

CURRICULUM STRUCTURE FINAL YEAR UG: B.E.

ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

REVISION: FRCRCE-1-24

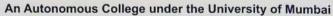
Effective from Academic Year 2024-25 Board of Studies Approval: 08/03/2024 Academic Council Approval: 16/03/2024

Dr.DEEPAK BHOIR
Dean Academics

Dr. Jagruti Save HOD(AI&DS)

Justood

DR. SURENDRA RATHOD
Principal


Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

SOCIETY OF ST. FRANCIS XAVIER, PILAR'S

FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING

(Approved by AICTE & Govt. of Maharashtra)

Ref.: CRCE / 2025 / 105

Date: March 26, 2025.

NOTE

Subject: Implementation of Revised End Semester Examination (ESE) Pattern

As per the resolution passed by the Second Academic Council Meeting held on 14th February, 2025, following rules will be applicable from **AY 2025-26**:

- 1. "ESE will be of 90 Min durations with 30 marks question paper and question paper should be based on the remaining syllabus after MSE"
- 2. "It will not be compulsory to give both MSE and ESE examinations. However, to get higher than Pass 'P' grade it will be compulsory to give both the examinations."

Kindly take note of the above change which will be applicable from AY 2025-26. For any clarifications, please reach out to the Department Exam Coordinators of respective departments.

(DR. S.S. RATHOD)

Fr. Agnel Ashram, Bandstand, Bandra (West), Mumbai - 400 050.

Phone : (022) 6711 4000, 6711 4101, 6711 4104 • Website : www.fragnel.edu.in • Email : crce@fragnel.edu.in

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Preamble:

Greetings and congratulations to all the education partners Fr Conceicao Rodrigues College of Engineering for getting autonomous status to the college from the year 2024-25. University Grant Commission vide letter No. F. 2-10/2023(AC-Policy) dated 23rd Nov 2023 conferred the autonomous status to Fr. Conceicao Rodrigues College of Engineering, Fr. Agnel Ashram, Bandstand, Bandra (West), Mumbai 400050 affiliated to University of Mumbai for a period of 10 years from the academic year 2024-2025 to 2033-2034 as per clause 7.5 of the UGC (Conferment of Autonomous Status Upon Colleges and Measures for Maintenance of Standards in Autonomous Colleges) Regulations,2023. We look towards autonomy as a great opportunity to design and implement curriculum sensitive to needs of Learner, Indian Society and Industries.

All India Council for Technical Education (AICTE) has made implementation of Internship policy mandatory for students. While applying for Extension of Approval (EoA) it is desired that institute has already implemented compulsory internship for all final year students.

The National Education Policy (NEP), 2020 suggests that students must actively engage with the practical side of their learning as part of a holistic education to further improve their employability. It states that students at all HEIs will be provided with opportunities for internships with local industry and businesses as well as research internships with faculty and researchers at their own or other HEIs/research institutions.

In line with the NEP and tracing the provisions of NcrF, Government of Maharashtra has subsequently released two Government Resolutions (GRs) (NEP GR dated – 1. 20 April 2023, and 2. 4 July 2023) to reinforce NEP implementation and credit revision across Maharashtra HEIs. These GRs lay out detailed guidelines for curriculum interventions.

Fr. CRCE has taken a strategic move as a response to the NEP's call for students to engage with practical learning through internships, a practice proven to enhance employability and refine skill sets for the final year students from academic year 2024-25.

Following two major changes applicable for Final Year Students of 2024-25 and 2025-26 batch:

- 1. Semester long internship option
- 2. Revised assessment in the form of ISE-1, MSE, ISE-2 and ESE to be taken by the college.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

I. Internship:

Following are the objectives of the Internships envisaged for the students:

- Exposing students to industrial environments that cannot be replicated in a classroom or lab.
- ✓ Providing opportunities to acquire and refine analytical and managerial skills crucial for a professional career.
- ✓ Offering hands-on experience in teamwork, thereby enhancing professional skills like communication, work ethics, conflict resolution, etc., with a lasting impact on lifelong learning and professional development.
- ✓ The general idea is to enable students to undertake immersive assignments within the organizations for a limited period.
- ✓ Establishing links between students and potential future job or research opportunities.

Methodology of Implementation of Internship Policy for Final Year Students of 2024-25:

A. Completion of Existing Credits:

- 1. Semester VIII will be conducted in Fast Track Mode during first week of July and winter vacation for completing Institute Level Elective common course to all the departments.
- 2. Each course will be conducted in a continuous training format for 10days (3hrs theory+2hours lab).
- 3. Honors course will be taken for two hours each day during Fast Track Mode.
- 4. Major project will be continued till the official semester end. Assessment of major project will be conducted in phase-wise manner. Students need to compulsorily present in person for each of the phases of assessment.
- 5. If required then provision for SWAYAM courses to be explored by departments
- 6. Assessments to be completed immediately after completion of all courses.
- 7. Release of Gazette and score cards will be only at the end of academic year

B. Internship Details:

Training and placement department shall contact companies and strive for providing Six months
internship to all the students. Preference should be given to Internship+PPO during regular
placement cycle in SEM VII.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 2. Internships should be an integral part of the academic curricula. But for 2024-25 and 2025-26 batch of Final Year students, credit framework is already given by University of Mumbai. For student of these batches internship is last moment value addition and therefor it will not be a part of credit framework. College is providing this as an additional experiential learning opportunity for the students by considering Market demand, Industry demand, Government Resolutions and Student desire.
- 3. Following are the types of internship opportunities that can be explored by students:
 - a. Offered by Industry Govt./ NGO/MSME
 - b. Research Institutes like BARC, TIFR, SAMEER and IITs
 - c. At various Incubation Centres
 - d. Internships offered through academic collaborations with Foreign Universities
 - e. Internships offered by reputed colleges with whom MoUs are signed for the collaboration and credit exchange
 - f. Or any other internship approved by HoI based on the merit of offer
- 4. All internships are subjected to approval of Head of the Institute. Students must take prior approval from college before starting internship
- 5. Students opting for Entrepreneurship or Start-up are exempted from internship; however, they have to work in the pre-incubation centre of the college to work for their start-up initiative with demonstrable output.
- 6. Students who wish to work on academic / industry research project (Rather than other internships) assigned under a faculty of Fr CRCE is allowed to do so provided details of work to be done and outcomes are clearly stated and approved by the college authorities.
- 7. Students can proceed for Internships from 15th Jan.
- 8. On the request of student college will issue successful completion certificate after achieving predefined approved milestones of Internship/Entrepreneurship/Research Project etc.

Student Resources:

Government Internship Programs:

- ✓ AICTE Internship: https://internship.aicte-india.org/
- ✓ NITI Ayog Internship: https://www.niti.gov.in/internship
- ✓ TULP Internship Program: https://smartcities.gov.in/The_Urban_Learning_Internship_Program
- ✓ Digital India Internship: https://www.meity.gov.in/writereaddata/files/Digital%20Internship%20Scheme%202023%20%281%29.pdf
- ✓ Directorate General of Foreign Trade Internship program: https://www.dgft.gov.in/CP/?opt=intership-scheme
- National Commission for Scheduled Tribes Internship: https://ncst.nic.in/sites/default/files/2021/Internship/3677

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- ✓ Corporate Affairs Ministry Internship program:
 https://www.mca.gov.in/bin/dms/getdocument?mds=aC%252B%252F82boz%252FD%252FdHcFkAAJ0A%2
 53D%253D&type=open
- ✓ Finance Ministry Internship program: https://dpe.gov.in/schemes/scheme-internship
- Women and Child Development Ministry Internship program: https://wcd.nic.in/sites/default/files/Internship%20Guideline.. 0.pdf
- ✓ Ministry of Culture Internship programs: https://nationalmuseumindia.gov.in/en/national-museum-internship-programme

Online Platforms for Internships:

- ✓ Internshala: https://internshala.com/
- ✓ LetsIntern: https://letsintern.in/
- ✓ Twenty19: http://twenty19.com.testednet.com/
- ✓ HelloIntern: https://hellointern.co/
- Freshersworld: https://www.freshersworld.com/
- Youth4work: https://www.youth4work.com/
- ✓ Freshersnow: https://www.freshersnow.com/internships-in-delhi/
- ✓ Zuno by Foundit: https://www.foundit.in/zuno/
- LinkedIn: https://www.linkedin.com/jobs/internshipjobs/?currentJobId=3647611763&originalSubdomain=in
- ✓ Well Found (earlier, AngelList Talent): https://wellfound.com/location/india
- ✓ Indeed: https://in.indeed.com/jobs?q=internships&l=&vjk=fd2d4f96a2564717
- ✓ Naukri.com: https://www.naukri.com/internship-jobs
- ✓ TimesJobs: https://www.timesjobs.com/jobs-by-roles/intern-jobs
- ✓ NGO Box: https://ngobox.org/job_listing.php
- ✓ CSR Box: https://csrbox.org/

II. Honours and Minor Degree Eligibility Criteria for Students:

- i. Following is the eligibility criteria for students opting the Honours/ Minor Degree program:
 - a. Students with no backlog in semester I, II, and III
 - b. The CGPI (based on semester I, II, and III) of the students must be 6.75 and above
- c. For direct second year (DSE) admitted students No backlog in semester III and CGPI must be 6.75 and above
- ii) Each eligible student can opt for maximum one Honour's or one Minor Programs at any time.
- iii) However, it is optional for leaners to take Honours/Minor degree program.
- iv) The Honours/ Minor degree program can be opted only during regular engineering studies
- v) The student have to complete the Honours/ Minor degree program in stipulated four semesters only.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Note:

- 1. Courses offered during internship semester shall be in online mode
- 2. Technical support team for registration of Academic Bank of Credits (ABC), registration of elective/optional courses, registration of online courses, registration for degree options etc. under supervision of Dean Academics.

SEMESTERWISE CURRICULUM STRUCTURE

FINAL YEAR Artificial Intelligence and Data Science Program:

	SEM-VII										
Course Code	Course Name		Contact	Examination Marks					Credits		
Course Code	Course Name		Hours	ISE1	MSE	ISE2	ESE	Total	Total		
CSC701	Deep Learning	TH	3	20	30	20	30	100	3		
CSC702	Big Data Analytics	TH	3	20	30	20	30	100	3		
CSDO701X	Department Level Optional Course - 3	TH	3	20	30	20	30	100	3		
CSDO702X	Department Level Optional Course -4	TH	3	20	30	20	30	100	3		
ILO 701X	Institute Level Optional Course- 1	TH	3	20	30	20	30	100	3		
CSL701	Deep Learning Lab	PR	2	20		30		50	1		
CSL702	Big Data Analytics Lab	PR	2	20		30		50	1		
CSDOL701X	Department Level Optional Course-3 Lab	PR	2	10		15		25	1		
CSDOL702X	Department Level OptionalCourse-4 Lab	PR	2	10		15		25	1		
CSP701	Major Project1	PR	6	15		20	40	75	3		
		Total	TH:TU:PR 15:0:14			-	-	725	22		

Department Level Optional Courses:

Department/ Institute OptionalCourses and Labs	Subject and Labs
	CSDO7011: Natural Language Processing
Department Optional Course -3	CSDO7012.: Al for Healthcare
	CSDO7013: Neural Network & Fuzzy System
	CSDOL7011: Natural Language Processing Lab
Department Optional Lab -3	CSDOL7012.: Al for Healthcare Lab
	CSDOL7013: Neural Network & Fuzzy System
	CSDO7021: User Experience Design with VR
Department Optional Course -4	CSDO7022: Blockchain Technologies
	CSDO7023: Game Theory for Data Science
	CSDOL7021: User Experience Design with VR Lab
Department Optional Lab -4	CSDOL7022: Blockchain Technologies Lab
	CSDOL7023: Game Theory for Data Science Lab
	ILO7011:Product Lifecycle Management
	ILO7012: Reliability Engineering
Institute level Optional	ILO7013.: Management Information System
Courses-1	ILO7014: Design of Experiments
	ILO7015: Operation Research
	ILO7016: Cyber Security and Laws
	ILO7017: Disaster Management & Mitigation Measures
	ILO7018: Energy Audit and Management
	ILO7019: Development Engineering

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	SEM-VIII									
Course			Contact		Exar	nination	Marks		Credits	
Code	Course Name		Hours	ISE1	MSE	ISE2	ESE	Total	Total	
CSC801	Advanced Artificial Intelligence	ТН	3	20	30	20	30	100	3	
CSDO801X	Department Level Optional Course-5	TH	3	20	30	20	30	100	3	
CSDO802X	Department Level OptionalCourse-6	TH	3	20	30	20	30	100	3	
ILO 801X	Institute Level OptionalCourse-2	TH	3	20	30	20	30	100	3	
CSL801	Advanced Artificial Intelligence Lab	PR	2	20		30		50	1	
CSDOL801X	Department Level Optional Course- 5 Lab	PR	2	20		30		50	1	
CSDOL802X	Department Level Optional Course- 6 Lab	PR	2	20		30		50	1	
CSP801	Major Project-2	PR	12	50		50	50	150	6	
		Total	TH:TU:PR 12:0:18			-	-	700	21	

Department Level Optional Courses:

Department/ Institute OptionalCourses and Labs	Subject and Labs
	CSDO8011: Al for financial & Banking application
Department Optional Course -5	CSDO8012: Quantum Computing CSDO8013: Reinforcement Learning
	CSDOL8011: Al for financial & Banking application Lab
Department Optional Lab -5	CSDOL8012: Quantum Computing Lab
·	CSDOL8013: Reinforcement Learning Lab
	CSDO8021: Graph Data Science
Department Optional Course -6	CSDO8022: Recommendation Systems
	CSDO8023: Social Media Analytic
	CSDOL8021: Graph Data Science Lab
Department Optional Lab -6	CSDOL8022: Recommendation Systems Lab
	CSDOL8023: Social Media Analytic Lab
	ILO8021: Project Management
	ILO8022: Finance Management
Institute level	ILO8023: Entrepreneurship Development and Management
Optional Courses-2	ILO8024: Human Resource Management ILO8025: Professional Ethics and CSR
	ILO8026: Research Methodology
	ILO8027: IPR and Patenting
	ILO8028: Digital Business Management
	ILO8029: Environmental Management

Honors Degree Offered to AI&DS Students from SEM-V to SEM-VIII:

A. Name:Internet of Things

1. SEM-V: HIoTC501: IoT Sensor Technologies

2. SEM VI: HIoTC601:IoT System Design

3. SEM VII: HIoTC701:Dynamic Paradigm in IoT

4. SEM VII: HIoTSBL701:Interfacing & Programming with IoTLab (SBL)

5. SEM VIII: HIoTC801: Industrial IoT

B. Name: Blockchain

1. SEM-V: HBCC501: Bit coin and Crypto currency

2. SEM VI: HBCC601: Blockchain Platform

3. SEM VII: HBCC701: Blockchain Development

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 4. SEM VII: HBCSBL701: Private Blockchain Setup Lab (SBL)
- 5. SEM VIII: HBCC801: DeFi(Decentralized Finance)

C. Name: Cyber Security

- 1. SEM-V: HCSC501: Ethical Hacking
- 2. SEM VI: HCSC601: Digital Forensic
- 3. SEM VII: HCSC701: Security Information Management
- 4. SEM VII: HCSSBL601: Vulnerability Assessment Penetration Testing (VAPT) Lab
- 5. SEM VIII: HCSC801: Application Security

Minors Degree Offered to ECS Students from SEM-V to SEM-VIII:

A. Name: Robotics

- 1. SEM-V: HRBC501: Industrial Robotics
- 2. SEM VI: HRBC601: Mechatronics & IoT
- 3. SEM VII: HRBC701:Artificial Intelligence & Data Analysis
- 4. SEM VII: HRBSBL701:Robotics and Automation Lab
- 5. SEM VIII: HRBC801: Autonomous Vehicle Systems

B. Name:3D Printing

- 1. SEM-V: H3DPC501: Introduction to CAD
- 2. SEM VI: H3DPC601:3D Printing: Introduction & Processes
- 3. SEM VII: H3DPC701:Applications of 3D Printing
- 4. SEM VIII: H3DPSBL701:Skill Based Lab- Digital Fabrication
- 5. SEM VIII: H3DPC801: 3D Printing in Medical Technology

Course Code	Course Name		hing Sch Irs/week	Credits Assigned				
	Deep Learning	L	T	P	L	T	P	Total
		3			3			3
CSC701		Examination Scheme						
CSC/01			ISE1	MSE	ISE2	ESE		Total
		Theory	20	30	20	100 (30%	Ó	100
						weightage	:)	

Pre-requisite Course		Basic mathematics and Statistical concepts, Linear algebra, Machine
Codes		Learning (CSC301,CSC401,CSC604)
	CO1	Gain basic knowledge of Neural Networks.
Course	CO2	Acquire in depth understanding of training Deep Neural Networks.
Course Outcomes	CO3	Design appropriate DNN model for supervised, unsupervised and
Outcomes		sequence learning applications.
	CO4	Gain familiarity with recent trends and applications of Deep Learning.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Fundamentals of Neural Network	3,4	4
	1.1	History of Deep Learning, Deep Learning Success Stories,		
		Multilayer Perceptrons (MLPs), Representation Power of		
		MLPs, Sigmoid Neurons, Gradient Descent, Feedforward		
		Neural Networks, Representation Power of Feedforward		
		Neural Networks		
	1.2	Deep Networks: Three Classes of Deep Learning Basic		
		Terminologies of Deep Learning		
2		Training, Optimization and Regularization of Deep	1	10
		Neural Network		
	2.1	Training Feedforward DNN		
		Multi Layered Feed Forward Neural Network, Learning		
		Factors, Activation functions: Tanh, Logistic, Linear,		
		Softmax, ReLU, Leaky ReLU, Loss functions: Squared		
		Error loss, Cross Entropy, Choosing output function and		
		loss function		
	2.2	Optimization : Learning with backpropagation, Learning		
		Parameters: Gradient Descent (GD), Stochastic and Mini		
		Batch GD, Momentum Based GD, Nesterov Accelerated		
		GD, AdaGrad, Adam, RMSProp		
	2.3	Regularization :Overview of Overfitting, Types of biases,		
		Bias Variance Tradeoff Regularization Methods: L1, L2		
		regularization, Parameter sharing, Dropout, Weight Decay,		
		Batch normalization, Early stopping, Data Augmentation,		
		Adding noise to input and output		
3		Autoencoders: Unsupervised Learning	1	6

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	3.1	Introduction, Linear Auto encoder, Under complete Auto		
		encoder, Over complete Auto encoders, Regularization in		
		Auto encoders.		
	3.2	Denoising Auto encoders, Sparse Auto encoders,		
		Contractive Auto encoders		
	3.3	Application of Auto encoders: Image Compression		
4		Convolutional Neural Networks (CNN): Supervised	1	7
		Learning		
	4.1	Convolution operation, Padding, Stride, Relation between		
		input, output and filter size, CNN architecture:		
		Convolution layer, Pooling Layer, Weight Sharing in CNN,		
		Fully Connected NN vs CNN, Variants of basic		
		Convolution function, Multichannel convolution		
		operation,2D convolution.		
	4.2	Modern Deep Learning Architectures:		
		LeNET: Architecture, AlexNET: Architecture, ResNet :		
		Architecture		
5		Recurrent Neural Networks (RNN)	1	8
	5.1	Sequence Learning Problem, Unfolding Computational		
		graphs, Recurrent Neural Network, Bidirectional RNN,		
		Backpropagation Through Time (BTT), Limitation of "		
		vanilla RNN" Vanishing and Exploding Gradients,		
		Truncated BTT		
	5.2	Long Short Term Memory(LSTM): Selective Read,		
		Selective write, Selective Forget, Gated Recurrent Unit		
		(GRU)		
6		Recent Trends and Applications	1	4
	6.1	Generative Adversarial Network (GAN): Architecture		
	6.2	Applications: Image Generation, DeepFake.		
			Total	39

Course Assessment:

ISE-1:

Quiz – (10 Marks)

Activity: Assignment - (10 Marks)

ISE-2:

Case Study(10 Marks)

Activity: Critical appreciation of an article in the report form(10 Marks)

MSE: 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

Text Books:

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville. —Deep Learning, MIT Press Ltd, 2016
- 2. Li Deng and Dong Yu, —Deep Learning Methods and Applications, Publishers Inc.
- 3. Satish Kumar "Neural Networks A Classroom Approach", Tata McGraw-Hill.
- 4. JM Zurada —Introduction to Artificial Neural Systems, Jaico Publishing House

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

5. M. J. Kochenderfer, Tim A. Wheeler. —Algorithms for Optimization, MIT Press.

- 1. Deep Learning from Scratch: Building with Python from First Principles- Seth Weidman by O'Reilley
- 2. François Chollet. —Deep learning with Python —(Vol. 361). 2018 New York: Manning.
- 3. Douwe Osinga. —Deep Learning Cookbook, O'REILLY, SPD Publishers, Delhi.
- 4. Simon Haykin, Neural Network- A Comprehensive Foundation- Prentice Hall International, Inc
- 5. S.N.Sivanandam and S.N.Deepa, Principles of soft computing-Wiley India
- 6. D.Tang, Chi-FengPai, Wiley online Library
- 7. Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, Daniel Ielmini, Rainer Waser, Wiley online Library

Course Code	Course Name	Teach (H	Credits Assigned					
		L	T	P	L	T	P	Total
	Big Data Analytics	3			3			3
CSC 703		Examination Scheme						
CSC 702			ISE1	MSE	ISE2	ESI	E	Total
		Theory	20	30	20	100(3	0%	100
						Weight	tage)	

