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4	Research Methodology	[1][2]	08
	4.1. Meaning of Research Methodology	[3]	
	4.2. Stages in Scientific Research Process:		
	a. Identification and Selection of Research Problem		
	b. Formulation of Research Problem		
	c. Review of Literature		
	d. Formulation of Hypothesis\ Formulation of		
	research Design		
	e. Sample Design		
	f. Data Collection		
	g. Data Analysis		
	h. Hypothesis testing and Interpretation of Data		
	i. Preparation of Research Report		
5	Formulating Research Problem	[1][2]	04
	5.1. Considerations: Relevance, Interest, Data Availability,	[3]	
	Choice of data, Analysis of data, Generalization and		
	Interpretation of analysis		
6	Outcome of Research	[1][2]	04
	6.1. Preparation of the report on conclusion reached	[3]	
	6.2. Validity Testing & Ethical Issues		
	6.3. Suggestions and Recommendation		
	, 55	Total	39

#### **Recommended Books:**

- 1 Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2 Kothari, C.R.,1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3 Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

#### **Course Assessment:**

# Theory:

<u>ISE-1:</u>

Two hours 20 Marks Activity: Quiz and assignments

<u>ISE-2:</u>

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:



Course Code	Course Name	So	achi chen s/we	ne		C	redit	s Assi	igned
		L	T	P		L	T	P	Total
	IPR and Patenting	3				3			3
ILO 8027					Exami	<b>Examination Scheme</b>			
		ISE1		MSE	ISE2	E	SE		Total
		20		30	20		(30%		100
						weig	htag	e)	

Pre-requisite							
G 0.4	CO1	Understand Intellectual Property assets					
Course Outcomes	CO2	Assist individuals and organizations in capacity building					
	CO3	Work for development, promotion, protection,					
		compliance, and enforcement of Intellectual Property					
		and Patenting					

Module	Unit	Topics	Ref.	Hrs.
No.	No.	Table As a Table As Decrease Pila (TDD)	[1][0]	05
1			[1][2]	05
		Meaning of IPR, Different category of IPR instruments -		
		Patents, Trademarks, Copyrights, Industrial Designs, Plant variety protection, Geographical indications, Transfer of		
		technology etc.		
		Importance of IPR in Modern Global Economic Environment:		
		Theories of IPR, Philosophical aspects of IPR laws, Need for		
		IPR, IPR as an instrument		
		of development		
2		_ · · ·	[1][2]	07
		Magnitude of problem, Factors that create and sustain		
		counterfeiting/piracy, International agreements, International		
		organizations (e.g. WIPO, WTO) active in IPR enforcement		
		<b>Indian Scenario of IPR:</b> Introduction, History of IPR in India,		
		Overview of IP laws in India, Indian IPR, Administrative		
		Machinery, Major international treaties signed by India,		
		Procedure for submitting patent and Enforcement of IPR at		
		national level etc.		
3		Emerging Issues in IPR: Challenges for IP in digital	[1][2]	05
		economy, e- commerce, human genome, biodiversity and		
		traditional knowledge etc		



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4	<b>Basics of Patents:</b> Definition of Patents, Conditions of patentability, Patentable and non-patentable inventions, Types of patent applications (e.g. Patent of addition etc), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method of getting a patent	[2][3] [4]	07
5	Patent Rules: Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS agreement, Paris convention etc.)	[3][4] [5][6]	08
6	Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publication, Time frame and cost, Patent Licensing, Patent Infringement Patent databases: Important websites, Searching international databases	[3][4] [5][6]	07
		Total	39

#### **Recommended Books:**

- 1 Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, TheInstitute of Chartered Accountants of India
- 2 Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3 T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4 Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- 5 Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, TradeMarks and Allied Right, 7th Edition, Sweet & Maxwell
- 6 Lous Harns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO

#### **Course Assessment:**

## Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:



Course Code	Course Name	Teaching Scheme (Hrs/week)  Credits A				s Assi	Assigned		
		L	T	P		L	T	P	Total
	Digital Business	3				3			3
ILO 8028	Management				Exami	inatio	n Sc	heme	
		ISE1	1	MSE	ISE2	E	CSE		Total
		20		30	20	100	(30%	)	100
						weig	htage	e)	