Pre-requisite		Some prior knowledge about Java programming, Basics of SQL, Data mining and				
Course	machi	ne learning methods would be beneficial(CSL304,CSC403				
Codes	,CSC5	504,CSC604)				
	CO1	Understand the key issues in big data management and its associated applications for business decisions and strategy.				
	CO2	Develop problem solving and critical thinking skills in fundamental enabling techniques like Hadoop, Map reduce and NoSQL in big data analytics				
C	CO3	Collect, manage, store, query and analyze various forms of Big Data				
Course Outcomes	CO4	Interpret business models and scientific computing paradigms, and apply software tools for big data analytics				
	CO5	Adapt adequate perspectives of big data analytics in various applications like recommender systems, social media applications etc.				
	CO6	Solve Complex real world problems in various applications like recommender systems, social media applications, health and medical systems, etc				

Module No.	Unit No.	Topics	Ref	Hrs.
1	1,00	Introduction to Big Data & Hadoop	1,2	4
	1.1	Introduction to Big Data		
	1.2	Big Data characteristics, types of Big Data,		
	1.3	Traditional vs. Big Data business approach,		
	1.4	Case Study of Big Data Solutions.		
	1.5	Concept of Hadoop		
	1.6	Core Hadoop Components; Hadoop Ecosystem		
2		Hadoop HDFS and Map Reduce	2	7
	2.1	Distributed File Systems: Physical Organization of Compute		
		Nodes, Large-Scale File-System Organization		
	2.2	MapReduce: The Map Tasks, Grouping by Key, The Reduce		
		Tasks, Combiners, Details of MapReduce Execution, Coping		
		With Node Failure		

	2.3	Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and difference by MapReduce Hadoop Limitations		
3		NoSQL	3	5
	3.1	Introduction to NoSQL, NoSQL Business Drive		
	3.2	NoSQL Data Architecture Patterns: Key-value stores, Graph stores, Column family (Bigtable)stores, Document stores, Variations of NoSQL architectural patterns, NoSQL Case Study		
	3.3	NoSQL solution for big data, Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer-to-peer; NoSQL systems to handle big data problems. peer-to-peer; Four ways that NoSQL systems handle big data problems		
4		Mining Data Streams	1	9
	4.1	The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Queries, Issues in Stream Processing		
	4.2	Sampling Data techniques in a Stream		
	4.3	Filtering Streams: Bloom Filter with Analysis		
	4.4	Counting Distinct Elements in a Stream, Count-Distinct Problem, Flajolet-Martin Algorithm, Combining Estimates, Space Requirements		
	4.5	Counting Frequent Items in a Stream, Sampling Methods for Streams, Frequent Itemsets in Decaying Windows		
	4.6	Counting Ones in a Window: The Cost of Exact Counts, The Datar-Gionis-Indyk-Motwani Algorithm, Query Answering in the DGIM algorithm, Decaying Windows.		
5		Finding Similar Items and Clustering	1	6
	5.1	Distance Measures: Definition of a Distance Measure, Euclidean Distances, Jaccard Distance, Cosine Distance, Edit Distance, Hamming Distance.		
	5.2	CURE Algorithm, Stream-Computing, A Stream-Clustering Algorithm, Initializing & Merging Buckets, Answering Queries		
6		Real-Time Big Data Models	1	8
	6.1	PageRank Overview, Efficient computation of PageRank: PageRank Iteration Using MapReduce, Use of Combiners to Consolidate the Result Vector.		
	6.2	A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

6.3	Social Networks as Graphs, Clustering of Social-Network Graphs, Direct Discovery of Communities in a social graph	
	Total	39

Course Assessment:

ISE-1:

Quiz – (10 Marks)

Activity: Case Study- (10 Marks)

<u>ISE-2:</u>

Quiz(10 Marks)

Activity: Seminar on the topic that is content beyond syllabus(10 Marks)

MSE: 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

Text Books:

- 1. Anand Rajaraman and Jeff Ullman —Mining of Massive Datasets, Cambridge University Press,
- 2. Alex Holmes Hadoop in Practice, Manning Press, Dreamtech Press.
- 3. Dan Mcary and Ann Kelly —Making Sense of NoSQL A guide for managers and the rest of us, Manning Pressn.

- 1. Bill Franks, —Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analytics, Wiley
- 2. Chuck Lam, —Hadoop in Action, Dreamtech Press
- 3. Jared Dean, —Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners, Wiley India Private Limited, 2014.
- 4. Jiawei Han and Micheline Kamber, —Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 3rd ed, 2010.
- 5. Lior Rokach and Oded Maimon, —Data Mining and Knowledge Discovery Handbook, Springer, 2nd edition, 2010.
- 6. Ronen Feldman and James Sanger, —The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data, Cambridge University Press, 2006.
- 7. Vojislav Kecman, —Learning and Soft Computing, MIT Press, 2010

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
	Natural Language Processing	L	T	P	L	T	P	Total	
CSDO7011		3			3			3	
		Examination Scheme							
			ISE1	MSE	ISE2	ES	E	Total	
		Theory	20	30	20	100(3		100	
						Weigh	itage)		

Pre-requisite Course Code		Artificial Intelligence and Machine Learning, Basic knowledge of Python (CSC503,CSC604,CSL405)					
	CO1	Describe the steps of natural language processing and its real-world applications					
	CO2	Design language model for word level analysis of given text data.					
Course Outcomes	CO3	Demonstrate various POS tagging techniques and parsers to get grammatical structure of language					
	CO4	Do semantic and pragmatic analysis of text data					
	CO5	Formulate the discourse segmentation and anaphora resolution.					

Module No.	Unit No.	Topics	Ref	Hrs.
1	110.	Introduction	1	4
	1.1	Origin & History of NLP, The need of NLP, Generic NLP System, Levels of NLP, Knowledge in Language Processing, Ambiguity in Natural Language, Challenges of NLP, Applications of NLP.		
2	2.1	Word Level Analysis Tokenization, Stemming, Segmentation, Lemmatization, Edit Distance, Collocations, Finite Automata, Finite State Transducers (FST), Porter Stemmer, Morphological Analysis, Derivational and Reflectional Morphology, Regular expression with types	1	8
	2.2	N –Grams, Unigrams/Bigrams Language Models, Corpora, Computing the Probability of Word Sequence, Training and Testing		
3		Syntax analysis	1	8
	3.1	Part-Of-Speech Tagging (POS) - Open and Closed Words. Tag Set for English (Penn Treebank), Rule Based POS Tagging, Transformation Based Tagging, Stochastic POS Tagging and Issues – Multiple Tags & Words, Unknown Words Introduction to CFG, Hidden Markov Model (HMM), Maximum Entropy, And Conditional Random Field (CRF)		
4		Semantic Analysis	1,2	8

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	4.1	Introduction, meaning representation; Lexical Semantics; Corpus		
		study; Study of Various language dictionaries like WordNet,		
		Babelnet; Relations among lexemes & their senses –Homonymy,		
		Polysemy, Synonymy, Hyponymy; Semantic Ambiguity		
	4.2	Word Sense Disambiguation (WSD); Knowledge based approach		
		(Lesk's Algorithm), Supervised (Naïve Bayes, Decision List),		
		Introduction to Semi-supervised method (Yarowsky),		
		Unsupervised (Hyperlex)		
5		Pragmatic & Discourse Processing	1,2	6
	5.1	Discourse: Reference Resolution, Reference Phenomena,		
		Syntactic & Semantic constraint on coherence; Anaphora		
		Resolution using Hobbs and Cantering Algorithm		
6		Applications (preferably for Indian regional languages)	1	5
	6.1	Machine Translation, Information Retrieval, Question Answers		
		System, Categorization, Summarization, Sentiment Analysis,		
		Named Entity Recognition		
	6.2	Linguistic Modeling – Neurolinguistics Models- Psycholinguistic		
		Models – Functional Models of Language – Research Linguistic		
		Models- Common Features of Modern Models of Language		
	,		Total	39

Course Assessment:

ISE-1: Quiz (10 Marks)

Activity: Assignment (10 Marks)

ISE-2: Quiz (10 Marks)

Activity: Assignment (10 Marks)

MSE: 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire

syllabus

Text Books:

- 1. Daniel Jurafsky, James H. and Martin, Speech and Language Processing, Second Edition, Prentice Hall, 2008.
- 2. Christopher D.Manning and HinrichSchutze, Foundations of Statistical Natural Language

- 1. Siddiqui and Tiwary U.S., Natural Language Processing and Information Retrieval, Oxford University Press, 2008.
- 2. Daniel M Bikel and ImedZitouni Multilingual natural language processing applications: from theory to practice, IBM Press, 2013.
- 3. Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing, Second Edition, Chapman and Hall/CRC Press, 2010.

Course Code	Course Name		ing Schors/week)	Cr	Credits Assigned			
	AI for Healthcare	L	T	P	L	T	P	Total
		3			3			3
CSDO7012		Examination Scheme						
CSDO /012			ISE1	MSE	ISE2	ESE	2	Total
		Theory	20	30	20	100(30)%	100
						Weighta	ige)

Pre-requisite C	ourse Co	odes Artificial Intelligence, Machine Learning(CSC503,CSC604)					
	CO1	Understand the role of AI and ML for handling Healthcare data.					
	CO2 Apply Advanced AI algorithms for Healthcare Problems.						
	CO3	Learn and Apply various Computational Intelligence techniques for					
Course		Healthcare Application.					
Outcomes	CO4	Use evaluation metrics for evaluating healthcare systems.					
	CO5	Develop NLP applications for healthcare using various NLP					
	Techniques.						
	CO6	Apply AI and ML algorithms for building Healthcare Applications					

Module No.	Unit No.	Topics	Ref	Hrs.
1	110.	Introduction	1	6
	1.1	Overview of AI, ML and DL, A Multifaceted Discipline, Applications of AI in Healthcare -Prediction, Diagnosis, personalized treatment and behavior modification, drug discovery, followup care etc		
	1.2	Realizing potential of AI in healthcare, Healthcare Data - Use Cases.		
2		AI, ML, Deep Learning and Data Mining Methods for Healthcare	1	8
	2.1	Knowledge discovery and Data Mining, ML, Multi classifier Decision Fusion, Ensemble Learning, Meta-Learning and other Abstract Methods.		
	2.2	Evolutionary Algorithms, Illustrative Medical Application- Multiagent Infectious Disease Propagation and Outbreak Prediction, Automated Amblyopia Screening System etc.		
	2.3	Computational Intelligence Techniques, Deep Learning, Unsupervised learning, dimensionality reduction algorithms.		
3		Evaluating learning for Intelligence	1	4
	3.1	Model development and workflow, evaluation metrics, Parameters and Hyperparameters, Hyperparameter tuning algorithms, multivariate testing, Ethics of Intelligence.		
4		Natural Language Processing in Healthcare	1	8
	4.1	NLP tasks in Medicine, Low-level NLP components, High level NLP components, NLP Methods.		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	4.2	Clinical NLP resources and Tools, NLP Applications in Healthcare. Model Interpretability using Explainable AI for NLP applications		
5		Intelligent personal Health Record	1	5
	5.1	Introduction, Guided Search for Disease Information, Recommending SCA's Recommending HHP's, Continuous User Monitoring.		
6		Future of Healthcare using AI	2	8
	6.1	Evidence based medicine, Personalized Medicine, Connected Medicine, Digital Health and Therapeutics, Conversational AI, Virtual and Augmented Reality, Blockchain for verifying supply chain, patient record access, Robot - Assisted Surgery, Smart Hospitals, Case Studies on use of AI and ML for Disease Risk Diagnosis from patient data, Augmented reality applications for Junior doctors.		
	6.2	Blockchain for verifying supply chain, patient record access, Robot - Assisted Surgery, Smart Hospitals, Case Studies on use of AI and ML for Disease Risk Diagnosis from patient data, Augmented reality applications for Junior doctors.		
			Total	39

Course Assessment:

ISE-1: Quiz (10 Marks)

Activity: Assignment (10 Marks)

ISE-2: Quiz (10 Marks)

Activity: Assignment(10 Marks)

MSE: 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

Text Books:

- 1. Arjun Panesar, "Machine Learning and AI for Healthcare", A Press.
- 2. Arvin Agah, "Medical applications of Artificial Systems", CRC Press

- 1. Erik R. Ranschaert Sergey Morozov Paul R. Algra, "Artificial Intelligence in medical Imaging- Opportunities, Applications and Risks", Springer
- 2. Sergio Consoli Diego Reforgiato Recupero Milan Petković, "Data Science for Healthcare Methodologies and Applications", Springer
- 3. Dac-Nhuong Le, Chung Van Le, Jolanda G. Tromp, Gia Nhu Nguyen, "Emerging technologies for health and medicine", Wiley.
- 4. Ton J. Cleophas, Aeilko H. Zwinderman, "Machine Learning in Medicine- Complete Overview", Springer

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T P	Total		
CSDO7013	Neural Networks	3			3		3		
	and Fuzzy Systems	Examination Scheme							
			ISE1	MSE	ISE2	ESE	Total		
		Theory	20	30	20	100(30%	100		
						Weightage	:		

Pre-requisite	Engine	Engineering Mathematics, Data Structures and Algorithm, Python					
Course Codes	Progra	Programming(CSC301,CSC401,CSC303,CSC402,CSL405)					
	CO1	Acquire basic knowledge of fuzzy set theory properties and relations.					
	CO2	Implement Fuzzy operations towards Fuzzy-rule creations					
	CO3	Gain familiarity with the training and implementation of Associative					
Course	003	Memory Network.					
Outcomes	CO4	Understand the architecture and basics components of Unsupervised					
Outcomes	004	learning networks.					
	CO5	Analyze the significance and working of the special Networks.					
	CO6	Interpret Hybrid System to analyze the Principles of Soft computing in					
	1 000	Neuro-Fuzzy applications.					

Module	Unit	Topics	Ref	Hrs.
No.	No.			
1		Fuzzy Set Theory	2	7
	1.1	Introduction to soft and hard computing Fuzzy Sets:		
		Basic definition and terminology of fuzzy sets, Classic set		
		operations; Fuzzy set operations- Union, Intersection,		
		complement, Difference; Properties of fuzzy sets.		
	1.2	Fuzzy relations:		
		Cartesian product of relation, Classica Relation, Cardinality of		
		fuzzy relations, Operations on Fuzzy relations, Properties of		
		Fuzzy relations, Fuzzy composition, Tolerance and Equivalence		
		Relationship.		
	1.3	Membership Functions:		
		Features of Membership Functions, Fuzzification, Methods of		
		membership value assignments.		
2		Fuzzy Rules, Reasoning, and Inference System	2	8
	2.1	Defuzzification:		
		Lambda-Cuts for Fuzzy Sets; Lambda-Cuts for Fuzzy Relations;		
		Defuzzification methods: Max-Membership Principles, Centroid		
		Method, Weighted Average Method, Mean-Max Membership,		
		Center of Sums, Center of Largest Area, First of Maxima		
	2.2	Fuzzy Arithmetic and Rules:		
		Fuzzy arithmetic, Fuzzy measures, Measures of Fuzziness, Truth		
		Value and Tables in Fuzzy Logic, Fuzzy Propositions, Formation		
		of rules, Decomposition of rules, Fuzzy Reasoning.		

Fr. Conceicao Rodrigues College of Engineering
Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050
(Autonomous College affiliated to University of Mumbai)

		The state of the s		
	2.3	Fuzzy Inference System (FIS):		
		Mamdani FIS, Sugeno FIS, Comparison between Mamdani and		
		Sugeno FIS	4.0	
3		Associative Memory Networks	1,3	6
	3.1	Introduction:		
		Basics of associative memory networks, Training algorithms for		
		Pattern Association		
	3.2	Types of Networks:		
		Radial basis function network: architecture training algorithm,		
		Auto-associative Memory Network – Architecture, Flowchart of		
		training process, Training algorithm, Testing algorithm, Hetero-		
		associative Memory Network- Architecture and Testing		
		algorithm, Bidirectional Associative Memory(BAM) Network-		
		Architecture, Discrete BAM, Continuous BAM.		
4		Unsupervised Learning Networks	1,3	8
	4.1	Introduction	,4	
		Fixed weight competitive nets, Maxnet, Maxican net, Hamming		
		Network		
	4.2	Kohonen Self- Organizing Feature Maps:		
		Basic concepts, Architecture, Flowchart, Algorithms, Kohonen		
		Self-Organizing Motor map Training algorithm.		
	4.3	Adaptive resonance Theory:		
		Architecture, Fundamental Operating principles, a Algorithms,		
		Adaptive Resonance Theory I – Architecture, Flowchart of		
		Training process, Training algorithm, Adaptive Resonance		
		Theory 2 - Architecture, Algorithm, Flowchart, Training		
		algorithm, Sample		
		Values of Parameter.		
5		Special Network	4,5	5
	5.1	Introduction:		
		Boltzmann Machine, Gaussian Machine, Probabilistic neural nets		
		Spatio-Temporal connection network model, Ensemble neural		
		model Extreme learning machine models, Online, Pruned,		
		Improved Application of ELM		
6		Hybrid Computing	2	5
	6.1	Neuro-Fuzzy Hybrid Systems:		
		Introduction to Neuro-Fuzzy systems, Comparison of		
		Fuzzysystems and Neural networks, Characteristics of Neuro-		
		Fuzzy systems, Classification of Neuro-Fuzzy systems.		
		Introduction to Adaptive Neuro-Fuzzy Inference System		
		(ANIFS), ANFS Architecture, Constraints of ANFIS, ANFIS as a		
		Universal Approximator		
		,	Γotal	39

Course Assessment:

<u>**ISE-1:**</u> Quiz (10 Marks)

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Activity: Assignment (10 Marks)

ISE-2: Quiz (10 Marks)

Activity: Assignment (10 Marks)

MSE: 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire

syllabus

Text Books:

- 1. S.N. Sivanandan and S.N. Deepa, Principles of Soft Computing, Wiley India, 2007, ISBN: 10: 81- 265-1075-7.
- 2. J.-S. R. Jang, C. –T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligence, PHI Learning Private Limited-2014
- 3. Neural Networks: A Classroom Approach, Satish Kumar, Tata McGraw-Hill Education 2004/2007
- 4. Simon Haykin, Neural Networks A Comprehensive Foundation, Second Edition, Pearson Education-2004
- 5. David E. Goldberg, Genetic Algorithms, in search, optimization and Machine Learning, Pearson

- 1. Anupam Shukla, Ritu Tiwari, Rahul Kala, Real Life Applications of Soft Computing, CRC Press, Taylor & Francis Group, 2010.
- 2. Genetic Algorithms and Genetic Programming Modern Concepts and Practical Applications © 2009 Michael Affenzeller, Stephan Winkler, Stefan Wagner, and Andreas Beham, CRC Press
- 3. Laurene V. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms And Applications, Pearson

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	User Experience	3			3			3
CSDO7021	Design with VR	Examination Scheme						
CSDO /021			ISE1	MSE	ISE2	ESF	E	Total
		Theory	20	30	20	100(30		100
						Weight	age)	

Pre-requisite Co	ourse C	des Web Technologies; Software Engineering(CSC502,CSC603)
	CO1	Apply principles of user experience
	CO2	Apply emerging and established technologies to enhance User Experience
		design
Course	CO3	To create interface for international standards with ethics
Outcomes	CO4	To evaluate user experience.
	CO5	Describe how VR systems work and list the applications of VR
	CO6	Design and implementation of the hardware that enables VR systems to be
		built

Module No.	Unit No.	Topics	Ref	Hrs.
1	1,00	Introduction	1	4
	1.1	Introduction to interface design, Understanding and conceptualizing Interface, understanding user's conceptual cognition, Core Elements of User Experience, Working of UX elements		
2		The UX Design Process – Understanding Users & Structure:	3	8
	2.1	Defining the UX, Design Process and Methodology, Understanding user requirements and goals, Understanding the Business Requirements/Goals, User research, mental models, wireframes, prototyping, usability testing.		
	2.2	Visual Design Principles , Information Design and Data Visualization Interaction Design, UI Elements and Widgets, Screen Design and Layouts		
3		UX Design Process: Prototype and Test	2	6
	3.1	Testing your Design, Usability Testing, Types of Usability Testing, Usability Testing Process, Preparing and planning for the Usability Tests		
	3.2	Prototype your Design to Test, Introduction of prototyping tools, conducting Usability Test, communicating Usability Test Results		
4		UX Design Process: Iterate/ Improve and Deliver	3	5
	4.1	Understanding the Usability Test, findings, Applying the Usability Test, feedback in improving the design.		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4.2	Communication with implementation team. UX Deliverables to be given to implementation team		
	Introduction to Virtual Reality	2	8
5.1	Defining Virtual Reality, History of VR, Human Physiology and Perception, Key Elements of Virtual Reality Experience, Virtual Reality System, Interface to the Virtual World-Input & output- Visual, Aural & Haptic Displays, Applications of Virtual Reality		
5.2	Representation of the Virtual World, Visual Representation in VR, Aural Representation in VR and Haptic Representation in VR		
	Applying Virtual Reality	2	8
6.1	Virtual reality: the medium, Form and genre, What makes an application a good candidate for VR, Promising application fields, Demonstrated benefits of virtual reality, More recent trends in virtual reality application development, A framework for VR application development		
1		Total	39
	5.1	Introduction to Virtual Reality 5.1 Defining Virtual Reality, History of VR, Human Physiology and Perception, Key Elements of Virtual Reality Experience, Virtual Reality System, Interface to the Virtual World-Input & output- Visual, Aural & Haptic Displays, Applications of Virtual Reality 5.2 Representation of the Virtual World, Visual Representation in VR, Aural Representation in VR and Haptic Representation in VR Applying Virtual Reality 6.1 Virtual reality: the medium, Form and genre, What makes an application a good candidate for VR, Promising application fields, Demonstrated benefits of virtual reality, More recent trends in virtual reality application development, A framework	Introduction to Virtual Reality 5.1 Defining Virtual Reality, History of VR, Human Physiology and Perception, Key Elements of Virtual Reality Experience, Virtual Reality System, Interface to the Virtual World-Input & output- Visual, Aural & Haptic Displays, Applications of Virtual Reality 5.2 Representation of the Virtual World, Visual Representation in VR, Aural Representation in VR and Haptic Representation in VR Applying Virtual Reality 2 6.1 Virtual reality: the medium, Form and genre, What makes an application a good candidate for VR, Promising application fields, Demonstrated benefits of virtual reality, More recent trends in virtual reality application development, A framework for VR application development

Course Assessment:

ISE-1: Quiz (10 Marks)

Activity: Assignment (10 Marks)

ISE-2: Quiz (10 Marks)

Activity: Assignment (10 Marks)

MSE: 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

Text Books:

- 1. Interaction Design, Beyond Human Computer Interaction, Rogers, Sharp, Preece Wiley India Pvt Ltd.
- 2. The essentials of Interaction Design, Alan Cooper, Robert Reimann, David Cronin
- 3. Designing The user Interface by Shneiderman, Plaisant, Cohen, Jacobs Pearson

- 1. The Elements of User Experience by Jesse James Garrett
- 2. Don't make me think, by Steve Krug
- 3. Observing the User Experience: A Practitioner's Guide to User Research by Mike Kuniavsky

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
	Blockchain Technologies	L	T	P	L	T	P	Total	
		3			3			3	
CSDO7022		Examination Scheme							
CSDO /022			ISE1	MSE	ISE2	ES	E	Total	
		Theory	20	30	20	100(3	30%	100	
						Weigh	tage)		

Pre-requisite C	ourse C	odes Cryptography and Distributes systems(CSC602 CSDLO6012)			
	CO1	Describe the basic concept of Blockchain and Distributed Ledger			
		Technology.			
	CO2	Interpret the knowledge of the Bitcoin network, nodes, keys, wallets and			
		transactions			
Course	CO3	Implement smart contracts in Ethereum using different development			
Outcomes		frameworks.			
	CO4	Develop applications in permissioned Hyperledger Fabric network.			
	CO5	Interpret different Crypto assets and Crypto currencies			
	CO6	Analyze the use of Blockchain with AI, IoT and Cyber Security using case			
		studies			

Module	Unit	Topics	Ref	Hrs.
No.	No.	-		
1		Introduction to Blockchain	1	5
	1.1	Distributed Ledger Technologies: Introduction to blockchain: History, evolution, fundamentals concepts, components, types. Block in a Blockchain: Structure of a Block, Block Header Hash and Block Height, The Genesis Block, Linking Blocks in the Blockchain, Merkle Tree		
2		Consensus Protocol and Bitcoin blockchain	1	6
	2.1	Consensus: Byzantine Generals Problem, consensus algorithms: PoW, PoS, PoET, PoA, LPoS, pBFT, Proof-of-Burn (PoB), Life of a miner, Mining difficulty, Mining pool and its methods.		
	2.2	Bitcoin: What is Bitcoin, history of Bitcoin, Bitcoin Common terminologies: keys, addresses and nodes, Bitcoin mining, hashcash, Block propagation and relay, bitcoin scripts, transactions in the bitcoin network.		
3		Ethereum and Smart Contracts	1,5	8
	3.1	Ethereum: History, Components, Architecture of Ethereum, Consensus, Miner and mining node, Ethereum virtual machine, Ether, Gas, Transactions, Accounts, Patricia Merkle Tree, Swarm, Whisper and IPFS, complete transaction working and steps in Ethereum, Case study of Ganache for Ethereum blockchain. Exploring etherscan.io and ether block structure, Comparison between Bitcoin and Ethereum		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	3.2	Smart Contracts: history, characteristics, working of smart contracts, types, Oracles, Structure & Limitations. Solidity programming: set-up tools and installation, Basics, functions, Visibility and Activity Qualifiers, Ethereum networks, solidity compiler, solidity files and structure of contracts, data types, storages, array, functions, Developing and executing smart contracts in Ethereum. Smart Contracts Use cases, Opportunities and Risk		
4		Private and Consortium blockchains	3,5	9
	4.1	Introduction to Private Blockchain: Key characteristics, need, Examples of Private and Consortium blockchains, Smart contracts in private blockchain.		
	4.2	Introduction to Hyperledger, Tools and Frameworks, Hyperledger Fabric, Comparison between Hyperledger Fabric & Other Technologies. Hyperledger Platform, Paxos and Raft consensus, Ripple and Corda blockchains, Byzantine Faults: Byzantine Fault Tolerant (BFT) and Practical BFT.		
5		Cryptocurrencies and digital tokens	4	6
	5.1	Cryptocurrency basics, types, usage, ERC20 and ERC721 Tokens, comparison between ERC20 & ERC721, ICO: basics and related terms, launching an ICO, pros and cons, evolution and platforms, STO, Different Crypto currencies, Defi, Metaverse, Types of cryptocurrencies. Bitcoin, Altcoin, and Tokens (Utility and Security), Cryptocurrency wallets: Hot and cold wallets, Cryptocurrency usage, Transactions in Blockchain, UTXO and double spending problem		
6		Blockchain applications, Tools and case studies	1,2	5
	6.1	Applications of Blockchain: Various domains including Education, Energy, Healthcare, real-estate, logistics, supply chain. Tools: Corda, Ripple, Quorum and other Emerging Blockchain Platforms, Case Study on any of the Blockchain Platforms.		
	1		Total	39

Course Assessment:

ISE-1: Quiz (10 Marks)

Activity: Assignment (10 Marks)

<u>**ISE-2:**</u> Quiz (10 Marks)

Activity: Assignment (10 Marks)

MSE: 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

Text Books:

1. Blockchain Technology, Chandramouli Subramanian, Asha A George, Abhilash K. A and Meena Karthikeyan, Universities press.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 2. Solidity Programming Essentials: A beginner's Guide to Build Smart Contracts for Ethereum and Blockchain, Ritesh Modi, Packt publication
- 3. Hyperledger Fabric In-Depth: Learn, Build and Deploy Blockchain Applications Using Hyperledger Fabric, Ashwani Kumar, BPB publications
- 4. Cryptoassets: The Innovative Investor's Guide to Bitcoin and Beyond, Chris Burniske & Jack Tatar.
- 5. Mastering Ethereum, Building Smart Contract and Dapps, Andreas M. Antonopoulos Dr. Gavin Wood, O'reilly.

- 1. Mastering Bitcoin, programming the open Blockchain, 2nd Edition by Andreas M. Antonopoulos, June 2017, Publisher(s): O'Reilly Media, Inc. ISBN: 9781491954386.
- 2. Mastering Ethereum, Building Smart Contract and Dapps, Andreas M. Antonopoulos Dr. Gavin Wood, O'reilly.
- 3. Blockchain Technology: Concepts and Applications, Kumar Saurabh and Ashutosh Saxena, Wiley Publication
- 4. The Basics of Bitcoins and Blockchains: An Introduction to Cryptocurrencies and the Technology that Powers Them, Antony Lewis. for Ethereum and Blockchain, Ritesh Modi, Packt publication. University of Mumbai, B. E. (Information Technology), Rev 2016 276.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total	
	Game Theory for Data	3			3			3	
CSDO7023	Science	Examination Scheme							
CSDO 7023			ISE1	MSE	ISE2	ES	E	Total	
		Theory	20	30	20	100(3	30%	100	
						Weigh	tage)		

Pre-requisite Co	Pre-requisite Course Codes Probability Algebra(CSC301,CSC401)						
	CO1 Analyze and Discuss the notion of a strategic game and equilib						
		identify the characteristics of main applications of these concepts.					
	CO2	Discuss the use of Nash Equilibrium for other problems. Identify key					
	strategic aspects and based on these be able to connect them to app						
Course		game theoretic concepts given a real world situation.					
Outcomes	CO3	Identify some applications that need aspects of Bayesian Games.					
		Implement a typical Virtual Business scenario using Game theory					
	CO4	Identify and discuss working principle of Non-Cooperative Games					
CO5 Discuss the Mechanism for Design Aggregating Preferences							
	CO6	Identify and discuss working principle: Repeated Games					

Module	Unit	Topics	Ref	Hrs.
No. 1	No.	Introduction:	1,2	6
	1.1	Making rational choices: basics of Games – strategy –preferences – payoffs – Mathematical basics – Game theory – Rational Choice – Basic solution concepts-non-cooperative versus cooperative games – Basic computational issues – finding equilibria and learning in gamesTypical application areas for game theory (e.g. Google's sponsored search, eBay auctions, electricity trading markets)		
2		Games with Perfect Information:	1,2	7
	2.1	Strategic games – prisoner's dilemma, matching pennies -Nash equilibria – theory and illustrations – Cournot and Bertrand models of oligopoly – auctions – mixed strategy equilibrium – zero-sum games – Extensive Games with Perfect Information – repeated games (prisoner's dilemma) – subgame perfect Nash equilibrium; computational issues		
3		Games with Imperfect Information:	1	6
	3.1	Games with Imperfect Information – Bayesian Games – Motivational examples – General Definitions – Information aspects – Illustrations – Extensive Games with Imperfect –Information – Strategies – Nash Equilibrium – Beliefs and sequential equilibrium – Illustrations – Repeated Games – The Prisoner's Dilemma – Bargaining.		
4		Non-Cooperative Game Theory:	2	7

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	4.1	Non-cooperative Game Theory – Self-interested agents –Games in normal form – Analyzing games: from optimality to equilibrium – Computing Solution Concepts of Normal – Form Games – Computing Nash equilibria of two-player, zero-sum games – Computing Nash equilibria of two-player, general sum games – Identifying dominated strategies		
5	5.1	Mechanism Design Aggregating Preferences: Social Choice – Formal Model – Voting – Existence of social functions – Ranking systems – Protocols for Strategic Agents: Mechanism Design – Mechanism design with unrestricted preferences – Efficient mechanisms – Vickrey and VCG mechanisms (shortest paths) – Combinatorial auctions – profit maximization Computational applications of mechanism design – applications in Computer Science –Google's sponsored search – eBay auctions – K-armed bandits	1,2	7
6	6.1	Repeated Games Repeated games: The Prisoner's Dilemma, The main idea ,Preferences, Infinitely repeated games, Strategies, Some Nash equilibria of the infinitely repeated Prisoner's Dilemma, Nash equilibrium payoffs of the infinitely repeated Prisoner's Dilemma when the players are patient, Subgame perfect equilibria and the one-deviation property	1,2	6
	•		Total	39

Course Assessment:

Theory:

ISE-1: Quiz (10 Marks)

Activity: Assignment (10 Marks)

ISE-2: Quiz (10 Marks)

Activity: Assignment (10 Marks)

MSE: 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

Text Books:

- 1. An Introduction to Game Theory by Martin J. Osborne
- 2. M. J. Osborne, An Introduction to Game Theory. Oxford University Press, 2004

- 1. M. Machler, E. Solan, S. Zamir, Game Theory, Cambridge University Press, 2013.
- 2. N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani (Editors), Algorithmic Game Theory. Cambridge University Press, 2007.
- 3. A.Dixit and S. Skeath, Games of Strategy, Second Edition. W W Norton & Co Inc,2004.
- 4. YoavShoham, Kevin Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, Cambridge University Press 2008.
- 5. Zhu Han, DusitNiyato, WalidSaad, TamerBasar and Are Hjorungnes, "Game Theory in Wireless and Communication Networks", Cambridge University Press, 2012.
- 6. Y.Narahari, "Game Theory and Mechanism Design", IISC Press, World Scientific

Course Code	Course Name Teaching Scheme (Hrs/week)				(Credits	Assign	ed
		L	T	P	L	T	P	Total
	Deep Learning Lab			2			1	1
CSL701		Examination Scheme						
			ISE1	MSE	ISE2	ESE	To	otal
		Lab	20		30			50

Pre-requisite Course Codes				Programming, , CSC401)	Engineering	Mathematics	(CSL405,
	CO1	Impl	ement bas	sic neural network	models.		
Course	CO2	Desi	gn and tr	ain feedforward	neural networ	ks using vario	us learning
Outcomes		algo	rithms and	l optimize model	performance.		
Outcomes	CO3	Buile	d and tra	in deep learning	models such	as Auto encode	ers, CNNs,
		RNN	I, LSTM,	GRU etc.			

Sr. No.	Suggested list of Experiment
	Based on Module 1 using Virtual Lab
1	Implement Multilayer Perceptron algorithm to simulate XOR gate.
2	To explore python libraries for deep learning e.g. Theano, TensorFlow etc.
	Module 2 (Any Two)
4	Apply any of the following learning algorithms to learn the parameters of the supervised single layer feed forward neural network. a. Stochastic Gradient Descent b. Mini Batch Gradient Descent c. Momentum GD d. Nestorev GD e. Adagrad GD f. Adam Learning GD Implement a backpropagation algorithm to train a DNN with at least 2 hidden layers.
5	Design and implement a fully connected deep neural network with at least 2 hidden layers for a classification application. Use appropriate Learning Algorithm, output function and loss function. Module 3 (Any One)
6	Design the architecture and implement the autoencoder model for Image Compression.
7	Design the architecture and implement the autoencoder model for Image denoising.
	Module 4 (Any One)
8	Design and implement a CNN model for digit recognition application.
9	Design and implement a CNN model for image classification.
	Module 5 (Any Two)
10	Design and implement LSTM model for handwriting recognition, speech recognition, machine translation, speech activity detection, robot control, video games, time series forecasting etc.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

11	Design and implement GRU for any real life applications, chat bots etc.
12	Design and implement RNN for classification of temporal data, sequence to sequence
	data modeling etc.

Course Assessment

ISE-1: Experiments 1 to 5 (20 Marks)

ISE-2: Experiments 5 to 10 (20 Marks)

Activity: Completion of Deep Learning Onramp MatLab course(10 Marks)

Text Books:

- 1. Ian Goodfellow, YoshuaBengio, Aaron Courville. —Deep Learning, MIT Press Ltd,2016
- 2. Li Deng and Dong Yu, —Deep Learning Methods and Applications, Publishers Inc.
- 3. Satish Kumar "Neural Networks A Classroom Approach" Tata McGraw-Hill.
- 4. JM Zurada —Introduction to Artificial Neural Systems, Jaico Publishing House5
- 5. M. J. Kochenderfer, Tim A. Wheeler. —Algorithms for Optimization, MIT Press.

References:

- 1. Deep Learning from Scratch: Building with Python from First Principles- Seth Weidmanby O'Reilley
- 2. François Chollet. Deep learning with Python (Vol. 361). 2018 New York: Manning.
- 3. DouweOsinga. —Deep Learning Cookbook, O'REILLY, SPD Publishers, Delhi.4
- 4. Simon Haykin, Neural Network- A Comprehensive Foundation- Prentice Hall
- 5. International, Inc
- 6. S.N.Sivanandam and S.N.Deepa, Principles of soft computing-Wiley India

Online References:

- 1. https://keras.io/
- 2. https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
- 3. https://keras.io/examples/vision/autoencoder/
- 4. https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Big Data Analytics Lab			2			1	1
CSL702		Examination Scheme						
			ISE1	MSE	ISE2	ESE]	Total
		Lab	20		30			50

Pre-requisite	Course	Java/Python(CSL305,CSL405)					
Codes							
	CO1	Understand the key issues in big data management and its associated					
		applications for business decisions and strategy.					
	CO2	Develop problem solving and critical thinking skills in fundamental					
		enabling techniques like Hadoop, Map reduce and NoSQL in big data					
		analytics.					
Course	CO3	Collect, manage, store, query and analyze various forms of Big Data.					
Outcomes	CO4	Interpret business models and scientific computing paradigms, and apply					
Outcomes		software tools for big data analytics.					
	CO5	Adapt adequate perspectives of big data analytics in various applications					
		like recommender systems, social media applications etc.					
	CO6	Solve Complex real world problems in various applications like					
		recommender systems, social media applications, health and medical					
		systems, etc.					

Sr. No.	Suggested list of Experiment
1	Hadoop HDFS Practical: -HDFS Basics, Hadoop Ecosystem Tools Overview Installing HadoopCopying File to HadoopCopy from Hadoop File system and deleting filesMoving and displaying files in HDFSProgramming exercises on Hadoop.
2	Use of Sqoop tool to transfer data between Hadoop and relational database servers. a.Sqoop - Installation. b. To execute basic commands of Hadoop eco system component Sqoop.
3	To install and configure MongoDB/ Cassandra/ HBase/ Hypertable to execute NoSQL commands.
4	Experiment on Hadoop Map-Reduce / PySpark: -Implementing simple algorithms in Map-Reduce: Matrix multiplication, Aggregates, Joins, Sorting, Searching, etc. Scilab/ Tableau/ Rapid miner.
5	Create HIVE Database and Descriptive analytics-basic statistics, visualization using Hive/PIG/R.
6	Write a program to implement word count programs using MapReduce.
7	Implementing DGIM algorithm using any Programming Language/ Implement Bloom Filter using any programming language.
8	Implementing any one Clustering algorithm (K-Means/CURE) using Map-Reduce.
9	Streaming data analysis – use flume for data capture, HIVE/PYSpark for analysis of twitter data, chat data, weblog analysis etc.
10	Implement PageRank using Map-Reduce.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Implement predictive Analytics techniques (regression / time series, etc.) using R/Scilab/ Tableau/ Rapid miner.

Course Assessment

ISE-1: Experiments 1 to 4 (10 Marks)

Activity: Mini project Design (10 Marks)

<u>ISE-2:</u> Experiments 5 to 8 (10 Marks)
Activity: Mini Project (20 Marks)

Useful Links

1. https://nptel.ac.in/courses/117/102/117102062/

2. https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=305

3. https://nptel.ac.in/courses/106/106/106106167/

Fr. Conceicao Rodrigues College of Engineering
Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050
(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			C PANITE ACCIONA				ed
		L	T	P	L	T	P	Total	
	Natural Language			2			1	1	
CSDOL7011	Processing Lab	Examination Scheme							
			ISE1	MSE	ISE2	ESE	To	otal	
		Lab	10		15		2	25	

Pre-requisite	Course	Codes	Java/Python(CSL305,CSL405)			
	CO1	Apply v	various pre-processing techniques to given text data			
	CO2	Implement language model to do word level analysis for any sentence				
Course	CO3	Get grammatical structure details of English or Hindi language statemen				
Outcomes	CO4	Realize	semantics and pragmatic analysis of text data			
	CO5	To desi	gn and implement appropriate NLP technique required for any real-			
		world N	NLP based system			

Sr. No.	Suggested list of Experiment
1	Study various applications of NLP and Formulate the Problem Statement for Mini
	Project based on chosen real world NLP applications: [Machine Translation, Text
	Categorization, Text summarization, Chat Bot, Plagiarism, Spelling & Grammar
	Checkers, Sentiment / Opinion analysis, Question answering, Personal Assistant, Tutoring Systems, etc.
2	Apply various text preprocessing techniques for any given text: Tokenization and
	Filtration & Script Validation
3	Apply various other text preprocessing techniques for any given text: Stop Word
	Removal, Lemmatization / Stemming.
4	Perform morphological analysis and word generation for any given text.
5	Implement N-Gram model for the given text input.
6	Study the different POS taggers and Perform POS tagging on the given text.
7	Perform chunking by analyzing the importance of selecting proper features for
	training a model and size of training
8	Implement Named Entity Recognizer for the given text input.
9	Implement Text Similarity Recognizer for the chosen text documents
10	Implement word sense disambiguation using LSTM/GRU
11	Exploratory data analysis of a given text (Word Cloud)
12	Mini Project Report: For any one chosen real world NLP application
13	Implementation and Presentation of Mini Project

Course Assessment

ISE-1: Experiments 1 to 4 (10 Marks)

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

ISE-2: Experiments 5 to 8 (10 Marks)
Activity: Mini Project (5 Marks)

Useful Links

- 1. https://nlp-iiith.vlabs.ac.in/List%20of%20experiments.html
- 2. https://onlinecourses.nptel.ac.in/noc21 cs102/preview
- 3. https://onlinecourses.nptel.ac.in/noc20 cs87/preview
- 4. https://nptel.ac.in/courses/106105158

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	1	hing Sch Irs/week	Credits Assigned				
	AI for Healthcare Lab	L	T	P	L	T	P	Total
				2			1	1
CSDOL7012		Examination Scheme						
			ISE1	MSE	ISE2	ESE	To	otal
		Lab	10		15		2	25

Pre-requisite Course Codes Python(CSL405)			
	CO1	Understand computational models of AI	
	CO2	Develop healthcare applications using appropriate computational tools.	
Course	CO3	Apply appropriate models to solve specific healthcare problems.	
Outcomes	CO4	Analyze and justify the performance of specific models as applied to	
		healthcare problems.	
	CO5	Design and implement AI based healthcare applications.	