Pre-requisite						
	CO1 Identify drivers of digital business	CO1				
Course Outcomes	CO2 Illustrate various approaches and techniques for business and management	CO2	E-			
	CO3 Prepare E-business plan	CO3				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Digital Business Introduction, Background and current status, E-market places, structures, mechanisms, economics and impacts Difference between physical economy and digital economy Drivers of digital business- Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things (digitally intelligent machines/services) Opportunities and Challenges in Digital Business	[1][2]	09
2		Overview of E-Commerce  E-Commerce- Meaning, Retailing in e-commerce-products and services, consumer behavior, market research and advertisement B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals Other E-C models and applications, innovative EC System-From Egovernment and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC	[1][2]	06
3		Digital Business Support services  ERP as e –business backbone, knowledge Tope Apps, Information and referral system Application Development: Building Digital Business Applications and Infrastructure	[1][2] [3]	06



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4	Managing E Projingg		06
4	Managing E-Business	E43503	06
	Managing Knowledge, Management skills for ebusiness, Managing Risks in e –business Security Threats to e-business -Security Overview, Electronic Commerce Threats, Encryption, Cryptography, Public Key and Private Key Cryptography, Digital Signatures, Digital Certificates, Security Protocols over Public Networks: HTTP, SSL, Firewall as Security Control, Public Key Infrastructure (PKI) for Security, Prominent Cryptographic Applications	[1][2] [3][5] [6]	
6	E-Business Strategy  E-business Strategic formulation- Analysis of Company's Internal and external environment, Selection of strategy, E-business strategy into Action, challenges and E-Transition (Process of Digital Transformation)  Materializing e-business: From Idea to Realization	[5][6] [7][8]	04
	-Business plan preparation Case Studies and presentations		
		Total	39

#### **Recommended Books:**

- 1 A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2 E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3 Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4 Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5 Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6 Trend and Challenges in Digital Business Innovation, Vinocenzo Morabito, Springer
- 7 Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8 E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance

#### **Course Assessment:**

## **Theory:**

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

FSF.



Course Code	Course Name	So	achi chen s/we	ne		C	Credits Assign			
		L	T	P		L	T	P	Total	
	Environmental	3				3			3	
ILO 8029	Management				Exam	inatio	n Sc	heme		
		ISE1 MSE ISE2			ISE2	F	CSE		Total	
		20		30	20	100	(30%	)	100	
						weig	htage	e)		

Pre-requisite							
CO1 Understand the concept of environmental managem							
Course Outcomes	CO2 Understand ecosystem and interdependence, food c etc.						
	CO3	Understand and interpret environment related					
		legislations					

Module No.	Unit No.	Topics	Ref.	Hrs.
1	1100	Introduction and Definition of Environment Significance of Environment Management for contemporary managers, Career opportunities, Environmental issues relevant toIndia, Sustainable Development, the Energy scenario	[1][2]	10
2		Global Environmental concerns Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man-made disasters, Atomic/Biomedical hazards, etc.	[1][2]	06
3		Concepts of Ecology Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc	[2][3] [4]	05
4		Scope of Environment Management, Role and functions of Government as a planning and regulating agency Environment Quality Management and Corporate Environmental Responsibility	[2][3] [4][5]	10
5		Total Quality Environmental Management, ISO-14000, EMS certification.		05
6		General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc	[3][4] [5][6]	03
			Total	<b>39</b>



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

#### **Recommended Books:**

- 1 Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2 A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3 Environmental Management V Ramachandra and Vijay Kulkarni, TERI Press
- 4 Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5 Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6 Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

#### **Course Assessment:**

#### Theory:

**ISE-1**:

Two hours 20 Marks Activity: Quiz and assignments

ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE:

Two hours 30 Marks written examination based on 50% syllabus.