Sr. No.	Suggested list of Experiment
1	Collect, Clean, Integrate and Transform Healthcare Data based on specific disease.
2	Perform Exploratory data analysis of Healthcare Data.
3	AI for medical diagnosis based on MRI/X-ray data.
4	AI for medical prognosis.
5	Natural language Entity Extraction from medical reports.
6	Predict disease risk from Patient data.
7	Medical Reviews Analysis from social media data.
8	Explainable AI in healthcare for model interpretation.
9	Mini Project-Design and implement innovative web/mobile based AI applications using Healthcare Data. (this needs to be implemented in group of 3-4 students)
10	Documentation and Presentation of Mini Project.

Course Assessment

ISE-1: Experiments 1 to 4 (10 Marks)

ISE-2: Experiments 5 to 8 (10 Marks)

Activity: Mini Project (5 Marks)

Textbooks:

- 1. Arjun Panesar, "Machine Learning and AI for Healthcare", A Press.
- 2. Arvin Agah, "Medical applications of Artificial Systems ", CRC Press

References:

- 1. Erik R. Ranschaert Sergey Morozov Paul R. Algra, "Artificial Intelligence in medicalImaging- Opportunities, Applications and Risks", Springer
- 2. Sergio Consoli Diego ReforgiatoRecupero Milan Petković, "Data Science for Healthcare-Methodologies and Applications", Springer
- 3. Dac-Nhuong Le, Chung Van Le, Jolanda G. Tromp, Gia Nhu Nguyen, "Emerging technologies for health and medicine", Wiley.
- 4. Ton J. Cleophas, Aeilko H. Zwinderman, "Machine Learning in Medicine-CompleteOverview", Springer

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teach (H	C	redits .	Assigned			
		L	T	P	L	Т	P	Total
				2			1	1
CSDOL7013	Neural Networks and		E	xamina	mination Scheme			
	Fuzzy Systems Lab		ISE1	MSE	ISE2	ESE]	Γotal
		Lab	10		15			25

Pre-requisite (Course	Codes C/C++/Java/MATLAB
	CO1	Implement Fuzzy operations and functions towards Fuzzy-rule creations.
Course	CO2	Build and training Associative Memory Network
Outcomes	CO3	Build Unsupervised learning based networks.
	CO4	Design and implement architecture of Special Networks

Sr. No.	Suggested list of Experiment
1	Demonstrate Union and intersection of two Fuzzy Sets.
2	Demonstrate difference between two Fuzzy Sets.
3	Implement Fuzzy membership functions
4	Implement Fuzzy Inference system (FIS).
6	Implement any Defuzzification of membership methods.
7	Implement Bidirectional Associative Memory(BAM) Network
8	Implement Radial basis function network.
9	Implement Basic Neural Network learning rules.
10	Implement any Unsupervised Learning algorithm.10 Implement Kohonen Self-Organizing Feature Maps.
11	Implement a Probabilistic Neural Network.
12	Implement any Ensemble neural model.
13	Design any one Neuro-Fuzzy system.

Course Assessment

ISE-1: Experiments 1 to 4 (10 Marks)

ISE-2: Experiments 5 to 8 (10 Marks)

Activity: Mini Project (5 Marks)

Useful Links

1. https://onlinecourses.nptel.ac.in/noc21 ge07/preview

2. http://www.nitttrc.edu.in/nptel/courses/video/127105006/L25.html

3. https://archive.nptel.ac.in/courses/108/104/108104157

Course Code	Course Name	Teach (H	C	redits .	Assig	ned		
CSDOL7021		L	T	P	L	Т	P	P Total
				2			1	1
	User Experience Design with VR Lab		E	xamina	tion Sc	heme		
	Design with VK Lab		ISE1	MSE	ISE2	ESE	7	Γotal
		Lab	10		15			25

Pre-requisite Course Codes		odes Computer Graphics, Python(CSC305,CSL404)		
	CO1	Setup VR development environment		
	CO2	Use HTC Vive/ Google Cardboard/ Google Daydream and Samsung		
Course		gear VR.		
Outcomes	CO3	Develop VR scene and place object		
	CO4	Identify, examine and develop software that reflects fundamental		
		techniques for the design and deployment of VR experiences		

Sr. No.	Suggested list of Experiment
1	Installation of Unity and Visual Studio, setting up Unity for VR development, understanding documentation of the same.
2	Demonstration of the working of HTC Vive, Google Cardboard, Google Daydream and Samsung gear VR.
3	Develop a scene in Unity that includes: i. a cube, plane and sphere, apply transformations on the 3 game objects. ii. add a video and audio source
4	Develop a scene in Unity that includes a cube, plane and sphere. Create a new material and texture separately for three Game objects. Change the colour, material and texture of each Game object separately in the scene. Write a C# program in visual studio to change the color and material/texture of the game objects dynamically on button click
5	Develop a scene in Unity that includes a sphere and plane. Apply Rigid body component, material and Box collider to the game Objects. Write a C# program to grab and throw the sphere using vr controller.
6	Develop a simple UI(User interface) menu with images, canvas, sprites and buttons. Write a C# program to interact with UI menu through VR trigger button such that on each successful trigger interaction display a score on scene
7	Create an immersive environment (living room/ battlefield/ tennis court) with only static game objects. 3D game objects can be created using Blender or use available 3D models
8	Include animation and interaction in the immersive environment created in experiment 7
9	Case Study/Mini Project: Create a virtual environment for any use case. The application must include at least 4 scenes which can be changed dynamically, a good UI, animation and interaction with game objects. (e.g. VR application to visit a zoo)
10	Presentation of Mini Project

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment

ISE-1: Experiments 1 to 4 (10 Marks)
ISE-2: Experiments 5 to 8 (10 Marks)
Activity: Mini Project (5 Marks)

Useful Links

- 1. https://nptel.ac.in/courses/106106138
- 2. https://nptel.ac.in/courses/121106013
- 3. https://www.coursera.org/learn/develop-augmented-virtual-mixed-extended-reality-applications-webxr-unity-unreal
- 4. https://tih.iitr.ac.in/AR-VR.html

Course Code	Course Name	Teaching Scheme (Hrs/week)			C	redits	Assign	ed
CSDOL7022		L	T	P	L	T	P	Total 1
	Dlaakakain			2			1	1
	Blockchain Taskralasias Lak		I	Examin	ation S	cheme		
	Technologies Lab		ISE1	MSE	ISE2	ESE	To	otal
		Lab	10		15		2	25

Pre-requisite Co	ourse Cod	es Java, Python, JavaScript.(CSL304,CSL404.CSC502)			
	CO1	Develop and test smart contract on local Blockchain.			
	CO2	Develop and test smart contract on Ethereum test networks.			
Course	CO3	Write and deploy smart contract using Remix IDE and Metamask.			
Outcomes	CO4	Design and develop Cryptocurrency.			
	CO5	Write and deploy chain code in Hyperledger Fabric.			
	CO6	Develop and test a Full-fledged DApp using Ethereum/Hyperledger.			

Sr. No.	Suggested list of Experiment
1	Local Blockchain: Introduction to Truffle, establishing local Blockchain using Truffle a) Cryptography in Blockchain and Merkle root tree hash
2	Smart contracts and Chain code: Solidity programming language, chain code (Java/JavaScript/Go), deployment on Truffle local a) Creating Smart Contract using Solidity b) Embedding wallet and transaction using Solidity
3	Deployment and publishing smart contracts on Ethereum test network: Ethereum Test networks (Ropsten/Gorelli/Rinkeby), deployment on test networks, Web3.js/Web3.py for interaction with Ethereum smart contract a) Blockchain platform ethereum using Geth. b) Blockchain platform Ganache
4	Remix IDE and Metamask: Smart contract development and deployment using Metamask and Remix. Design and develop Crypto currency
5	Chain code deployment in Hyperledger Fabric: Chain code deployment in Hyperledger fabric Mini project: Study required front end tools
6	Case Study on Hyperledger
7	Case Study on Other Blockchain platforms.
8	Creating a blockchain Application
9	Mini-project on Design and Development of a DApps using Ethereum/Hyperledger Fabric: Implementation of Mini Project, 1. Design, configure and testing of mini project 2. Report submission as per guidelines 3. Implementation and Presentation of Mini Projects

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment

ISE-1: Experiments 1 to 4 (10 Marks)
ISE-2: Experiments 5 to 8 (10 Marks)
Activity: Mini Project (5 Marks)

Text Books:

- 1. Ethereum Smart Contract Development, Mayukh Mukhopadhyay, Packt publication.
- 2. Solidity Programming Essentials: A Beginner's Guide to Build Smart Contracts for Ethereumand Blockchain, Ritesh Modi, Packt publication.
- 3. Hands-on Smart Contract Development with Hyperledger Fabric V2, Matt Zand, Xun WuandMark Anthony Morris, O'Reilly.

Reference Books:

- 1. Mastering Blockchain, Imran Bashir, Packt Publishing
- 2. Introducing Ethereum and Solidity, Chris Dannen, APress.
- 3. Hands-on Blockchain with Hyperledger, Nitin Gaur, Packt Publishing.

Mini project:

- 1. Students should carry out mini-project in a group of three/four students with a subject Incharge
- 2. The group should meet with the concerned faculty during laboratory hours and the progress of work discussed must be documented.
- 3. Each group should perform a detailed literature survey and formulate a problem statement.
- 4. Each group will identify the hardware and software requirement for their defined mini project problem statement.
- 5. Design, develop and test their smart contract/chain code.
- 6. Each group may present their work in various project competitions and paper presentations

Documentation of the Mini Project

The Mini Project Report can be made on following lines:

- 1. Abstract
- 2. Contents
- 3. List of figures and tables
- 4. Chapter-1 (Introduction, Literature survey, Problem definition, Objectives, Proposed
- 5. Solution, Technology/platform used)
- 6. Chapter-2 (System design/Block diagram, Flow chart, Software requirements, cost
- 7. estimation)
- 8. Chapter-3 (Implementation snapshots/figures with explanation, code, future directions)
- 9. Chapter-4 (Conclusion)
- 10. References

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teach (H	C	Credits	Assigned			
CSDOL7023		L T P L T	P	Total				
	Carra Tha are far			2			1	1
	Game Theory for		I	Examin	ation S	cheme		
	Data Science Lab		ISE1	MSE	ISE2	ESE	To	otal
		Lab	10		15		2	25

Pre-requisite	Course	Codes Probability, Algebra(CSC301,CSC401)					
	CO1	Gain a solid understanding of fundamental game theory concepts					
	CO2	Develop the ability to apply game theory principles to real-world data					
		science problems					
	CO3	Analyze and identify Nash equilibria in various game scenarios.					
Course	CO4	Comprehend the implications and applications of mixed strategies in					
Outcomes		game theory.					
	CO5	Acquire practical skills in utilizing game theory algorithms and computational tools					
	CO6	Explore and appreciate the wide range of applications of game theory in					
		data science					

Sr. No	Suggested list of Experiment
1	Prisoners dilemma
2	Pure Strategy Nash Equilibrium
3	Extensive Form – Graphs and Trees, Game Trees
4	Strategic Form – Elimination of dominant strategy
5	Minimax theorem, minimax strategies
6	Perfect information games: trees, players assigned to nodes, payoffs, backward Induction, subgame perfect equilibrium
7	Imperfect-information games – Mixed Strategy Nash Equilibrium – Finding mixed-strategy Nash equilibria for zero sum games, mixed versus behavioral strategies
8	Repeated Games
9	Bayesian Nash equilibrium
10	Implementation of any game for example Tic Tac To, coloring triangle, water jug, 8 queen, 8 puzzle etc (this should be done in group of 3-4)

Course Assessment

ISE-1: Experiments 1 to 4 (10 Marks)

ISE-2: Experiments 5 to 8 (10 Marks)

Activity: Mini Project (5 Marks)

Textbooks:

- 1. An Introduction to Game Theory by Martin J. Osborne
- 2. M. J. Osborne, An Introduction to Game Theory. Oxford University Press, 2004.

References:

1. M. Machler, E. Solan, S. Zamir, Game Theory, Cambridge University Press, 2013.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 2. N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani (Editors), Algorithmic GameTheory. Cambridge University Press, 2007.
- 3. A.Dixit and S. Skeath, Games of Strategy, Second Edition. W W Norton & Co Inc,2004.
- 4. YoavShoham, Kevin Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, Cambridge University Press 2008.
- 5. Zhu Han, DusitNiyato, WalidSaad, TamerBasar and Are Hjorungnes, "Game Theoryin Wireless and Communication Networks", Cambridge University Press, 2012.
- 6. Y.Narahari, "Game Theory and Mechanism Design", IISC Press, World Scientific.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
	Product Life Cycle Management	L	T	P	L	T	P	Total	
		03			03			03	
ILO7011		Examination Scheme							
ILO/011			ISE1	MSE	ISE2	ES	E	Total	
		Theory	20	30	20	100(30%		100	
						Weightage)			

Pre-requisite Cou	urse Co	des						
	CO1	Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.						
Course	CO2	Illustrate various approaches and techniques for designing and developing products.						
Outcomes	СОЗ	Apply Product Engineering Guidelines/ thumb rules in designing products for molding, machining, sheet metal working etc.						
	CO4 Acquire knowledge in applying virtual product developmer components, machining and manufacturing plant							

Module No.	Topics	Ref.	Hrs.
1	Introduction to Product Lifecycle Management (PLM): Product Lifecycle Management(PLM), Need for PLM, Product Lifecycle Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM	1,2	10
2.	Product Design : Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post Design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process	2	9
3	Product Data Management (PDM): Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation	1,2	5
4.	Virtual Product Development Tools: For components, machines,	1	5

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital Mock-up, Model Building, Model analysis, Modeling and simulations in Product Design, Examples/ Case studies		
5.	Integration of Environmental Aspects in Product Design Sustainable Development, Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life Extension Strategies, End- of-Life Strategies, Introduction of Environmental Strategies into the Design Process, Life Cycle Environmental Strategies and Considerations for Product Design	1,2	5
6	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach, General Framework for LCCA, Evolution of Models for Product Life Cycle Cost Analysis	3	5
		Total	39

Course Assessment:

ISE-1:

Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

ISE-2:

Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. John Stark, "Product Life cycle Management: Paradigm for 21st Century Product Realization", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, "Product Design For The Environment-A Lifecycle approach", Taylor & Francis 2006, ISBN:0849327229
- 3. Antti, ImmonenAnselmi, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Life cycle Management: Driving the next generation of lean thinking", Tata Mc Graw Hill, 2006, ISBN: 0070636265

Course Code	Course Name		hing Sch Irs/week	Credits Assigned					
	Reliability Engineering	L	T	P	L	T	P	Total	
		03			03			03	
ILO7012		Examination Scheme							
1LO/012			ISE1	MSE	ISE2	ESE		Total	
		Theory	20	30	20	100(30%		100	
						Weightage)			

Pre-requisite Course	Codes	
	CO1	Understand and apply the concept of Probability to engineering problems
Course Outcomes	CO2	Apply various reliability concepts to calculate different reliability parameters
	CO3	Estimate the system reliability of simple and complex systems
	CO4	Carry out a Failure Mode Effect and Criticality Analysis

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1.	1.1	Probability theory: Probability: Standard definitions	1,2	8
		and concepts; Conditional Probability, Baye's Theorem.		
	1.2	Probability Distributions: Central tendency and Dispersion;		
		Binomial, Normal, Poisson, Weibull, Exponential, relations		
		between them and their significance.		
	1.3	Measures of Dispersion: Mean, Median, Mode, Range, Mean		
		Deviation, Standard Deviation, Variance, Skewness and		
		Kurtosis		
2	2.1	Reliability Concepts: Reliability definitions, Importance of	1,2	8
		Reliability, Quality Assurance and Reliability, BathTub Curve.		
	2.2	Failure Data Analysis: Hazardrate, failure density, Failure		
		Rate, Mean Time To Failure (MTTF), MTBF, Reliability		
		Functions.		
	2.3	Reliability Hazard Models: Constant Failure Rate, Linearly		
		increasing, Time Dependent Failure Rate, Weibull Model.		
		Distribution functions and reliability analysis.		
3	3.1	System Reliability: System Configurations: Seri es, parallel,	1	5
		mixed configuration, k out of n structure, Complex systems.		
4	4.1	Reliability Improvement: Redundancy Techniques: Element	2,3	8
		Redundancy, Unit Redundancy, And Standby Redundancies.		
		Markov Analysis. System Reliability Analysis-Enumeration		
		method, Cut-set method, Success Path method, Decomposition		
		method.		
5	5.1	Maintainability and Availability System downtime, Design	1,2	5
		for Maintainability: Maintenance requirements, Design		
		methods: Fault Isolation and self-diagnostics, Parts		
		standardization and Inter changeability, Modularization and		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		Accessibility, Repair Vs Replacement. Availability–qualitative aspects.		
6	6.1	Failure Mode, Effects and Criticality Analysis: Failure Mode Effects Analysis, severity/ criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fault tree analysis and Event tree Analysis	3	5
			Total	39

Course Assessment:

ISE-1:

Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

ISE-2:

Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. L.S.Srinath, "Reliability Engineering", Affiliated East-West Press (P) Ltd., 1985.
- 2. Charles E.Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S.Dhillon, C.Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T.Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley& Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata Mc Graw-Hill Publishing Co. Ltd.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	1	hing Sch Irs/week		Credits Assigned				
	Management Information System	L	T	P	L	T	P	Total	
		03			03			03	
II 07013		Examination Scheme							
ILO7013			ISE1	MSE	ISE2	ESE		Total	
		Theory	20	30	20	100(30%		100	
						Weightage)			

Pre-requisite C	ourse Co	des						
	CO1	xplain how information systems Transform Business						
	CO2	dentify the impact information systems have on an organization						
	CO3	Describe IT infrastructure and its components and its current trends						
Course	CO4	Understand the principal tools and technologies for accessing						
Outcomes		information from databases to improve business performance and						
		decision making						
	CO5	Identify the types of systems used for enterprise-wide knowledge						
		management and how they provide value for businesses						

Module	Topics	Ref.	Hrs.
No.			
1	Introduction To Information Systems (IS): Computer Based Information	1	4
	Systems, Impact of IT on organizations, Importance of IS to Society.		
	Organizational Strategy, Competitive Advantages and IS.		
2.	Data and Knowledge Management: Database Approach, Big Data, Data	1,2	7
	warehouse and Data Marts, Knowledge Management.		
	Business Intelligence(BI): Managers and Decision Making, BI for Data		
	analysis and Presenting Results		
3	Ethical issues and Privacy: Information Security. Threat to IS, and	1	7
	Security Controls		
4.	Social Computing (SC): Web2.0 and 3.0, SC in business-shopping,	2	7
	Marketing, Operational and Analytical CRM, E-business and E-		
	commerce – B2B B2C. Mobile commerce.		
5.	Computer Networks Wired and Wireless Technology, Pervasive	3	6
	Computing, Cloud computing model.		
6	Information System within Organization: Transaction Processing	1	8
	Systems, Functional Area Information System, ERP and ERP support of		
	Business Process. Acquiring Information Systems and Applications:		
	Various System development lifecycle models.		
		Total	39

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2:</u> Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P.Laudon, Management Information Systems: Managing The Digital Firm, 10thEd. Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, PrenticeHall, 2008

Course Code	Course Name	Teach	Credits Assigned						
		L	T	P	L	T	P	Total	
		03			03			03	
II 07014	Design of Experiments	Examination Scheme							
ILO7014			ISE1	MSE	ISE2	ESI	E	Total	
		Theory	20	30	20	100(3	0%	100	
						Weight	tage)		

Pre-requisite Course Codes						
CO1 Plan data collection, to turn data into information and to make decisions that						
Course		lead to appropriate action				
Outcomes	CO2	Apply the methods taught to real life situations				
	CO3	Plan, analyze, and interpret the results of experiments				

No. 1. 2.	1.1	Introduction Strategy of Experimentation Typical Applications of Experimental Design Guidelines for Designing Experiments	1	6
	1.1	Strategy of Experimentation Typical Applications of	1	
2.				
2.				
2.		Response Surface Methodology		
		Fitting Regression Models	1,2	8
	2.1	Linear Regression Models Estimation of the Parameters in		
		Linear Regression Models Hypothesis Testing in Multiple		
		Regression Confidence Intervals in Multiple Regression		
		Prediction of new response observation Regression model		
		diagnostics Testing for lack of fit		
3			1,2,	7
	3.1	The 2 ² Design The 2 ³ Design The General 2 ^k Design A Single	3,4	
		Replicate of the 2 ^k Design The Addition of Center Points to the		
		2 ^k Design, Blocking in the 2 ^k Factorial Design Split-Plot		
		Designs The Design		
4.		Two-Level Fractional Factorial Design	1,2,	7
	4.1	The One-Half Fraction of the 2 ^k Design The One-Quarter	3	
		Fraction of the 2 ^k Design The General 2 ^{k-p} Fractional Factorial		
		Design Resolution III Designs Resolution IV and V Designs		
		Fractional Factorial Split-Plot Designs	1.0	
5.		Response Surface Methods and Designs	1,2	7
	5.1	Introduction to Response Surface Methodology The Method of		
		Steepest Ascent Analysis of a Second-Order Response Surface		
		Experimental Designs for Fitting Response Surfaces Testing		
		Logistics	-	4
6	(1	Taguchi Approach	6	4
	6.1	Crossed Array Designs and Signal-to-Noise Ratios Analysis		
		Methods Robust design examples	Total	39