ESE:



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teach (H	Credits Assigned					
		L	T	P	L	T	P	Total
				2			1	1
	Distributed Computing Lab	Examination Scheme						
CSL801			ISE1	MSE	ISE2	ESE	T	otal
		Theory						
		Lab	25		25			50

Pre-requisite Course	CSC 503, CSC 404						
Codes							
	CO1	Develop test and debug using Message-Oriented Communication or RPC/RMI based client-server programs.					
Course Outcomes	CO2	Implement techniques for clock synchronization.					
	CO3	Implement techniques for Election Algorithms.					
	CO4	Demonstrate mutual exclusion algorithms and deadlock handling.					
	CO5						
	CO6	Describe the concepts of distributed File Systems with some case studies					

Sr. No.	Unit	Topics
	No.	
1		Inter-process communication
2		Client/Server using RPC/RMI
3		Group Communication
4		Clock Synchronization algorithms
5		Election Algorithm
6		Mutual Exclusion Algorithm
7		Deadlock Management in Distributed System
8		Load Balancing
9		Distributed shared Memory
10		Distributed File System (AFS/CODA)
11		Case Study: CORBA
12		Case Study: Android Stack

## **Course Assessment:**

Lab:

**ISE:** 

- 1. **ISE-1** Quizzes/Assignments/Paper Presentation/Article Discussion Quizzes/Assignments based on 50% experiments.
- 2. **ISE-2** Quizzes/Assignments/Paper Presentation/Article Discussion Quizzes/Assignments based on 50% experiments.



Course Code	Course Name	Teach (H	Credits Assigned					
		L	T	P	L	T	P	Total
				2			1	1
	Deep Learning Lab	Examination Scheme						
CSDL8021			ISE1	MSE	ISE2	ESE	To	otal
		Theory			1			
		Lab	25		25		4	50

Pre-requisite Course	CSL 405,CSC 401, CSC 301, CSC 401	
Codes		
	CO1 Implement basic neural network models to learn logic	
	functions.	
	CO 2 Design and train feedforward neural networks using	ıg
Course Outcomes	Course Outcomes various learning algorithms.	
	CO 3 Build and train deep learning models such a	as
	Autoencoders, CNNs, RNN, LSTM etc	

Sr. No.	Topics	
	Based on Module 1 (Any two) using Virtual Lab	
	1 Implement Mc-Culloch Pitts model for binary logic functions.	
1	2 Implement Perceptron algorithm to simulate any logic gate.	
	3 Implement Multilayer Perceptron algorithm to simulate XOR gate.	
	4 To explore python libraries for deep learning e.g. Theano,	
	5 TensorFlow etc.	
	Module 2 (Any Two)	
	6 Apply any of the following learning algorithms to learn the parameters of the	
	supervised single layer feed forward neural network. a. Stochastic Gradient	
	Descent b. Mini Batch Gradient Descent c. Momentum GD d. Nestorev GD e.	
2	Adagrad GD f. AdamLearning GD	
	7 Implement a backpropagation algorithm to train a DNN with at least 2 hidden	
	layers.	
	8 Design and implement a fully connected deep neural network with at least 2	
	hidden layers for a classification application. Use appropriate Learning	
	Algorithm, output function and loss function.	



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

3	Module 3 (Any One)
	9 Design the architecture and implement the autoencoder model for Image
	Compression. 9. Design the architecture and implement the autoencoder model for
	Image denoising
	Module 4 (Any One)
4	10 Design and implement a CNN model for digit recognition application. 11. Design and implement a CNN model for image classification.
	Module 5 (Any One)
5	11. Design and implement LSTM for Sentiment Analysis.
	12. Designand implement GRU for classification on text data.
	13. 14. Design and implement RNN for classification of temporal data.

# **Course Assessment:**

## Lab:

# **ISE:**

1.	<b>ISE-1</b> Quizzes/Assignments/Paper	Presentation/Article	Discussion/Quizzes/Assignments
	based on 50% experiments		

2. **ISE-2** Quizzes/Assignments/Paper Presentation/Article Discussion/Quizzes/Assignments based on 50% experiments



Course Code	Course Name		ing Sch rs/week	C	redits	Assign	ed	
		L	Т	P	L	T	P	Total
				2			1	1
		<b>Examination Scheme</b>						
CSDL8022	Digital Forensics Lab		ISE1	MSE	ISE2	ESE	To	otal
		Theory						
		Lab	25		25			50

Pre-requisite Course	CSC 5	03, CSC 602
Codes		
	CO1	Explore various forensics tools and use them to acquire,
		duplicate and analyze data and recover deleted data.
	CO2	Implement penetration testing using forensics tools
Course Outcomes	CO3	Explore various forensics tools and use them to acquire
		and
		analyze live and static data.
	CO4	Verification of source and content authentication of
		emails
		and browsers.
	CO5	Demonstrate Timeline Report Analysis using forensics
		tools.
	CO6	Discuss real time crime forensics investigations
		scenarios.

Sr. No.	Topics						
1	Analysis of forensic images using open source tools.						
	FTK Imager						
	Autopsy						
2	Explore forensics tools in kali linux for acquiring, analyzing and duplicating data.						
	• dd						
	• dc fldd						
3	Performing penetration testing using Metasploit - kali Linux.						
	Performing RAM Forensic to analyze memory images to find traces of an attack.						
4	Capturing RAM Using the DumpIt Tool						
	Volatility tool						
5	Network forensics using Network Miner.						
6	Windows Recycle Bin Forensics						
7	Data Carving using open source tools						
	Foremost						
	Scalpel						
	Jpeg carver						



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

8	USB Device Forensics using					
	USB Deview					
	USB Detective					
9	Web Browser Forensics using DB Browser for SQLite					
10	Generate a Timeline Report Using Autopsy					
11	Email Analysis					
12	Case Study					

# **Course Assessment:**

Lab:

**ISE:** 1. **ISE-1** 

Quizzes/Assignments/Paper Presentation/Article Discussion Quizzes/Assignments based on 50% experiments

2. **ISE-2** 

Quizzes/Assignments/Paper Presentation/Article Discussion Quizzes/Assignments based on 50% experiments



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme Credits Assigned (Hrs/week)				ed		
	Applied Data Science Lab	L	T	P	L	T	P	Total
				2			1	1
		<b>Examination Scheme</b>						
CSL8023			ISE1	MSE	ISE2	ESE	To	otal
		Theory						
		Lab	25		25		5	50

Pre-requisite Course Codes	CSC 301, CSC 401, CSC 701, FEL 204, CSL 304, CSL 405					
	CO1 Apply various stages of the data science lifecycle for the selected case study.					
Course Outcomes	emonstrate data preparation, exploration and sualization techniques.					
		nplement and evaluate different supervised and nsupervised techniques.				

Sr. No.	Topics
1	Explore the descriptive and inferential statistics on the given dataset.
2	Apply data cleaning techniques (e.g. Data Imputation).
3	Explore data visualization techniques
4	Implement and explore performance evaluation metrics for Data Models
	(Supervised/Unsupervised Learning)
5	Use SMOTE technique to generate synthetic data. (to solve the problem of class
	imbalance)
6	Outlier detection using distance based/density-based method
7	Implement time series forecasting.

Illustrate data science lifecycle for selected case study. (Prepare case study document for the selected case study)

Suggested Case Studies:

- 1. Customer Segmentation
- 2. Fraud Detection
- 3. House Price prediction
- 4. Product Recommendation
- 5. Stock price prediction
- 6. Weather prediction

Suggested Assignment list

Assignments can be given on self-learning Topics or data deployment tools



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

## **Course Assessment:**

Lab: ISE:

1. **ISE-1** 

Quizzes/Assignments/Paper Presentation/Article Discussion Quizzes/Assignments based on 50% experiments.

2. **ISE-2** 

Quizzes/Assignments/Paper Presentation/Article Discussion Quizzes/Assignments based on 50% experiments.