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2:</u> Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley& Sons, New York, 2001
- 2. D.C.Montgomery, Design And Analysis Of Experiments,5th edition, John Wiley & Sons, New York, 2001
- 3. George EPBox, JStuart Hunter, William G Hunter, Statistics for Experimenters: Design, Innovation And Discovery, 2ndEd. Wiley
- 4. WJ Diamond, Practical Experiment Designs for Engineers and Scientists, John Willy and SonsInc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer texts in Statistics), Springer by A.M. Dean, and D. T. Voss
- 6. Phillip J Ross, "Taguchi Techniques for Quality Engineering," McGraw Hill
- 7. Madhav Phadke, "Quality Engineering using Robust Design," Prentice Hall

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			ed
		L	T	P	L	T	P	Total
	Operations Research	03			03			03
ILO7015		Examination Scheme						
			ISE1	MSE	ISE2	ESF	C	Total
		Theory	20	30	20	100(30)%	100
						Weight	age)	

Pre-requisite Co	urse Cod	es							
	CO1	Understand the theoretical workings of the simplex method, the							
		elationship between a linear program and its dual, including strong							
		uality and complementary slackness.							
	CO2	Perform sensitivity analysis to determine the direction and magnitude							
Course		of change of a model's optimal solution as the data change.							
Outcomes	CO3	Solve specialized linear programming problems like the transportation							
		and assignment problems; solve network models like the shortest path,							
		minimum spanning tree, and maximum flow problems.							
	CO4	Understand the applications of integer programming and queuing							
		model and compute important performance measures							

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1.	1.1	Introduction to Operations Research: Introduction, Structure	1	14
		of the Mathematical Model, Limitations of Operations Research		
		Linear Programming: Introduction, Linear Programming		
		Problem, Requirements of LPP, Mathematical Formulation of		
		LPP, Graphical method, Simplex Method Penalty Cost Method		
		or BigM-method, Two Phase Method, Revised Simplex		
		Method, Duality , Primal – Dual construction, Symmetric and		
		Asymmetric Dual, Weak Duality Theorem, Complementary		
		Slackness Theorem, Main Duality Theorem, Dual Simplex		
		Method, Sensitivity Analysis		
		Transportation Problem: Formulation, solution, unbalanced		
		Transportation problem. Finding basic feasible solutions –		
		Northwest corner rule, least cost method and Vogel's		
		Approximation Method. Optimality Test: the stepping stone		
		method and MODI method.		
		Assignment Problem: Introduction, Mathematical Formulation		
		of the Problem, Hungarian Method Algorithm, Processing of n		
		Jobs Through Two Machines And Machines, Graphical Method		
		of Two Jobs m Machines Problem Routing Problem, Travelling		
		Salesman Problem		
		Integer Programming Problem: Introduction, Types of		
		Integer Programming Problems, Gomory's Cutting Plane		
		Algorithm, Branch and Bound Technique. Introduction to		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		Decomposition algorithms.		
2.	2.1	Queuing Models : queuing systems structures, single server multi-server models, Poisson input, exponential service, constant rate service, finite and infinite population	1, 2	5
3	3.1	Simulation: Introduction, Methodology of Simulation, Basic Concepts, Simulation Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo Simulation, Application of Simulation, Advantages of Simulation, Limitations of Simulation	1	5
4.	4.1	Dynamic programming. Characteristics of dynamic programming. Dynamic programming approach for Priority Management Employment Smoothening, capital budgeting, Stagecoach/ Shortest Path, cargo loading and Reliability problems	2	5
5.	5.1	GameTheory . Competitivegames, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2X2 games	1, 2	5
6	6.1	Inventory Models: Classical EOQModels, EOQModel with Price Breaks, EOQwith Shortage, Probabilistic EOQ Model,	2	5
			Γotal	39

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

ISE-2: Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

 $\underline{\textbf{ESE:}}$ Three hours 100 marks (30% weightage) written examination based on entire syllabus

- 1. Taha, H. A. "Operations Research- An Introduction", Prentice Hall, (7thEdition), 2002.
- 2. Ravindran, A, Phillips, D. TandSolberg, J.J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F.S.andLiebermann, G.J."Introduction to Operations Research", Tata Mcgraw Hill, 2002.
- 4. Operations Research, S. D.Sharma, Kedar Nath Ram Nath- Meerut.
- 5. Operations Research, Kanti Swarup, P.K. Gupta and Man Mohan, Sultan Chand & Sons.

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned			ed			
	Cyber Security and Laws	L	T	P	L	T	P	Total
		03			03			03
H 07016		Examination Scheme						
ILO7016			ISE1	MSE	ISE2	ESI	E	Total
		Theory	20	30	20	100(30	0%	100
						Weight	age)	

Pre-requisite Course Codes		des
	CO1	Understand the concept of cyber crime and its effect on outside world
Course	CO2	Interpret and apply IT law in various legal issues
Course	CO3	Distinguish different aspects of cyber law
Outcomes	CO4	Apply Information Security Standards compliance during software
		design and development

Module No.	Topics	Ref.	Hrs.
1.	Introduction to Cyber crime : Cyber crime definition and origins of the world, Cybercrime And Information security, Classifications Of Cyber Crime, Cybercrime And The Indian ITA2000, A Global Perspective On Cyber Crimes.	1	4
2.	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyberstalking, Cybercafé and Cybercrimes, Botnets, Attackvector, Cloud Computing, Proliferation of Mobile and Wireless Devices, Trends In Mobility, Credit Card Frauds Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/CellPhones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Devices-Related Security Issues, Organizational Security Policy and Measure in Mobile Computing Era, Laptops	1,2	9
3	Tools and Methods Used in Cyberline : Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQLInjection, Buffer OverFlow, Attacks onWireless Networks, Phishing, Identity Theft (IDTheft)	1,2	6
4.	The Concept of Cyberspace: E-Commerce, The Contract Aspects In Cyber Law, The Security Aspect of Cyber Law, The Intellectual Property Aspect in Cyber Law, The Evidence Aspect in Cyber Law, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law, Legal Framework for Electronic Data Interchange Law Relating to Electronic Banking, The Need for an Indian Cyber Law	3	8
5.	Indian IT Act. : Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the IT Act, 2000, ITS Act. 2008 and its Amendments	1,2	6
6	Information Security Standard compliances : SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	1	6

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Total 39

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2:</u> Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. Nina Godbole, SunitBelapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security & Global Information AssuranceInformation Science Publishing.
- 7. William Stallings, Cryptography And Network Security, Pearson Publication
- 8. Websites For More Information Is Available On: The Information Technology ACT 2008-TIFR: https://www.tifrh.res.in
- 9. Website For More Information, A Compliance Primer for IT professional https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
		03			03		-	03
H 07017	Disaster Management and Mitigation measures	Examination Scheme						
ILO7017			ISE1	MSE	ISE2	ESE		Total
		Theory	20	30	20	100(30	%	100
						Weighta	ge)	

Pre-requisite Co	ourse Co	odes	
	CO1		natural as well as man made disasters and their extent and ets on the economy.
C	CO2	Plan of nation	nal importance structures based upon the previous history.
Course Outcomes	CO3	Get acquainte	ed with government policies, acts and various organizational
Outcomes		structures ass	ociated with an emergency.
	CO4	Get to know t	the simple do's and don'ts in such extreme events and act
		accordingly.	

Module	Unit	Topics	Ref	Hrs
No.	No.			
1.	1.1	Introduction: Definition of Disaster, hazard, global and Indian	1,	3
		scenario, and general perspective, importance of study in human	2	
		life, Direct and indirect effects of disasters, long term effects of		
		disasters. Introduction to global warming and climate change.		
2.	2.1	Natural Disaster: Meaning and nature of natural disaster, Flood,	2	9
		Flash flood, drought, cloud burst, Earthquake, Landslides,		
		Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm		
		Surge, climate change, global warming, sea level rise, ozone		
		depletion		
	2.2	ManMade Disasters: Chemical, Industrial, Nuclear and Fire	1,	
		Hazards. Role of growing population and subsequent	2	
		industrialization, urbanization and changing lifestyle of human		
		beings in frequent occurrences of man made disasters.		
3	3.1	Disaster Management: meaning, concept, importance, objective	1	6
		of disaster management policy, disaster risks in India, Paradigm		
		Shift in disaster management.		
	3.2	Policy and administration:	1,	1
		Importance and principles of disaster management policies,	2	
		command and co-ordination of disaster management, rescue		
		operations-how to start with and how to proceed in due course of		
		time, study of flow charts showing the entire process.		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4.	4.1	Institutional Framework for Disaster Management in India:	3	6
		Importance Of Public Awareness, Preparation and Execution Of		
		Emergency Management programme. Scope and responsibilities		
		of National Institute of Disaster Management (NIDM) and		
		National Disaster Management Authority (NDMA) in India.		
		Methods and measures to avoid disasters, Management of		
		casualties, set up emergency facilities, importance of effective		
		communication amongst different agencies in such situations.		
	4.2	Use of Internet and software for effective disaster management.	2	
		Applications of GIS, Remote sensing and GPS in this regard.		
5.	5.1	Financing Relief Measures: Ways To Raise Finance For Relief	5,	9
		Expenditure, role of government agencies and NGOs in this	6	
		process, Legal aspects related to finance raising as well as overall		
		management of disasters. Various NGOs and the works they have		
		carried out in the past on the occurrence of various disasters, Ways		
		To Approach these teams.		
	5.2	International relief aid agencies and their role in extreme events.	1	
6	6.1	Preventive and Mitigation Measures: Pre-disaster, during	1,	6
		disaster and post-disaster measures in some events in general	2	
	6.2	Structural mapping: Risk Mapping, assessment analysis, seawalls	2	
		and embankments, Bioshield, shelters, early warning and		
		communication		
	6.3	Non Structural Mitigation: Community based disaster	1,	
		preparedness, risk transfer and risk financing, capacity	3	
		development and training, awareness and education, contingency		
		plans.		
	6.4	Do's and don'ts in case of disasters and effective implementation	3	
		of relief aids.		
		·	Total	39

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2:</u>Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. 'Disaster Management' by HarshK.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India by.S.Dagur, publishedbyCentre for land warfare studies, NewDelhi, 2011.
- 3. 'Introduction toInternational Disaster Management' by By Damon Coppola, Butterworth Heinemann Elsevier Publications.
- 4. Disaster Management Handbook biJakPinkowski, CRCPress Taylor and Francis Group.
- 5. Disaster Management & rehabilitation Rajdeep Dasgupta, Mittal Publications, NewDelhi.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 6. 'Natural Hazards and DisasterManagement, Vulnerability and Mitigation–RBSingh, Rawat Publications
- 7. Concepts and Techniques of GIS-C.P.Lo Albert, K.W.Yonng-PrenticeHall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic websites)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Energy Audit and Management	03			03			03
ILO 7018		Examination Scheme						
1LO /018			ISE1	MSE	ISE2	ESE		Total
		Theory	20	30	20	100(30%		100
						Weightag	ge)	

Pre-requisite (Course Co	odes
	CO1	To identify and describe the present state of energy security and its
		importance.
	CO2	To identify and describe the basic principles and methodologies
		adopted in energy audit of a utility.
Course	CO3	To describe the energy performance evaluation of some common
Outcomes		electrical installations and identify the energy saving opportunities.
	CO4	To describe the energy performance evaluation of some common
		thermal installations and identify the energy saving opportunities
	CO5	To analyze the data collected during performance evaluation and
		recommend energy saving measures

Modul	Topics	Ref.	Hrs.
e No.			
1.	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy	1	4
	Sector Reforms, Energy Security, Energy Conservation and its		
	Importance, Energy Conservation Act-2001 and its Features. Basics of		
	Energy and its various forms, Material and Energy balance		
2.	Energy Audit Principles: Definition, Energy audit-need, Types of energy audit, Energy management (audit) approach- understanding energy costs, Benchmarking, Energy performance, Matching energy use to requirement, Maximizing System Efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring & targeting; Energy audit Instruments; Data And Information-analysis. Financial Analysis Techniques: Simple Payback Period, NPV, Return	2	8
	on investment (ROI), Internal rate of return (IRR)		
3	Energy Management and Energy Conservation in Electrical System: Electricity Billing, Electrical load management and maximum demand Control Power Factor Improvement, Energy efficient equipment and appliances, star ratings. Energy Efficiency Measures In Lighting System, Lighting Control: Occupancy sensors, daylight integration, and use of intelligent controllers. Energy Conservation Opportunities In: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	1,2	10
4.	Energy Management and Energy Conservation in Thermal Systems: Review Of Different Thermal Loads; Energy Conservation	3	10

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	Opportunities In: Steam Distribution System, Assessment Of Steam		
	Distribution Losses, Steam leakages, Steam Trapping, Condensate and		
	flash steam recovery system.		
	General fuel economy measures in Boilers and furnaces, Waste heat		
	recovery, use of insulation- types and application. HVAC system:		
	Coefficient of performance, Capacity, factors affecting Refrigeration		
	and Air Conditioning system performance and savings opportunities.		
5.	Energy Performance Assessment: On site Performance evaluation	1,2	4
	techniques, Case studies based on: Motors and variable speed drive,		
	pumps, HVAC system calculations; Lighting System: Installed Load		
	Efficacy Ratio (ILER) method, Financial Analysis.		
6	Energy conservation in Buildings: Energy Conservation Building	6	3
	Codes (ECBC): Green Building, LEED rating, Application Of Non-		
	Conventional and Renewable Energy Sources		
		Total	39

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2:</u> Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing With Light: Lighting Handbook, ByAnilValia, LightingSystem
- 3. Enegy Management Handbook, By W.C. Turner, John Wileyand Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B. Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R.Patrick, S.Fardo, Ray E.Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W.J. Younger, T. Niehus, CRCPress
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Course Code	Course Name	Teaching Scheme (Hrs/week)			(Credits Assigned			
	Development Engineering	L	T	P	L	T	P	Total	
		03			03			03	
II O 7010		Examination Scheme							
ILO 7019			ISE1	MSE	ISE2	ESE		Total	
		Theory	20	30	20	100(30%	6	100	
						Weightag	ge)		

Pre-requisite C	Course Co	odes				
	CO1	Demonstrate understanding of knowledge for Rural Development.				
CO2 Prepare solutions for Management Issues.						
Course	CO3	ake up Initiatives and design Strategies to complete the task				
Outcomes	CO4	Develop acumen for higher education and research.				
	CO5	Demonstrate the art of working in group of different nature				
	CO6	Develop confidence to take up rural project activities independently				

Module	Topics	Ref.	Hrs.
1.	Introduction to Rural Development Meaning, nature and scope of development; Nature of rural society in India; Hierarchy of settlements; Social, economic and ecological constraints for rural development Roots of Rural Development in India Rural reconstruction and Sarvodaya programme before independence; Impact of voluntary effort and Sarvodaya Movement on rural development; Constitutional direction, directive principles; Panchayati Raj beginning of planning and community development; National extension services.	1	8
2.	Post-Independence rural Development Balwant Rai Mehta Committee - three tier system of rural local Government; Need and scope for people's participation and Panchayati Raj; Ashok Mehta Committee - linkage between Panchayati Raj, participation and rural development.	2	6
3	Rural Development Initiatives in Five Year Plans Five Year Plans and Rural Development; Planning process at National, State, Regional and District levels; Planning, development, implementing and monitoring organizations and agencies; Urban and rural interface - integrated approach and local plans; Development initiatives and their convergence; Special component plan and sub-plan for the weaker section; Micro-eco zones; Data base for local planning; Need for decentralized planning; Sustainable rural development	1,2	7
4.	Post 73rd Amendment Scenario 73rd Constitution Amendment Act, including - XI schedule, devolution of powers, functions and finance; Panchayati Raj institutions - organizational linkages; Recent changes in rural local planning; Gram Sabha - revitalized Panchayati Raj; Institutionalization; resource mapping, resource mobilization including social mobilization; Information Technology and rural planning; Need for further amendments.	3	4

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

5.	Values and Science and Technology Material development and its values; the challenge ofscience and technology; Values in planning profession, research and education Types of Values Psychological values — integrated personality; mental health; Societal values — the modern search for a good society; justice, democracy, rule of law, values in the Indian constitution; Aesthetic values — perception and enjoyment of beauty; Moral and ethical values; nature of moral judgment; Spiritual values; different concepts; secular spirituality; Relative and absolute values; Human values— humanism and human values; human rights; human values as freedom, creativity, love and wisdom		10
6	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility; Work ethics; Professional ethics; Ethics in planning profession, research and education	8	4
		Total	39

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2:</u> Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. ITPI, Village Planning and Rural Development, ITPI, New Delhi
- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rdGoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. Planning Commission, Five Year Plans, Planning Commission
- 5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi
- 6. Planning Guide to Beginners
- 7. Weaver, R.C., The Urban Complex, Doubleday
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington

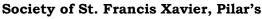
Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Major Project – I			6			3	3
CSP701		Examination Scheme						
			ISE1	MSE	ISE2	ESE		Total
		Lab	15		20	40		75

Pre-requisite	Course	Codes
	CO1	Identify problems based on societal /research needs
	CO2	Apply Knowledge and skill to solve societal problems in a group
	CO3	Draw the proper inferences from available results through theoretical/
Course		experimental/simulations
Outcomes	CO4	Analyze the impact of solutions in societal and environmental context for
Outcomes		sustainable development.
	CO5	Demonstrate capabilities of self-learning in a group, which leads to
		lifelong learning
	CO6	Demonstrate project management principles during project work.

Guidelines for the project


Project Topic Selection and Allocation

Project topic selection Process to be defined and followed:

- Project orientation can be given at the end of sixth semester.
- Students should be informed about the domain and domain experts whose guidance can be taken before selecting projects.
- Student's should be recommended to refer papers from reputed conferences/journals like IEEE, Elsevier, ACM etc. which are not more than 3 years old for review of literature.
- Dataset selected for the project should be large and real time
- Students can certainly take ideas from anywhere, but be sure that they should evolve them in the unique way to suit their project requirements. Students can be informed to refer to Digital India portal, SIH portal or any other hackathon portal for problem selection.

Topics can be finalized with respect to following criterion:

- Topic Selection: The topics selected should be novel in nature (Product based, Application based or Research based) or should work towards removing the lacuna in currently existing systems.
- Technology Used: Use of latest technology or modern tools can be encouraged. AI,ML, DL, NNFS, NLP based algorithms can be implemented
- Students should not repeat work done previously (work done in the last three years).
- Project work must be carried out by the group of at least 3 students and maximum 4.
- The project work can be undertaken in a research institute or organization/Industry/any business establishment. (out-house projects)
- The project proposal presentations can be scheduled according to the domains and should be judged by faculty who are expert in the domain.
- Head of department and senior staff along with project coordinators will take decisions regarding final selection of projects.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- Guide allocation should be done and students have to submit weekly progress reports to the internal guide.
- Internal guide has to keep track of the progress of the project and also has to maintain attendance reports. This progress report can be used for awarding term work Marks.
- In case of industry/ out-house projects, visit by internal guide will be preferred and external members can be called during the presentation at various levels

Project Report Format:

At the end of semester, each group needs to prepare a project report as per the guidelines issued by the University of Mumbai.

A project report should preferably contain following details:

- Abstract
- Introduction
- Literature Survey/ Existing system
- Limitation Existing system or research gap
- Problem Statement and Objective
- Proposed System
- Analysis/Framework/ Algorithm
- Design details
- Methodology (your approach to solve the problem) Proposed System
- Experimental Set up
- Details of Database or details about input to systems or selected data
- Performance Evaluation Parameters (for Validation)
- Software and Hardware Setup
- Implementation Plan for Next Semester
- Timeline Chart for Term1 and Term-II (Project Management tools can be used.)
- References

Suggested quality evaluation parameters are as follows:

- Quality of problem selected
- Clarity of problem definition and feasibility of problem solution
- Relevance to the specialization / industrial trends
- Originality
- Clarity of objective and scope
- Quality of analysis and design
- Quality of written and oral presentation
- Individual as well as teamwork

Course Assessment:

ISE-1: Idea Presentation & Review of Literature(15 Marks)

ISE-2: Analysis, Design, Proof of Concept (20 Marks)

ESE: Project Exam (oral exam with presentation) (40 Marks)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total	
		3			3			3	
	Advanced Artificial Intelligence	Examination Scheme							
CSC801			ISE1	MSE	ISE2	ESE		Total	
		Theory	20	30	20	100(30%		100	
						Weightage)			
		Lab							

Pre-requisite (Course (Codes	Engineering Mathematics, Data Structures and Algorithm,			
			Python Programming			
	CO1	Acquire	e basic knowledge of Probabilistic Models			
Course Outcomes CO3 Interpretation CO4 Under CO5 Apply demonstration CO5 Apply demonstration CO5 CO5 Apply demonstration CO5 CO5 Apply demonstration CO5			Analyze the working and architecture for Generative Networks.			
			nterpret various components and various types of Auto encoders			
			nderstand various aspects of Transfer Learning.			
			ensemble learning techniques to real-world problems and			
			strate improved predictive performance			
			o the nascent technologies in the field of artificial			
		intellige	ence.			