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme Credits Assigned (Hrs/week)					ed	
	Optimization in Machine Learning Lab	L	T	P	L	T	P	Total
				2			1	1
CSDL8021		Examination Scheme						
CSDL8021			ISE1	MSE	ISE2	ESE	To	otal
		Theory						
		Lab	25		25		4	50

Pre-requisite Course	CSC 3	03, CSC 401
Codes		
	CO1	To implement derivative-based optimization techniques
	CO2	To implement evolutionary optimization
Course Outcomes	CO3	To implement advanced evolutionary optimization
	CO4	To apply efficient optimization algorithm for real world
		applications

Sr. No.	Topics
1	To implement Gradient Descent algorithm
2	To implement the Stochastic Gradient Descent algorithm
3	To implement Newton method
4	To apply Genetic Algorithm for real world problem
5	To compare and implement different selection mechanism using genetic algorithm
6	To implement various mutation and crossover mechanisms
7	To implement Particles Swarm optimization
8	To implement Ant colony optimization

## **Course Assessment:**

## Lab:

## **ISE:**

## 1. **ISE-1**

Quizzes/Assignments/Paper Presentation/Article Discussion Quizzes/Assignments based on 50% experiments.

### 2. **ISE-2**

Quizzes/Assignments/Paper Presentation/Article Discussion Quizzes/Assignments based on 50% experiments.



Course	Course Name	Teaching Scheme			Credits Assigned			
Code		(Hrs/week)						
		L	T	P	L	T	P	Total
				2			1	1
	High Performance	Examination Scheme						
CSDL8022			ISE1	MSE	ISE2	ESE	Total	
	Computing Lab	Theory						
		Lab	25		25		4	50

Pre-requisite Course		04
Codes		
	CO1	Perform Linux based commands on remote machine
	CO2	Compare the performance of sequential algorithms with parallel algorithm in terms of execution time, speedup and throughput.
Course Outcomes	CO3	Implement parallel program using OpenMP library and analyze its performance
CO4 II		Implement parallel program using MPI platform and analyze its performance
	CO5	Implement parallel program using OpenCL framework and analyze its performance
		Implement parallel program using CUDA framework and analyze its performance

Sr. No.	Topics
	Suggested Experiments: Students are required to complete at least 8
	experiments.
	Star (*) marked experiments are compulsory.
	To analyse the Linux based computer systems using following commands: a.
1*	top, b.ps, c. kill, d. cat /proc/cpuinfoe. vmstat
	Hardware/Software Requirement: Linux Operating System
	To setup SSH passwordless logins for two or more Linux basedmachines and
2*	execute commands on a remote machine.
	Hardware/Software Requirement: Linux Operating System, Multi-
	core computer systems



3*	Write a program in C to multiply two matrices of size 10000 x 10000each and find it's execution-time using "time" command. Try to run this program on two or more machines having different configurations and compare execution-times obtained in each run. Comment on which factors affect the performance of the program. Hardware/Software Requirement: Linux Operating System, gcc compiler, Multi-core computer systems
4*	Write a "Hello World" program using OpenMP library also display number of threads created during execution. Hardware/Software Requirement: Linux Operating System, gcc compiler, Dual core with HT or Quad-core or higher computer system.
5*	Write a parallel program to calculate the value of PI/Area of Circle using OpenMP library. Hardware/Software Requirement: Linux Operating System, gcc compiler, Dual core with HT or Quad-core or higher computer system
6*	Write a parallel program to multiply two matrices using openMP library and compare the execution time with its serial version. Also change the number of threads using omp_set_num_threads() function and analyse how thread count affects the execution time. Hardware/Software Requirement: Linux Operating System, gcc compiler, Dual core with HT or Quad-core or higher computer system
7*	Install MPICH library and write a "Hello World" program for the same. Hardware/Software Requirement: Linux Operating System, MPICH, Multiprocessor systems or MPI Cluster.
8*	Write a parallel program to multiply two matrices using MPI library and compare the execution-time with it's OpenMP and serial version. Hardware/Software Requirement: Linux Operating System, MPICH, gcc, Multiprocessor systems, or MPI Cluster.
9*	Install MPICH on two and more machines and create a MPI cluster. Execute MPI programs on this cluster and check the performance. Hardware/Software Requirement: Linux Operating System, MPICH, Multiprocessor systems or MPI Cluster.
10*	Implement a program to demonstrate balancing workload on MPIplatform. Hardware/Software Requirement: Linux Operating System, MPICH, Multiprocessor systems or MPI Cluster.
11	Implement a parallel program to demonstrate the cube of N number within a set range using MPI/OpenMP/OpenCL/CUDA. Hardware/Software Requirement: Linux Operating System, MPICH, Multi-processor systems or MPI Cluster. A CUDA-capable GPU, A supported version of Microsoft Windows, A supported version of Microsoft Visual Studio, The NVIDIA CUDA Toolkit



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	Implement DFT computation of vector using OpenCL/CUDA/ ParallelMatlab
10	
12	Hardware/Software Requirement: A CUDA-capable GPU,A supported
	version of Microsoft Windows, A supported version of Microsoft Visual
	Studio, The NVIDIA CUDA Toolkit
	Implement Two Vector addition using OpenCL/CUDA/ Parallel Matlab
13	Hardware/Software Requirement: A CUDA-capable GPU, A supported
	version of Microsoft Windows, A supported version of Microsoft Visual
	Studio, The NVIDIA CUDA Toolkit
14	Implement even-odd/Bucket /Radix /Shell sort using OpenCL/CUDA/
	Parallel Matlab
	Hardware/Software Requirement: A CUDA-capable GPU, A supported
	version of Microsoft Windows, A supported version of Microsoft Visual
	Studio, The NVIDIA CUDA Toolkit

## **Course Assessment:**

Lab:

**ISE:** 

1. **ISE-1** 

Quizzes/Assignments/Paper Presentation/Article Discussion Quizzes/Assignments based on 50% experiments

2. **ISE-2** 

Quizzes/Assignments/Paper Presentation/Article Discussion Quizzes/Assignments based on 50% experiments



Course Code	Course Name		Teaching Scheme (Hrs/week)		C	Credits Assigned			
		L	T	P	L	T	P	Total	
CSDL8023				2			1	1	
			<b>Examination Scheme</b>						
	Social Media Analytic	es .	ISE1	MSE	ISE2	ESE	To	otal	
	Lab	Theory							
		Lab	25		25			50	

Pre-requisite Course	CSC 305, CSC 504, CSC 702					
Codes						
	CO1 Acquire hands on skills needed to work with social media data.					
	CO2 Demonstrate data collection from different social media platforms.					
Course Outcomes	CO3 Analyse & Visualize social media data from multiple platforms.					
	CO4 Develop content and structure based SMA model.					
	CO5 Design and implement social media analytics applications for business.					

Sr. No.	Topics					
	Study various - i) Social Media platforms (Facebook, twitter, YouTube etc)					
	ii) Social Media analytics tools (Facebook insights, google analytics net					
	lyticetc) iii) Social Media Analytics techniques and engagement metrics (page					
1	level, post level, member level) iv) Applications of Social media analytics for					
	business. e.g. Google Analytics					
	https://marketingplatform.google.com/about/analytics/https://netlytic.org/					
	Data Collection-Select the social media platforms of your choice (Twitter,					
2	Facebook, LinkedIn, YouTube, Web blogs etc), connect to and capture social					
	media data for business ( scraping, crawling, parsing					
3	Data Cleaning and Storage- Preprocess, filter and store social media data for					
	business (Using Python, MongoDB, R, etc).					
4	Exploratory Data Analysis and visualization of Social Media Data for					
	business.					
	Develop Content (text, emoticons, image, audio, video) based socialmedia					
5	analytics model for business. (e.g. Content Based Analysis: Topic, Issue,					
	Trend, sentiment/opinion analysis, audio, video,image analytics)					



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	Develop Structure based social media analytics model for any business. (e.g.
6	Structure Based Models -community detection, influence analysis)
7	Develop a dashboard and reporting tool based on real time social media data.
8	Design the creative content for promotion of your business on social media
9	Analyze competitor activities using social media data
10	Develop social media text analytics models for improving existing product/
	service by analyzing customer's reviews/comments.