Module No.	Unit No.	Topics	Ref	Hrs
1		Generative and Probabilistic Models	2	8
	1.1	Introduction Overview of generative models and their importance in AI, Fundamentals of Probability theory and generative modeling, Introduction to GANs, VAEs and other generative models. Significance of generative models, Challenges with generative models.		
	1.2	Probabilistic Models Gaussian Mixture Models (GMMs), Hidden Markov Models (HMMs), Bayesian Networks, Markov Random Field (MRFs), Probabilistic Graphical Model.		
2		Generative Adversarial Network	1	7
	2.1	Basics of GAN: Generative Adversarial Networks (GANs) architecture, The discriminator model and generator model, Architecture and Training GANs, Vanilla GAN Architecture. GAN variants and improvements (DCGAN, WGAN, Conditional GAN, Cycle GAN, Challenges- Training instability and model collapse, GAN applications in image synthesis and style transfer.		
3		Variational Autoencoders	1,3	7

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	3.1	Introduction Basic components of Variational Autoencoders(VAEs), Architecture and training of VAEs the loss function, Latent space representation and inference, Applications of VAEs in image generation.		
	3.2	Types of Autoencoders Undercomplete autoencoders, Sparse autoencoders, Contractive autoencoders, Denoising autoencoders, Variational Autoencoders(for generative modelling)		
4		Transfer Learning	3	5
	4.1	Introduction to transfer learning Basic terminologies, pre-trained model and data sets, Feature extraction and fine tune transfer learning, Recent advancement in transfer learning: self- supervised learning and meta learning.		
5		Ensemble learning		6
	5.1	Ensemble Classifiers: Introduction to Ensemble Methods. Bagging and random forests, Boosting algorithms: AdaBoost Stacking and blending models, Extreme Gradient Boosting (XGBoost): XGBoost Regression and classification.		
6		Nascent Technologies in AI	4	6
	6.1	Convergence of AI with Augmented / Virtual reality techniques for product and process development Limitations of 2D Learning Environments, Evolution of virtual worlds and immersive technologies, Definition and concepts of Augmented Reality, Definition and concept of the Metaverse, Characteristics and components of the Metaverse, Challenges and opportunities in the Metaverse ecosystem, AI in the realm of emerging quantum computing paragms		
		to the refine qualitum combuting paragins		

Course Assessment:

ISE-1: Quiz (10 Marks)

Activity: Assignment (10 Marks)

ISE-2: Game (10 Marks)

Activity: Presentation on AI in emerging technologies (10 Marks)

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire

syllabus

Text Books:

1. Foster, D., 2022. Generative deep learning "O'Reilly Media, Inc."

- 2. Koller, D. and Friedman, N., 2009. Probabilistic graphical models: principles and techniques. MIT press
- 3. Goodfellow, I., 2016. Deep Learning-Ian Goodfellow, Yoshua Bengio, Aaron Courville-Google Books

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 4. Murphy, K.P., 2012. Machine learning: a probabilistic perspective. MIT press
- 5. Zhou, Z.H., 2012. Ensemble methods: foundations and algorithms. CRC press.

Reference Books:

- 1. Xiong, J., Hsiang, E.L., He, Z., Zhan, T. and Wu, S.T., 2021. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light: Science & Applications, 10(1), p.216.
- 2. Mystakidis, S., 2022. Metaverse. Encyclopedia, 2(1), pp.486-497
- 3. Gill, S.S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M., Stankovski, V., Wu, H., Abraham, A. and Singh, M., 2022. AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, p.100514
- 4. Mangini, S., Tacchino, F., Gerace, D., Bajoni, D. and Macchiavello, C., 2021. Quantum computing models for artificial neural networks. Europhysics Letters, 134(1), p.10002.

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned						
	_	L	T	P	L	T	P	Total
		3			3			3
	AI for financial							
CSDO8011	& Banking Application	Examination Scheme						
CSDO8011			ISE1	MSE	ISE2	ESE	T	otal
		Theory	20	30	20	100(30%]	100
						Weightage)		
		Lab						

Pre-requisite Cou	rse Coo	les
	CO1	Gain knowledge of technology's influence on financial and banking
		enterprises.
	CO2	Understand the applications of blockchain in the financial sector.
Course Outcomes	CO3	Recognize digital money transfer mechanisms and its role in digitization
	CO4	Evaluate the advantages of digitization and cloud services in banking.
	CO5	Analyze enterprise software solutions for financial operations.
	CO6	Explore the integration of AI in banking processes.

Module No.	Unit No.	Topics	Ref	Hrs.
1		Information Technology Infrastructure and Digitization of Financial Banking Enterprises	1	4
	1.1	Digital Technology driven processes, BlockChain technologies for Financial – Banking sector, GIFT citie Digital Money transfer Mechanisms. Digitization/ cloud services and solutions in banking and financial services Profiling enterprise software's in financial and banking enterprises. Building Efficiencies, productivity, and infallibility in financial & Banking operations. Detailed study of various processes which shall be transformed by AI integration in banking and financial services.		
	1.2	Self-learning: Introduction to business efficiencies, industrial productivity and high degree reliability systems for competitive advantage and carbon neutral enterprises.		
2		Financial Statistics and The Sharpe Ratio	1	7
	2.1	Probability, Combinatorics, Mathematical Expectation, Sample Mean, Standard Deviation, and Variance, Sample Skewness and Kurtosis, Sample Covariance and Correlation, Financial Returns, Capital Asset Pricing Model, Sharpe Ratio Formula, Time Periods and Annualizing, Ranking Investment Candidates, The Quantmod Package, Measuring Income Statement Growth, Sharpe Ratios for Income Statement Growth		
3		Cluster Analysis	2	7

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	3.1	K-Means Clustering, Dissecting the K-Means Algorithm Sparsity and Connectedness of Undirected Graph Covariance and Precision Matrices, Visualizing Covariance, The Wishart distribution Glasso Penalization for Undirected Graphs, Running the Glasso Algorithm, Tracking a Value Stock through the Years Regression on Yearly Sparsity, Regression on Quarterly Sparsity, Regression on Monthly Sparsity		
4		Gauging the Market Sentiment	2	7
	4.1	Markov Regime Switching Model, Reading the Market Data, Bayesian Reasoning, The Beta Distribution, Prior and Posterior Distributions, Examining Log Returns for Correlation, Momentum Graphs, Simulating Trading Strategies, Foreign Exchange Markets, Chart Analytics Initialization and Finalization, Momentum Indicators, Bayesian Reasoning within Positions, Entries, Exils, Profitability, Short-Term Volatility, The State Machine		
5		Trading algorithms	1,2	7
	5.1	Vectorized Backtesting, Backtesting an SMA-Based Strategy, Backtesting a Daily DNN-Based Strategy Backtesting an Intraday DNN-Based Strategy, Risk Management: Trading Bot, Vectorized Backtesting Event-Based Backtesting, Assessing Risk, Backtesting Risk Measures, Stop Loss, Trailing Stop Loss, Take Profit		
6		Fraud Analytics	3	7
	6.1	Introduction, The Analytical Fraud Model Life Cycle, Model Representation, Traffic Light Indicator Approach, Decision Tables, Selecting the Sample to Investigate, Fraud Alert and Case Management, Visual Analytics, Backtesting Analytical Fraud Models: Backtesting Data Stability, Backtesting Model Stability, Backtesting Model Calibration, Model Design and Documentation		
		Total		39

Course Assessment:

ISE-1: Assignment/quiz (20 Marks)

ISE-2: Assignment/quiz (20 Marks)

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

Syllabus Text Books:

- 1. Financial Analytics with R Building a Laptop Laboratory for Data Science MARK J. BENNETT University of Chicago DIRK L. HUGEN University of Iowa
- 2. Artificial Intelligence in Finance A Python-Based Guide, Yves Hilpisch A
- 3. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection, Bart Baesens, Veronique Van Vlasselaer, Wouter Verbeke

Reference Books:

- 1. "Machine Learning for Asset Managers" by Marcos López de Prado
- 2. "Advances in Financial Machine Learning" by Marcos López de Prado.

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned							
		L	T	P	L	T	P	Total	
		3			3			3	
	Quantum Computing	Examination Scheme							
CSDO8012			ISE1	MSE	ISE2	ESE	T	otal	
		Theory	20	30	20	100(30%	1	.00	
						Weightage)			
		Lab							

Pre-requisite Course Codes			Engineering Mathematics, Data Structures and Algorithm, Python				
CO1 Unders			Programming and basic concepts of quantum computing				
	-						
	CO2		e building blocks of quantum computing through architecture and				
Course	000		nming models.				
Outcomes	CO3		e various mathematical models required for quantum computing				
Outcomes	CO4	Discuss	various quantum hardware building principles.				
	CO5	Identify	the various quantum algorithms				
	CO6	Describ	e usage of tools for quantum computing.				

Module		Topics	Ref	Hrs.
1		Introduction to Quantum Computing	1,2,4	7
	1.1	Motivation for studying Quantum Computing, Origin of Quantum Computing, Quantum Computer vs. Classical Computer, Introduction to Quantum mechanics, Overview of major concepts in Quantum Computing		
	1.2	Qubits and multi-qubits states, Bloch Sphere representation, Quantum Superposition, Quantum Entanglement, Major players in the industry (IBM, Microsoft, Rigetti, D-Wave etc.)		
2		Mathematical Foundations for Quantum Computing		5
	2.1	Matrix Algebra: basis vectors and orthogonality, inner product and Hilbert spaces, matrices and tensors, unitary operators and projectors, Dirac notation, Eigen values and Eigen vectors.		
3		Building Blocks for Quantum Program	1,2	8
	3.1	Architecture of a Quantum Computing platform, Details of q-bit system of information representation: Block Sphere, Multiqubits States Quantum superposition of qubits (valid and invalid superposition), Quantum Entanglement, Useful states from quantum algorithmic perceptive e.g. Bell State, Operation on qubits: Measuring and transforming using gates, Quantum Logic gates and Circuit, No Cloning Theorem and Teleportation		
	3.2	Programming model for a Quantum Computing Program, Steps performed on classical computer, Steps performed on Quantum Computer, Moving data between bits and qubits.		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4		Quantum Algorithms and Error correction	1,2	6
4.		Quantum Algorithms, Shor's Algorithm, Grover's Algorithm, Deutsch's Algorithm, Deutsch-Jozsa Algorithm, Quantum error correction using repetition codes		
4.	.2	3 qubit codes, Shor's 9 qubit error correction Code		
5		Quantum Hardware	2,4	10
5		Ion Trap Qubits,The DiVincenzo Criteria, Lagrangian and Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating		
5		Rotor Quantum Mechanics of a Free Rotor: A Poor Person's Atomic		
5		Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates, The Cirac-Zoller Mechanism: Quantum Theory of Simple, Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light- Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling		
5.		Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes-Cummings Hamiltonian, Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits, Quantum computing with spins: Quantum inverter realized with two exchange coupled spins inquantum dots, A 2-qubit spintronic universal quantum gate.		
6		OSS Toolkits for implementing Quantum program	3	3
6.		IBM quantum experience, Microsoft Q, RigettiPyQuil (QPU/QVM)		
			Total	39

Course Assessment:

ISE-1: Assignment/Quiz (20 Marks)

ISE-2: Assignment/Quiz (20 Marks)

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

Text Books:

- 1. Michael A. Nielsen, Quantum Computation and Quantum Information, Cambridge University Press.
- 2. David McMahon, Quantum Computing Explained, Wiley, 2008
- 3. Qiskit textbook https://qiskit.org/textbook-beta/
- 4. Vladimir Silva, Practical Quantum Computing for Developers, 2018

Reference Books:

- 1. Bernard Zygelman, A First Introduction to Quantum Computing and Information, 2018
- 2. Supriyo Bandopadhyay and Marc Cahy, —Introduction to Spintronicsl, CRC Press, 2008
- 3. The Second Quantum Revolution: From Entanglement to Quantum Computing and Other Super-Technologies, Lars Jaeger

Fr. Conceicao Rodrigues College of Engineering
Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050
(Autonomous College affiliated to University of Mumbai)

4. La Guardia, Giuliano Gladioli —Quantum Error correction codes Springer, 2021

Course Code	Course Name		ing Sch rs/week			Credits Assigned			
		L	T	P	L	T	P	Total	
		3			3			3	
	Reinforcement Learning	Examination Scheme							
CSDO8013			ISE1	MSE	ISE2	ESE	Total		
		Theory	20	30	20	100(30%	1	00	
						Weightage)			
		Lab							

Pre-requisite Course Codes			Mathematical concepts of Geometry, Linear Algebra,			
			Calculus, Basic Electronics			
	CO1	Learn how t	o define RL tasks and the core principles behind the RL,			
	olicies, value functions, deriving Bellman equations.					
	CO2	Evaluate work with tabular methods to solve classical control problems.				
Course	CO3	Apply Mark	ov Decision Processes to solve real-world problems.			
Outcomes	CO4	Understand	the dynamic programming for policy Evaluation.			
	CO5	Implement r	reinforcement learning problems based on averaging sample			
		returns using	g Monte Carlo method.			
	CO6	Recognize c	current advanced techniques and applications in RL.			

Module No.	Unit No.	Topics		Hrs.
1		Introduction to Reinforcement Learning:	1	6
	1.1	Probability distributions and expected values, and basic linear algebra (e.g., inner products). Reinforcement Learning: Key features and Elements of RL, Types of RL, rewards. Reinforcement Learning Algorithms: Q-Learning, State Action Reward State action (SARSA),		
2		Bandit problems and online learning:		7
	2.1	An n-Armed Bandit Problem, Action-Value Methods Tracking a Nonstationary Problem, Optimistic Initial Values Upper- Confidence-Bound Action Selection Gradient Bandits		
3		Markov Decision Processes:	1,2	7
	3.1	The Agent–Environment Interface, The Agent–Environment Interface, Goals and Rewards, Returns, Markov properties, Markov Decision Process, Value Functions and Optimal Value Functions		
4		Dynamic Programming:	1,2	7
	4.1	Policy Evaluation (Prediction), Policy Improvement, Policy Iteration, Value Iteration, Asynchronous Dynamic Programming, Generalized Policy Iteration		
5		Monte Carlo Methods and Temporal-Difference Learning	1,2	7

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	5.1	Monte Carlo Prediction, Monte Carlo Estimation of Action Values, Monte Carlo Control, TD Prediction, TD control using Q-Learning		
6		Applications and Case Studies	3,4	5
	6.1	Elevator Dispatching, Dynamic Channel Allocation, Job-Shop Scheduling		
		·	Total	39

Course Assessment:

ISE-1: Assignment/quiz (20 Marks)
ISE-2: Assignment/quiz (10 Marks)

Activity: Demonstration of case study/mini project (10 Marks)

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire

syllabus

Text Books:

- 1. Reinforcement Learning: An Introduction, by Richard S. Sutton and Andrew G. Barto
- 2. Alessandro Palmas, Dr. Alexandra Galina Petre, Emanuele Ghelfi, The Reinforcement Learning Workshop: Learn how to Apply Cutting-edge Reinforcement Learning Algorithms to a Wide Range of Control Problems, 2020 Packt publishing.
- 3. Phil Winder, Reinforcement Learning Industrial Applications with Intelligent Agents, O'Reilly
- 4. Dr Engr S M Farrukh Akhtar, Practical Reinforcement Learning, Packt Publishing, 2017.

Reference Books:

- 1. Maxim Lapan, Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero.
- 2. Alberto Leon-Garcia, Probability, Statistics and Random Processes for Electrical Engineering, Third Edition, Pearson Education, Inc
- 3. Csaba Szepesv'ari, Algorithms for Reinforcement Learning, Morgan & Claypool Publishers

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total	
		3			3			3	
	Graph Data Science	Examination Scheme							
CSDO8021			ISE1	MSE	ISE2	ESE	Total		
		Theory	20	30	20	100(30%	1	.00	
						Weightage)	e)		
		Lab							

Pre-requisite Co	urse C	odes
	CO1	Demonstrate a solid understanding of graph concepts and properties.
	CO2	Apply graph algorithms to solve puzzles and optimization problems.
	CO3	Compare graph databases with relational and NoSQL databases.
Course	CO4	Model data using the labelled property graph model and avoid common
Course Outcomes		pitfalls.
Outcomes	CO5	Build graph database applications with proper data modeling and
		testing.
	CO6	Analyze and implement graph database solutions for real-world use
		cases, considering non-functional characteristics

Module No.	Topics	Ref	Hrs.
1	Introduction to Graph	1	4
	Definitions and examples, Three puzzles, Paths and cycles, Connectivity, Eulerian graphs, Hamiltonian graphs, shortest path, Chinese postman problem, travelling salesman problem, trees, properties of trees		
2	Introduction Graph databases	2	7
	A High-Level View of the Graph Space, Graph Databases, Graph Compute Engines, The Power of Graph Databases, Performance, Flexibility, Agility, Options for Storing Connected Data, Relational Databases Lack Relationships, NOSQL Databases Also Lack Relationships, Graph databases embraces relationship		
3	Data Modelling with Graphs	1,2	7
	Models and Goals, The Labelled Property Graph Mode Querying Graphs, A Comparison of Relational and Graph Modelling, Cross- Domain Models, Common Modelling Pitfalls, Identifying Nodes and Relationships, Avoiding Anti-Patterns		
4	Building a Graph Database Application	1,2	7
	Data Modelling, Application Architecture, Testing, Capacity Planning, Importing and Bulk Loading Data		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

5	Graphs in the Real World	3	7
	Organizations Choose Graph Databases, Common Use Cases, Real-World Examples, Authorization and Access Control, Geospatial and Logistics, Graph Database Internals, Native Graph Processing, Native Graph Storage Programmatic APIs, Kernel API, Core API, Traverse Framework, Non-functional Characteristics		
6	Case Study	3	7
	Neo4j – About, Neo4j – Installation, Neo4j – Browser Neo4j - Query Language (Cypher), Neo4j - Create a Node Neo4j - Create a Relationship, Neo4j - Create an Index Neo4j - Create a Constraint, Neo4j - Select Data with MATCH, Neo4j - Import Data from CSV, Neo4j - Drop an Index, Neo4j - Drop a Constraint, Neo4j - Delete a Node, Neo4j - Delete a Relationship		
	, , , , , , , , , , , , , , , , , , ,	Total	39

Course Assessment:

ISE-1: Quiz (10 Marks)

Activity: Assignment (10 Marks)

ISE-2: Quiz (10 Marks)

Activity: Case Study (10 Marks)

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire

syllabus

Text Books:

- 1. Introduction to Graph Theory Fourth edition, Robin J. Wilson
- 2. Daphne Koller and Nir Friedman, "Probabilistic Graphical Models: Principles and Techniques", Cambridge, MA: The MIT Press, 2009 (ISBN 978-0-262-0139-2).
- 3. Graph databases, Ian Robinson, Jim Webber & Emil Eifrem

Reference Books:

- 1. "Graph Databases: New Opportunities for Connected Data" by Ian Robinson, Jim Webber, and Emil Eifrém.
- 2. "Neo4j in Action" by Aleksa Vukotic, Nicki Watt, and Tareq Abedrabbo.
- 3. "Graph Databases for Beginners" by Mark Needham and Amy E. Hodler.
- 4. "Practical Neo4j" by Gregory Jordan.
- 5. "Learning Neo4j" by Rik Van Bruggen.
- 6. "Graph Database Applications and Concepts with Neo4j" by Dionysios Synodinos.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned					
		L	T	P	L	T	P	Total		
		3			3			3		
	Recommendation Systems	Examination Scheme								
CSDO8022			ISE1	MSE	ISE2	ESE	Total			
		Theory	20	30	20	100(30%	1	100		
						Weightage)				
		Lab								

Pre-requisite Course Codes			Artificial Intelligence and Machine Learning, Basic knowledged of Python			
	CO1	To have a	broad understanding of the field of Recommendation Systems.			
	CO2	In-depth K Filtering.	n-depth Knowledge of the architecture and models for Collaborative			
	CO3	Understan	ding the architecture and working of Content based			
Course			dation systems.			
Outcomes	CO4		ding the architecture and basics of Knowledge based dation systems.			
	CO5	Analyzing	hybrid and ensembles recommendation systems.			
	CO6	Evaluation	of recommendation systems by selecting right evaluation			
	parameter.					

Module No.	Unit No.	Topics	Ref	Hrs.
1		Introduction to Recommendation System	1,2	6
	1.1	History of recommendation system, Eliciting Ratings, and other Feedback Contributions, Implicit and Implicit Ratings, Recommender system functions.		
	1.2	Linear Algebra notation: Matrix addition, Multiplication, transposition, and inverses; covariance matrices, Understanding ratings, Applications of recommendation systems, Issues with recommender system.		
2		Collaborative Filtering	1,2	6
	2.1	Architecture of Collaborative Filtering, User-based nearest neighbour recommendation, Item-based nearest neighbour recommendation, Model based and pre-processing based approaches, Clustering for recommendation system, Attacks on collaborative recommender systems, Advantages and drawbacks of Collaborative Filtering.		
3		Content-based recommendation	1,2	7
	3.1	Architecture of content-based systems, Content representation and content similarity, Item profiles, Discovering features of documents, Obtaining item features from tags, Representing item profiles, Methods for learning user profiles, Similarity based retrieval, The Role of User Generated Content in the Recommendation Process.		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	3.2	Bayes classifier for recommendation, Regression based recommendation system. Advantages and drawbacks of content-based filtering		
4		Knowledge based recommendation	1,2	6
	4.1	Knowledge representation and reasoning, Constraint based recommenders, Case based recommenders, Persistent Personalization in Knowledge-Based Systems, Conversational Recommendation. Search based recommendation, Navigation-based recommendation.		
5		Ensembled- Based and Hybrid Recommendation System	1,2	6
	5.1	Opportunities for hybridization, Monolithic hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization strategies.		
6		Evaluating Recommendation System	1,2	8
	6.1	Characteristics and properties of evaluation research, Evaluation design goals- Accuracy, Coverage, Confidence and Trust, Novelty, Serendipity, Diversity, Robustness, Stability and Scalability.		
	6.2	Comparison between evaluation design of classification model and recommendation system, Error metrics, Decision-Support metrics, User- Centred metrics. Comparative analysis between different types of recommendation systems.		
			Total	39

Course Assessment:

ISE-1: Quiz (10 Marks)

Activity: Assignment (10 Marks)

ISE-2: Quiz (10 Marks)

Activity: Case Study (10 Marks)

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire

syllabus

Text Books:

1. Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems: an introduction. Cambridge University Press.

2. Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to Recommender Systems Handbook. Springer, Boston, MA.

Reference Books:

1. Aggarwal, C. C. (2016). Recommender systems (Vol. 1). Cham: Springer International Publishing.

Course Code	Course Name		ing Sch rs/week		Credits Assigned				
		L	T	P	L	T	P	Total	
		3			3			3	
	Social Media Analytics	Examination Scheme							
CSDO8023			ISE1	MSE	ISE2	ESE	Total		
		Theory	20	30	20	100(30%	1	.00	
						Weightage)			
		Lab							

Pre-requisite Co	urse C	odes	Graph Theory, Data Mining, Python/R programming
	CO1	Underst	and the concept of social media
	CO2	Underst	and the concept of social media Analytics and its significance
	CO3	Learners	s will be able to analyze the effectiveness of social media
Course	CO4	Learners	s will be able to use different Social media analytics tools effectively
Outcomes		and effic	ciently.
Outcomes	CO5	Learner	s will be able to use different effective Visualization techniques to
		represer	at social media analytics.
	CO6	Acquire	the fundamental perspectives and hands-on skills needed to work with
		social m	edia data.

Module No.	Topics	Ref	Hrs.
1	Social Media Analytics: An Overview	1	6
	Core Characteristics of Social Media, Types of Social Media, Social		
	media landscape, Need for Social Media Analytics (SMA), SMA in small & large organizations.		
	Purpose of Social Media Analytics, Social Media vs. Traditional		
	Business Analytics, Seven Layers of Social Media Analytics, Types of		
	Social Media Analytics, Social Media Analytics Cycle, Challenges to		
	Social Media Analytics, Social Media Analytics Tools		
2	Social Network Structure, Measures & Visualization	1,2	6
	Basics of Social Network Structure - Nodes, Edges & Tie Describing the		
	Networks Measures - Degree Distribution, Density, Connectivity,		
	Centralization, Tie Strength & Trust Network Visualization - Graph		
	Layout, Visualizing Network features, Scale Issues.		
	Social Media Network Analytics - Common Network Terms, Common		
	Social Media Network Types, Types of Networks, Common Network		
	Terminologies, Network Analytics Tools.		
3	Social Media Text, Action & Hyperlink Analytics	1	8
	Social Media Text Analytics - Types of Social Media Text, Purpose of		
	Text Analytics, Steps in Text Analytics, Social Media Text Analysis		
	Tools, Social Media Action Analytics - What Is Actions Analytics?		
	Common Social Media Actions, Actions Analytics Tools		
	Social Media Hyperlink Analytics - Types of Hyperlinks, Types of		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	Hyperlink Analytics, Hyperlink Analytics Tools		-
4	Social Media Location & Search Engine Analytics	1,4	6
	Location Analytics - Sources of Location Data, Categories of Location Analytics, Location Analytics and Privacy Concerns, Location Analytics Tools Search Engine Analytics - Types of Search Engines, Search Engine Analytics, Search Engine Analytics Tools		
5	Social Information Filtering	1,2	6
	Social Information Filtering - Social Sharing and filtering, Automated Recommendation systems, Traditional Vs social Recommendation Systems, Understanding Social Media and Business Alignment, Social Media KPI, Formulating a Social Media Strategy, Managing Social Media Risks		
6	Social Media Analytics Applications and Privacy	1,2,3	7
	Social media in public sector - Analyzing public sector social media, analyzing individual users, case study. Business use of Social Media - Measuring success, Interaction and monitoring, case study. Privacy - Privacy policies, data ownership and maintaining privacy online		
		Total	39

Course Assessment:

ISE-1: Quiz (10 Marks)

Activity: Assignment (10 Marks)

ISE-2: Quiz (10 Marks)

Activity: Case Study (10 Marks)

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire

syllabus

Text Books:

- 1. Seven Layers of Social Media Analytics_ Mining Business Insights from Social Media Text, Actions, Networks, Hyperlinks, Apps, Search Engine, and Location Data, Gohar F. Khan, (ISBN-10: 1507823207).
- 2. Analyzing the Social Web 1st Edition by Jennifer Golbeck
- 3. Mining the Social Web_ Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites, Matthew A Russell, O'Reilly
- 4. Charu Aggarwal (ed.), Social Network Data Analytics, Springer, 2011

Reference Books:

- 1. Social Media Analytics [2015], Techniques and Insights for Extracting Business Value Out of Social Media, Matthew Ganis, Avinash Kohirkar, IBM Press
- 2. Social Media Analytics Strategy_ Using Data to Optimize Business Performance, Alex Gonçalves, A Press Business Team
- 3. Social Media Data Mining and Analytics, Szabo, G., G. Polatkan, O. Boykin & A. Chalkiopoulus (2019), Wiley, ISBN 978-1-118-82485-6

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned							
		L	T	P	L	T	P	Total	
				2			1	1	
CSL801	Advanced AI Lab	Examination Scheme							
			ISE1	MSE	ISE2	ESE	T	otal	
		Theory							
		Lab	20		30		;	50	

Pre-requisite	Course	Codes C/C++/Java/MATLAB		
CO1 Implement Fuzzy operations and functions towards Fuzzy-rule creation				
	CO2	Build and training Associative Memory Network		
Course	CO3	Build Unsupervised learning based networks		
Outcomes	CO4	Design and implement architecture of Special Networks		
	CO5	Implement Neuro-Fuzzy hybrid computing applications		
	CO6	Implement Fuzzy operations and functions towards Fuzzy-rule creations.		

	Suggested list of Experiments:			
Sr. No.	Name of the Experiment			
1	Design and implement a Hidden Markov Models for outcome prediction			
2	Design and implement a Bayesian Network for outcome prediction			
3	Design and implement a Gaussian Mixture Models for outcome prediction			
4	Build and Train a Generative Multi-Layer Network Model using appropriate dataset			
5	Build and Train a Deep Convolution Generative Multi-Layer (DCGAN) Network			
	Model for an image based dataset.			
6	Develop a Conditional GAN (CGAN) Network to direct the image generation process			
	of the generator model			
7	Train a variational auto encoder using Tensorflow on Fashion MNIST			
8	Explore the working of any pre-trained model towards outcome generation			
9	Implement and analyze the working of Local Interpretable Model-agnostic			
	Explanations(LIME) supervised model			
10	Case-study on the emerging technologies in AI like Metaverse, Augmented reality etc			
11	Mini Project Report: For any one chosen real world application as per the syllabus of			
	CSC801: Advanced AI			
12	Implementation and Presentation of Mini Project			

Course Assessment:

ISE-1: Experiments 1 to 5 (20 Marks)

ISE-2: Experiments 6 to 10 (20 Marks)

Activity: Deep learning with MatLab Course completion and certification (10 Marks)

- 1. https://nptel.ac.in/courses/106106224
- 2. https://www.tensorflow.org/tutorials/generative/cvae
- 3. https://www.analyticsvidhya.com/blog/2022/07/everything-you-need-to-know-about-lime/
- 4. https://onlinecourses.nptel.ac.in/noc20_cs62/preview
- 5. https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
CSDOL8011	AI for financial & Banking application Lab	L	T	P	L	T	P	Total	
				2			1	1	
		Examination Scheme							
			ISE1	MSE	ISE2	ESE	T	otal	
		Theory							
		Lab	20		30		,	50	

Pre-requisite	Course	Codes Python Programming, Deep Learning, Machine Learning			
	CO1	Proficiency in implementing secure and efficient digital money transfer			
		ystems			
	CO2	bility to assess investment performance using risk-adjusted measures			
Course	CO3	Competence in identifying meaningful patterns and segments in financial			
Outcomes		data			
	CO4	Understanding of market sentiment and its impact on trading decisions			
	CO5	Practical skills in developing and evaluating trading algorithms.			
	CO6	Knowledge of fraud detection methods for financial systems.			

	Suggested list of Experiments:					
Sr. No.	Name of the Experiment					
1	Setting up a Digital Money Transfer System					
2	Calculating Sharpe Ratios for Investment Portfolios					
3	Cluster Analysis of Financial Data for Market Segmentation					
4	Analyzing Market Sentiment using the Markov Regime Switching Model					
5	Developing and Backtesting a Simple Trading Algorithm					
6	Implementing Advanced Risk Management Techniques in Trading Algorithms					
7	Fraud Detection using Machine Learning Algorithms					
8	Visualizing Fraud Patterns and Analytics					
9	Designing and Backtesting Complex Trading Strategies					
10	Evaluating and Enhancing the Performance of Trading Algorithms					
11	Applying Machine Learning for Predictive Fraud Analytics					

Course Assessment:

<u>ISE-1</u>: Practical exam based on 1 to 4 experiments (20 Marks)

ISE-2: Practical exam based on 5 to 8 experiments (20 Marks)

Activity: Mini Project (10 Marks)

- 1. https://www.eastnets.com/newsroom/digital-transformation-in-the-banking-and-financial-services-sector
- 2. https://www.techopedia.com/definition/34633/generative-ai

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned							
		L	T	P	L	T	P	Total	
				2			1	1	
CSDOL8012	Quantum Computing Lab	Examination Scheme							
			ISE1	MSE	ISE2	ESE	T	otal	
		Theory							
		Lab	20		30			50	

Pre-requisite	Cours	e Codes Python Programming Language.			
	Implement basic quantum computing logic by building dice and random				
Comman	numbers using open source simulation tools				
Course Outcomes	CO2	Understand quantum logic gates using open source simulation tools.			
Outcomes	CO3	Implement quantum circuits using open source simulation tools.			
	CO4	Implement quantum algorithms using open source simulation tools			

	Suggested list of Experiments:						
Sr. No.	Name of the Experiment						
1	Building Quantum dice						
2	Building Quantum Random No. Generation						
3	Composing simple quantum circuits with q-gates and measuring the output into classical bits						
4	Implementation of Shor's Algorithms						
5	Implementation of Grover's Algorithm						
6	Implementation of Deutsch's Algorithm						
7	Implementation of Deutsch-Jozsa's Algorithm						
8	Quantum Circuits						
9	Qubit Gates						
10	Bell Circuit & GHZ Circuit						
11	Accuracy of Quantum Phase Estimation						
12	Mini Project such as implementing an API for efficient search using Grover's Algorithms or Integer factorization using Shor's Algorithm						

Course Assessment:

<u>ISE-1</u>: Practical exam based on 1 to 4 experiments (20 Marks)

ISE-2: Practical exam based on 5 to 8 experiments (20 Marks)

Activity: Mini Project (10 Marks)

- 1. IBM Experience: https://quantum-computing.ibm.com/
- 2. Microsoft Quantum Development Kit https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/#overview
- 3. Forest SDK PyQuil: https://pyquil-docs.rigetti.com/en/stable/
- 4. Google Quantum CIRQ https://quantumai.google/cirq
- 5. Qiskit Labs IBM https://learn.qiskit.org/course/ch-labs/lab-1-quantum-circuits

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned					ed		
		L	T	P	L	T	P	Total	
				2			1	1	
CCDOL 9012	Reinforcement Learning Lab	Examination Scheme							
CSDOL8013			ISE1	MSE	ISE2	ESE	T	otal	
		Theory							
		Lab	20		30			50	

Pre-requisite	e Cours	e Python Programming, Deep Learning, Machine Learning
Codes		
	CO1	Gain a solid understanding of reinforcement learning concepts and problem formulation
	CO2	Evaluate and compare exploration strategies in online learning scenarios.
	CO3	Solve Markov Decision Processes using dynamic programming algorithms
Course Outcomes	CO4	Apply dynamic programming techniques to solve small-scale MDP problems.
	CO5	Implement and analyze Monte Carlo methods and Temporal-Difference learning algorithms
	CO6	Explore practical applications of reinforcement learning in real-world domains

	Suggested list of Experiments:				
Sr. No.	Name of the Experiment				
1	Implementing a simple grid-world environment and training an agent using basic Q-learning				
2	Implementing a multi-armed bandit problem and comparing different exploration strategies like epsilon-greedy and UCB.				
3	Implementing a basic grid-world environment as an MDP and applying policy iteration and value iteration algorithms to find optimal policies				
4	Applying dynamic programming algorithms, such as policy evaluation and policy improvement, to solve a small-scale MDP problem.				
5	Implementing Monte Carlo control and Temporal Difference (TD) learning algorithms to train an agent in a grid-world environment.				
6	Exploration vs. Exploitation Trade-off: Experimenting with different exploration strategies and analyzing their impact on the learning performance of an agent in a bandit problem.				
7	Function Approximation in Reinforcement Learning: Using function approximation techniques, such as linear regression or neural networks, to approximate value functions in reinforcement learning problems.				
8	Deep Reinforcement Learning: Implementing a deep Q-network (DQN) to train an agent to play a popular Atari game, such as Pong or Space Invaders.				

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

9	Transfer Learning and Multi-Task Reinforcement Learning: Investigating transfer
	learning in reinforcement learning by training an agent in one environment and
	transferring its knowledge to a different but related environment
10	Policy Gradient Methods: Implementing policy gradient methods, such as
	REINFORCE or Proximal Policy Optimization (PPO), to train an agent in a
	continuous control environment
11	Applications and Case Studies: Applying reinforcement learning techniques to solve a
	real-world problem, such as training a self-driving car to navigate a simulated road
	environment

Course Assessment:

ISE-1: Practical exam based on 1 to 4 experiments (20 Marks)

ISE-2: Practical exam based on 5 to 8 experiments (20 Marks)

Activity: Mini Project (10 Marks)

- 1. Machine Learning and Friends at Carnegie Mellon University
- 2. Reinforcement Learning: A Survey
- 3. Bibliography on Reinforcement Learning
- 4. David J. Finton's Reinforcement Learning Page

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned					ed		
		L	T	P	L	T	P	Total	
				2			1	1	
CCDOL 9031	Graph Data	Examination Scheme							
CSDOL8021	Science Lab		ISE1	MSE	ISE2	ESE	T	otal	
		Theory							
		Lab	20		30			50	

Pre-requisite	Course	Python Programming, Deep Learning, Machine Learning.
Codes		
	CO1	Comprehensive understanding of graph databases and their benefits
	CO2	Proficiency in creating data models for representing complex
Commo		relationships
Course	CO3 Ability to write ef	Ability to write efficient queries and analyze graph data effectively.
Outcomes	CO4	Competence in administering and managing graph databases
	CO5	Application of graph database techniques to solve real-world problems.
	CO6	Understand developing graph database applications.

	Suggested list of Experiments:					
Sr. No.	Name of the Experiment					
1	Graph Database Fundamentals:					
	• Install and set up a graph database system (e.g., Neo4j) on a local machine.					
	 Familiarize yourself with the graph database environment, including the query language (Cypher) and browser interface 					
2	Data Modeling with Graphs:					
	 Design a data model using the labeled property graph model for a specific domain (e.g., social network, e-commerce). 					
	• Implement the data model in the graph database and populate it with sample data					
3	Basic Graph Queries:					
	 Perform basic graph queries using Cypher to retrieve nodes, relationships, and their properties. 					
	 Explore different query patterns, such as finding paths, filtering nodes, and ordering results. 					
4	Advanced Graph Queries:					
	 Extend your query knowledge by performing more complex graph queries, including subgraph matching, aggregation, and conditional filtering. Optimize query performance by understanding and utilizing indexes. 					
5	Graph Database Administration:					
	 Learn and practice essential administrative tasks, such as managing users, roles, and access control. 					
	 Perform backup and restore operations to ensure data integrity. 					
6	Importing and Exporting Data:					
	• Import data from external sources (e.g., CSV files) into the graph database.					
	 Export graph data to different formats for analysis or sharing. 					

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

7	Graph Algorithms and Analytics:
	• Explore the built-in graph algorithms provided by the graph database system
	(e.g., centrality, community detection).
	Apply graph algorithms to analyze and extract insights from your graph data
8	Graph Visualization and Exploration:
	Utilize visualization tools and libraries to visualize your graph data.
	• Explore and navigate the graph visually to gain a better understanding of its structure and relationships
9	Performance Optimization:
	• Identify and address performance bottlenecks in your graph database
	application.
	• Optimize queries, indexes, and data modeling to improve overall system
	performance.
10	Scaling and Replication:
	• Learn techniques for scaling and replicating a graph database to handle larger
	datasets and higher workloads.
	• Implement and test replication strategies to ensure data availability and fault
	tolerance.
11	Real-World Use Cases:
	• Choose a specific real-world use case (e.g., recommendation systems, fraud
	detection) and apply graph database techniques to solve the problem.
	• Design and implement a graph database application that addresses the unique requirements of the chosen use case.

Course Assessment:

ISE-1: Practical exam based on 1 to 4 experiments (20 Marks)

ISE-2: Practical exam based on 5 to 8 experiments (20 Marks)

Activity: Assignment (10 Marks)

- 1. https://web4.ensiie.fr/~stefania.dumbrava/OReilly_Graph_Databases.pdf
- 2. https://www.quackit.com/neo4j/tutorial/

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned					ed		
		L	T	P	L	T	P	Total	
		2				1	1		
CCDOL 9022	Recommendation Systems Lab	Examination Scheme							
CSDOL8022			ISE1	MSE	ISE2	ESE	To	otal	
		Theory							
		Lab	20		30			50	

Pre-requisit	e Cour	se Codes Java Python lab
	CO1	Understand mathematics and representation of data for recommendation systems.
	CO2	Design, implement and analyze Collaborative filtering based for recommendation systems
Course	CO3	Design, implement and analyze Content-based recommendation systems
Outcomes	CO4	Design, implement and analyze Knowledge-based recommendation systems.
	CO5	Understanding feature engineering and pre-processing for recommendation
		systems.
	CO6	To solve real world problems using recommendation systems.

	Suggested list of Experiments:						
Sr. No.	Name of the Experiment						
1	Implementation of Matrix operations and data representation towards understanding						
	mathematics for recommendation system						
2	Experiment on the role of clustering methods with respect to recommendation systems						
3	Feature engineering and pre-processing of data for recommendation systems.						
4	Implementation of Bayes classifier for recommendation.						
5	Implement User-based Nearest neighbor recommendation						
6	Implement Item-based Nearest neighbor recommendation						
7	Implement Content-based recommendation system.						
8	Implement Knowledge-based recommendation system						
9	Implementation of a recommendation system using Hybrid approach.						
10	Implementation of a recommendation system using Ensembled approach.						
11	Implementation of a Regression based recommendation system.						
12	Analyze results on the basis of different evaluation parameters and graphical						
	representations for recommendation systems.						
13	Mini Project Report: For any one chosen real world Recommendation systems						
	application.						
14	Implementation and Presentation of Mini Project						

Course Assessment:

ISE-1: Practical exam for 1 to 4 experiments (20 Marks)

ISE-2: Practical exam for 5 to 8 experiments (20 Marks) Activity: Assignment (10 Marks)

- 1. https://towardsdatascience.com/recommendation-systems-explained-a42fc60591ed
- 2. https://www.coursera.org/specializations/recommender-systems

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assign						
CCD O1 0022		L	Т	P	L	T	P	Total
				2			1	1
	Social Media	Examination Scheme						
CSDOL8023	Analytics Lab	ISE1 MSE ISE2 ESE				ESE	Total	
		Theory						
		Lab	20		30		;	50

Pre-requisite	Course	Codes Types of Graphs, Data Mining, Data Analytics
	CO1	Understand characteristics and types of social media networks.
	CO2	Use social media analytics tools for business
Comman	CO3	Collect, monitor, store and track social media data
Course Outcomes	CO4	Analyze and visualize social media data from multiple platforms
Outcomes	CO5	Design and develop content and structure based social media analytics
		models
	CO6	Design and implement social media analytics applications for business

	Suggested list of Experiments:						
Sr. No.	Name of the Experiment						
1	Study various –						
	i) Social Media platforms (Facebook, twitter, YouTube etc)						
	ii) Social Media analytics tools (Facebook insights, google analytics netlytic, etc)						
	iii) Social Media Analytics techniques and engagement metrics (page level, post						
	level, member level)						
	iv) Applications of Social media analytics for business. e.g. Google Analytics						
	https://marketingplatform.google.com/about/analytics/						
	https://netlytic.org/						
2	Data Collection-Select the social media platforms of your choice (Twitter, Facebook,						
	LinkedIn, YouTube, Web blogs etc), connect to and capture social media data for						
	business (scraping, crawling, parsing).						
3	Data Cleaning and Storage- Preprocess, filter and store social media data for business						
	(Using Python, MongoDB, R, etc).						
4	Exploratory Data Analysis and visualization of Social Media Data for business.						
5	Develop Content (text, emoticons, image, audio, video) based social media analytics						
	model for business. (e.g. Content Based Analysis: Topic, Issue, Trend,						
	sentiment/opinion analysis, audio, video, image analytics)						
6	Develop Structure based social media analytics model for any business. (e.g. Structure						
	Based Models - community detection, influence analysis)						
7	Develop a dashboard and reporting tool based on real time social media data.						
8	Design the creative content for promotion of your business on social media platform.						
9	Analyze competitor activities using social media data.						
10	Develop social media text analytics models for improving existing product/ service by						
	analyzing customer's reviews/comments						