### **Recommended Books:**

- 1. Python Social Media Analytics: Analyze and visualize data from Twitter, YouTube, GitHub, and more Kindle Edition by Siddhartha Chatterjee, Michal Krystyanczuk
- 2. Learning Social Media Analytics with R, byRaghav Bali, Dipanjan Sarkar, Tushar Sharma.
- 3. Jennifer Golbeck, Analyzing the social web, Morgan Kaufmann, 2013
- 4. Matthew A. Russell. Mining the Social Web: Data Mining Facebook, Twitter, Linkedin, Google+, Github, and More, 2nd Edition, O'Reilly Media, 2013
- 5. Charu Aggarwal (ed.), Social Network Data Analytics, Springer, 2011

## **Course Assessment:**

Lab:

ISE:

1. **ISE-1** 

Quizzes/Assignments/Paper Presentation/Article Discussion Quizzes/Assignments based on 50% experiments.

2. **ISE-2** 

Quizzes/Assignments/Paper Presentation/Article Discussion Quizzes/Assignments based on 50% experiments.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
				12			6	6
	Major Project 2		Examina			nation Scheme		
CSP801			ISE1	MSE	ISE2	ESE	T	otal
		Theory				-		
		Lab	50		50	50	1	50

Pre-requisite Course		
Codes		
	CO1	Implement solutions for the selected problem by
		applying technical and professional skills.
	CO2	Analyze impact of solutions in societal and
		environmental context for sustainable development.
Course Outcomes	CO3	Explore and apply various modern tools to solve the
		chosen problem.
	CO4	Develop proficiency in oral and written communication
		with effective leadership and teamwork.
	CO5	Nurture professional and ethical behavior and develop
		expertise in life-long learning.
	CO6	Gain expertise that helps in building lifelong learning
		experience.

## **Guidelines**:

1. Internal guide has to keep track of the progress of the project and also has to maintainattendance report. This progress report can be used for awarding term work marks.

## 2. Project Report Format:

At the end of semester, each group needs to prepare a project report as per the guidelines issued by the University of Mumbai. Report should be submitted in hardcopy. Also, each group should submit softcopy of the report along with project documentation, implementation code, required utilities, software and user Manuals. A project report should preferably contain at least following details:

- Abstract
- Introduction
- Literature Survey/ Existing system
- Limitation Existing system or research gap
- Problem Statement and Objective
- Proposed System
- Analysis/Framework/ Algorithm
- Design details
- Methodology (your approach to solve the problem) Proposed System
- Experimental Set up
- Details of Database or details about input to systems or selected data
- Performance Evaluation Parameters (for Validation)
- Software and Hardware Set up
- Results and Discussion
- Conclusion and Future Work
- References
- Appendix List of Publications or certificates



# Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

#### **Desirable:**

Students should be encouraged –

- to participate in various project competition.
- to write minimum one technical paper & publish in good journal.
- to participate in national / international conference.

### 3. Internal Assessment:

## Distribution of marks for term work shall be done based on following:

- a. Weekly Log Report
- b. Completeness of the project and Project Work Contribution
- c. Project Report (Black Book) (both side print)
- d. Term End Presentation (Internal)

The final certification and acceptance of TW ensures the satisfactory performance on the above aspects.

### 4. End Semester exam:

Oral &Practical examination (Final Project Evaluation) of Project 2 should be conducted by the Internal examiners at the end of the semester.

# Suggested quality evaluation parameters are as following:

- a. Relevance to the specialization / industrial trends
- b. Modern tools used
- c. Innovation
- d. Quality of work and completeness of the project
- e. Validation of results
- f. Impact and business value
- g. Quality of written and oral presentation
- h. Individual as well as team work

## **Course**

### **Assessment:**

## **ISE:**

#### ISE-1

Mid-term presentation will be carried out and evaluation is based on rubrics decided by the department.

#### ISE-2

Mid-term presentation will be carried out and evaluation is based on rubrics decided by the department.

## ESE -

Oral examination will be carried out at the end of the semester by the panel of the department.