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

<u>ISE-1</u>: Practical exam based on 1 to 4 experiments (20 Marks) ISE-2: Practical exam based on 5 to 8 experiments (20 Marks)

Activity: Assignment (10 Marks)

- 1. Python Social Media Analytics: Analyze and visualize data from Twitter, YouTube, GitHub, and more Kindle Edition by Siddhartha Chatterjee, Michal Krystyanczuk
- 2. Learning Social Media Analytics with R, by Raghav Bali, Dipanjan Sarkar, Tushar Sharma. Jennifer Golbeck, Analyzing the social web, Morgan Kaufmann, 2013
- 3. Matthew A. Russell. Mining the Social Web: Data Mining Facebook, Twitter, Linkedin, Google+, Github, and More, 2nd Edition, O'Reilly Media, 2013
- 4. Charu Aggarwal (ed.), Social Network Data Analytics, Springer, 2011

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigne				ed				
		L	T	P	L	T P	Total			
		03			03		03			
11 (1902)	Project	Examination Scheme								
ILO8021	Management		ISE1	MSE	ISE2	ESE	Total			
		Theory	20	30	20	100(30%	100			
						Weightage)				

Pre-requisi	te Cou	rse Codes
	CO1	Apply selection criteria and select an appropriate project from different options.
Course	CO2	Write work break down structure for a project and develop a schedule based on it.
Course Outcomes	CO3	Identify opportunities and threats to the project and decide an approach to deal with them strategically.
	CO4	Use Earned value technique and determine & predict status of the project.
	CO5	Capture lessons learned during project phases and document them for future
		reference

Module	Unit	Topics	Ref.	Hrs
No.	No.	•		
1.	1.1	Project Management Foundation: Definition of a project,	1,2,4	5
		Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager. Negotiations and resolving conflicts. Project management in various organization structures. PM knowledge areas as per Project Management Institute (PMI).	,5	
2.	2.1	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming & performing), team dynamics	1	6
3.	3.1	Project Planning and Scheduling: Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, GANTT chart. Introduction to Project Management Information System (PMIS).	1	8
4.	4.1	Planning Projects Crashing project time, Resource loading and leveling, Goldratt's critical chain, Project Stakeholders and Communication plan. Risk Management in projects: Risk management planning, Risk	1	6

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		identification and risk register. Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks		
5.	5.1	Executing Projects : Planning monitoring and controlling cycle. Information needs and reporting, engaging with all stakeholders of the projects. Team management, communication and project meetings.	1,3	8
	5.2	Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep. Project audit		
	5.3	Project procurement management, contracting and outsourcing		
6.	6.1	Project Leadership and Ethics : Introduction to project leadership, ethics in projects. Multicultural and virtual projects	1,3	6
	6.2	Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration, Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study.		
	•	·	Total	39

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

ISE-2:Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

Course Code	Course Name		ing Schors/week)		Credits Assigned			
		L	T	P	L	T	P Total	
		03			03		03	
ILO8022	Finance	Examination Scheme						
1LO8022	Management		ISE1	MSE	ISE2	ESE	Total	
		Theory	20	30	20	100(30%	100	
						Weightage)		

Pre-requisite Course Codes						
Canada Ontaamaa	CO1	Understand Indian finance system and corporate finance				
Course Outcomes	CO2	Take investment, finance as well as dividend decisions				

Module	Unit	Topics	Ref.	Hrs
No.	No.			
1.	1.1	Overview of Indian Financial System: Characteristics,	1,2,4	6
		Components and Functions of Financial System.		
	1.2	Financial Instruments: Meaning, Characteristics and		
		Classification of Basic Financial Instruments — Equity		
		Shares, Preference Shares, Bonds-Debentures, Certificates of		
		Deposit, and Treasury Bills		
	1.3	Financial Markets: Meaning, Characteristics and		
		Classification of Financial Markets		
		— Capital Market, Money Market and Foreign Currency		
		Market		
	1.4	Financial Institutions: Meaning, Characteristics and		
		Classification of Financial Institutions — Commercial Banks,		
		Investment-Merchant Banks and Stock Exchanges		
2.	2.1	Concepts of Returns and Risks: Measurement of Historical	1,3	6
		Returns and Expected Returns of a Single Security and a		
		Two-security Portfolio; Measurement of Historical Risk and		
		Expected Risk of a Single Security and a Two-security		
		Portfolio.		
	2.2	Time Value of Money: Future Value of a Lump Sum,		
		Ordinary Annuity, and Annuity Due; Present Value of a Lump		
		Sum, Ordinary Annuity, and Annuity Due; Continuous		
		Compounding and Continuous Discounting		
3.	3.1	Overview of Corporate Finance: Objectives of Corporate	1	9
		Finance; Functions of Corporate Finance—Investment		
		Decision, Financing Decision, and Dividend Decision.		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		Miller Approach	Total	39
		Overview of Dividend Policy Theories and Approaches—Gordon's Approach, Walter's Approach, and Modigliani-		
6.	6.1	Dividend Policy: Meaning and Importance of Dividend Policy; Factors Affecting an Entity's Dividend Decision;	4	3
		Approach; Traditional Approach, and Modigliani-Miller Approach. Relation between Capital Structure and Corporate Value; Concept of Optimal Capital Structure		
		Approaches— Net Income Approach, Net Operating Income		
		Structure; Overview of Capital Structure Theories and		
		Project Finance. Capital Structure: Factors Affecting an Entity's Capital		
		Finance—Trade Credit, Bank Finance, Commercial Paper;		
5.	5.1	Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term	1)
5.	5 1	Management of Cash and Marketable Securities	1	5
		Management of Inventories; Management of Receivables; and		
		Needs; Estimation of Working Capital Requirements;		
		Management; Factors Affecting an Entity's Working Capital		
	4.2	Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital		
		(IRR), and Modified Internal Rate of Return (MIRR)		
		Value(NPV), Profitability Index, Internal Rate of Return		
		Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present		
		Budgeting; Inputs for Capital Budgeting Decisions;		
4.	4.1	Capital Budgeting: Meaning and Importance of Capital	1	10
		Limitations of Ratio Analysis		
		Ratios; Capital Structure Ratios; Stock Market Ratios;		
		Cash Flow Statement; Purpose of Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability		
		Statements—Balance Sheet, Profit and Loss Account, and		
	3.2	Financial Ratio Analysis: Overview of Financial		

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2:</u> Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

Recommended Books:

1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Course Code	Course Name		hing Sch Irs/week		Credits Assigned			
		L	T	P	L	T	P Total	
	Entrepreneurship	03			03		03	
ILO8023	Development and	Examination Scheme						
1LU8023	Management		ISE1	MSE	ISE2	ESE	Total	
		Theory	20	30	20	100(30%	100	
						Weightage)		

Pre-requisite Course	Codes	
	CO1	Understand the concept of business plan and ownerships
Course Outcomes	CO2	Interpret key regulations and legal aspects of entrepreneurship in
		India
	CO3	Understand government policies for entrepreneurs

Module	Topics	Ref.	Hrs.
No.			
1.	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship	1	4
2.	Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to Business Operations	2	9
3.	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises	3	5
4.	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organizations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	3	8
5.	Effective Management of Business: Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-	4	8

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	Marketing		
6.	Achieving Success In The Small Business: Stages of the small business	3	5
	life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business		
		Total	39

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2</u>: Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise,
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Course Code	Course Name		ching Scheme Hrs/week)		Credits Assigned				
		L	T	P	L	Т	P	Total	
		03			03			03	
ILO8024	Human Resource	Examination Scheme							
1LU0024	Management		ISE1	MSE	ISE2	ESF	C	Total	
		Theory	20	30	20	100(30	0%	100	
						Weight	age)		

Pre-requisite Cou	irse Co	des
	CO1	Understand the concepts, aspects, techniques and practices of the
		human resource management.
	CO2	Understand the Human resource management (HRM) processes,
Course		functions, changes and challenges in today's emerging organizational
Outcomes		perspective.
Outcomes	CO3	Gain knowledge about the latest developments and trends in HRM.
	CO4	Apply the knowledge of behavioral skills learnt and integrate it with in
		inter personal and intergroup environment emerging as future stable
		engineers and managers

Module	Unit	Topics	Ref.	Hrs
No.	No.			
1.		Introduction to HR	1,2	5
	1.1	Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRM functions.		
	1.2	Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues.		
2.		Organizational Behavior (OB)	1,2	7
	2.1	Introduction to OB Origin, Nature and Scope of Organizational Behavior, Relevance to Organizational Effectiveness and Contemporary issues		
	2.2	Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness Perception: Attitude and Value, Effect of perception on Individual Decision making, Attitude and Behavior.		
	2.3	Motivation: Theories of Motivation and their Applications for Behavioral Change (Maslow, Herzberg, McGregor);		
	2.4	Group Behavior and Group Dynamics: Work groups formal and informal groups and stages of group development. Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team. Case study		
3.		Organizational Structure & Design	2	6

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	3.1	Structure, size, technology, Environment of organization; Organizational Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress. Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership. Power and Politics: Sources and uses of power; Politics at workplace, Tactics and strategies		
4.		Human resource Planning	1	5
·	4.1	Recruitment and Selection process, Job enrichment, Empowerment- Job- Satisfaction, employee morale. Performance Appraisal Systems: Traditional & modern methods, Performance Counseling, Career Planning. Training & Development: Identification of Training Needs, Training Methods		
5.		Emerging Trends in HR	1,3	6
	5.1	Organizational development; Business Process Re-engineering (BPR), BPR as a tool for organizational development, managing processes & transformation in HR. Organizational Change, Culture, Environment. Cross Cultural Leadership and Decision Making: Cross		
		Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation		
6.		HR & MIS Strategic HRM	1,2	10
	6.1	Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries.		
	6.2	Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic Management Process, Approaches to Strategic Decision Making; Strategic Intent – Corporate Mission, Vision, Objectives and Goals		
	6.3	Labor Laws & Industrial Relations: Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act		
			Total	39

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2:</u>Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Course Code	Course Name		ning Sch [rs/weel		(Credits Assig	ned	
		L	T	P	L	T P	Total	
	Professional Ethics	03			03		03	
ILO8025	and Corporate Social Responsibility (CSR)	Examination Scheme						
ILU8025			ISE1	MSE	ISE2	ESE	Total	
		Theory	20	30	20	100(30%	100	
						Weightage)		

Pre-requisite Course	Codes	
	CO1	Understand rights and duties of business
	CO2	Distinguish different aspects of corporate social responsibility
Course Outcomes	CO3	Demonstrate professional ethics
	CO4	Understand legal aspects of corporate social responsibility

Module	Unit	Topics	Ref.	Hrs
No.	No.			
1.	1.1	Professional Ethics and Business: The Nature of Business Ethics; Ethical Issues in Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and Benefits; Rights and Duties of Business	1,2	4
2.	2.1	Professional Ethics in the Marketplace: Perfect Competition; Monopoly Competition; Oligopolistic Competition; Oligopolies and Public Policy Professional Ethics and the Environment: Dimensions of Pollution and Resource Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable Resources	3	8
3.	3.1	Professional Ethics of Consumer Protection: Markets and Consumer Protection; Contract View of Business Firm's Duties to Consumers; Due Care Theory; Advertising Ethics; Consumer Privacy Professional Ethics of Job Discrimination: Nature of Job Discrimination; Extent of Discrimination; Reservation of Jobs	3	6
4.	4.1	Introduction to Corporate Social Responsibility: Potential Business Benefits—Triple bottom line, Human resources, Risk management, Supplier relations; Criticisms and concerns—Nature of business; Motives; Misdirection. Trajectory of Corporate Social Responsibility in India	1	5
5.	5.1	Corporate Social Responsibility: Articulation of Gandhian Trusteeship Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India, Corporate Social Responsibility and Public-Private Partnership (PPP) in Indi	1	8
6.	6.1	Corporate Social Responsibility in Globalizing India: Corporate Social Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs, Government of India, Legal Aspects of Corporate Social Responsibility— Companies Act, 2013	1	8

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Total 39

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2:</u> Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by BidyutChakrabarty, Routledge, New Delhi

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total	
		03			03			03	
ILO8026	Research	Examination Scheme							
1LO0020	Methodology		ISE1	MSE	ISE2	ESE]	Total	
		Theory	20	30	20	100(30%		100	
						Weightage)			

Pre-requisite Course	e Codes			
	CO1	Prepare a preliminary research design for projects in their subject		
matter areas				
Course Outcomes CO2 Accurately collect, analyze and rep		Accurately collect, analyze and report data		
	CO3	Present complex data or situations clearly		
	CO4	Review and analyze research findings		

Module	Unit	Topics	Ref.	Hrs
No.	No.			•
1.		Introduction and Basic Research Concepts	1,2	9
	1.1	Research - Definition; Concept of Construct, Postulate,		
		Proposition, Thesis, Hypothesis, Law, Principle. Research methods vs Methodology		
	1.2	Need of Research in Business and Social Sciences		
	1.3	Objectives of Research		
	1.4	Issues and Problems in Research		
	1.5	Characteristics of Research: Systematic, Valid, Verifiable,		
		Empirical and Critical		
2.		Types of Research	1	7
	2.1	Basic Research		
	2.2	Applied Research		
	2.3	Descriptive Research		
	2.4	Analytical Research		
	2.5	Empirical Research		
	2.6	Qualitative and Quantitative Approaches		
3.		Research Design and Sample Design	1	7
	3.1	Research Design – Meaning, Types and Significance		
	3.2	Sample Design – Meaning and Significance Essentials of a good sampling Stages in Sample Design Sampling methods/techniques Sampling Errors		
4.		Research Methodology	2	8
	4.1	Meaning of Research Methodology		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

			Total	39
	6.3	Suggestions and Recommendation		
	6.2	Validity Testing & Ethical Issues		
	6.1	Preparation of the report on conclusion reached		
6.		Outcome of Research	3	4
	3.1	data, Analysis of data, Generalization and Interpretation of analysis		
٥.	5.1	Formulating Research Problem Considerations: Relevance, Interest, Data Availability, Choice of	3	4
5.		j. Preparation of Research Report	3	4
		i. Hypothesis testing and Interpretation of Data		
		h. Data Analysis		
		g. Data Collection		
		f. Sample Design		
		e. Formulation of research Design		
		d. Formulation of Hypothesis		
		b. Formulation of Research Problem c. Review of Literature		
		a. Identification and Selection of Research Problem		
	4.2	Stages in Scientific Research Process:		

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2:</u> Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R.,1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Course Code	Course Name	1	hing Sch Irs/week		C	redits Assign	ed		
		L	T	P	L	T	P Total		
	IPR and Patenting	3			3		3		
ILO8027		Examination Scheme							
ILU002/			ISE1	MSE	ISE2	ESE	Total		
		Theory	20	30	20	100(30%	100		
						Weightage)			

Pre-requisite Course Codes					
Course Outcomes	CO1	understand Intellectual Property assets			
	CO2	assist individuals and organizations in capacity building			
	CO3	work for development, promotion, protection, compliance, and			
		enforcement of Intellectual Property and Patenting			

Module No.	Unit No.	Topics	Ref.	Hrs
1.	1.1	Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different category of IPR instruments - Patents, TradeMarks, Copyrights, Industrial Designs, Plant variety protection, Geographical indications, Transfer of technology etc.	1	5
	1.2	Importance of IPR in Modern Global Economic Environment: Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of development		
2.	2.1	Enforcement of Intellectual Property Rights: Introduction, Magnitude of problem, Factors that create and sustain counterfeiting/piracy, International agreements, International organizations (e.g. WIPO, WTO) active in IPR enforcement	2	7
	2.2	Indian Scenario of IPR: Introduction, History of IPR in India, Overview of IP laws in India, Indian IPR, Administrative Machinery, Major international treaties signed by India, Procedure for submitting patent and Enforcement of IPR at national level etc.		
3.	3.1	Emerging Issues in IPR: Challenges for IP in digital economy, e-commerce, human genome, biodiversity and traditional knowledge etc.	4	5
4.	4.1	Basics of Patents: Definition of Patents, Conditions of patentability, Patentable and non-patentable inventions, Types of patent applications (e.g. Patent of addition etc), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method	1,2	7

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

5.	5.1	Patent Rules: Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member	1,4	8
		(TRIPS agreement, Paris convention etc.)		
6.	6.1	Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publication etc, Time frame and cost, Patent Licensing, Patent Infringement Patent databases: Important websites, Searching international databases	5,6	7
			Total	39

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2:</u> Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- 5. Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- 6. LousHarns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. Prabhuddha Ganguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar and mohd Iqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, Priti Mathur, Anshul Rathi, IPR: Drafting, Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

Course Code	Course Name		ing Sche rs/week)		(Credits Assign	nec	i
		L	T	P	L	T	P	Total
		03			03			03
ILO8028	Digital			tion Sche	cheme			
ILU0020	Business		ISE1	MSE	ISE2	ESE		Total
	Management	Theory	20	30	20	100(30%		100
						Weightage)		

Pre-requisite Cour	se Cod	es
	CO1	Identify drivers of digital business
Course Outcomes	CO2	Illustrate various approaches and techniques for E-business and
		management
	CO3	Prepare E-business plan

No. 1.1	Introduction to Digital Business: Introduction, Background and current status, E-market places, structures, mechanisms, economics and impacts Difference between physical economy and digital economy, Opportunities and Challenges in Digital Business, Drivers of digital business- Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of	1,2,3	9
	and current status, E-market places, structures, mechanisms, economics and impacts Difference between physical economy and digital economy, Opportunities and Challenges in Digital Business, Drivers of digital business- Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of	1,2,3	9
1.2	Cloud Computing, Social media, BYOD, and Internet of		
	Things(digitally intelligent machines/services)		
2.1	Overview of E-Commerce: Meaning, Retailing in e-commerce-products and services, consumer behaviour, market research and advertisement B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals	1,2	6
2.2	Other E-C models and applications, innovative EC System-From E-government and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC		
3.1	Digital Business Support services: ERP as e —business backbone, knowledge Tope Apps, Information and referral system Application Development: Building Digital business	3	6
	3.1	commerce-products and services, consumer behaviour, market research and advertisement B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals 2.2 Other E-C models and applications, innovative EC System-From E-government and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC 3.1 Digital Business Support services: ERP as e -business backbone, knowledge Tope Apps, Information and referral system	commerce-products and services, consumer behaviour, market research and advertisement B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals 2.2 Other E-C models and applications, innovative EC System-From E-government and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC 3.1 Digital Business Support services: ERP as e -business backbone, knowledge Tope Apps, Information and referral system 3.2 Application Development: Building Digital business

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

6.	6.1	(Process of Digital Transformation) Materializing e-business: From Idea to Realization-Business	5	8
		Selection of strategy, E-business strategy into Action, challenges and E-Transition		
		Analysis of Company's Internal and external environment,		
5.	5.1	E-Business Strategy E-business Strategic formulation-	3,4	4
		(PKI) for Security, Prominent Cryptographic Applications		
		SSL, Firewall as Security Control, Public Key Infrastructure		
		Certificates, Security Protocols over Public Networks: HTTP,		
		Private Key Cryptography, Digital Signatures, Digital		
		Commerce Threats, Encryption, Cryptography, Public Key and		
		Threats to e-business -Security Overview, Electronic		
4.	4.1	Managing E-Business: Managing Knowledge, Management skills for e-business, Managing Risks in e –business Security	1,2,4	6

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2</u>: Seminars based on Case study/Application in practical, real-life domain for 20 Marks

MSE: 30 Marks written examination based on initial 50% syllabus

ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. A textbook on E-commerce, ErArunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, VinocenzoMorabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective DOI:10.1787/9789264221796-enOECD Publishing

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name		hing Sch Irs/week		(Credits Assi	gned	l	
		L	T	P	L	T	P	Total	
		03			03			03	
ILO8029	Environmental	Examination Scheme							
1LO8029	Management		ISE1	MSE	ISE2	ESE		Total	
		Theory	20	30	20	100(30%		100	
						Weightage	e)		

Pre-requisite Course Codes	e	
	CO1	Understand the concept of environmental management
Course Outcomes	CO2	Understand ecosystem and interdependence, food chain etc.
	CO3	Understand and interpret environment related legislations

Module	Topics	Ref.	Hrs.
No. 1.	Introduction and Definition of Environment:	1,2	10
1.	Significance of Environment Management for contemporary	1,2	10
	managers, Career opportunities.		
	Environmental issues relevant to India, Sustainable Development,		
	The Energy scenario.		
2.	Global Environmental concerns : Global Warming, Acid Rain,	1,2	6
	Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss		
	of Biodiversity, Industrial/Man- made disasters, Atomic/Biomedical		
	hazards, etc.	1.0	-
3.	Concepts of Ecology: Ecosystems and interdependence between	1,2	5
	living organisms, habitats, limiting factors, carrying capacity, food chain, etc.		
4.	Scope of Environment Management, Role & functions of	5,6	10
	Government as a planning and regulating agency.	5,0	10
	Environment Quality Management and Corporate Environmental		
	Responsibility		
5.	Total Quality Environmental Management, ISO-14000, EMS	5,6	5
	certification		
6.	General overview of major legislations like Environment Protection	5,6,7	3
	Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection		
	Act, Forest Act, Factories Act, etc.		
		Total	39
		1 Otal	57

Course Assessment:

ISE-1: Assignments for 10 Marks

Multiple choice questions (MCQ) quiz for 10 Marks [1 hour duration]

<u>ISE-2:</u> Seminars based on Case study/Application in practical, real-life domain for 20 Marks

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

MSE: 30 Marks written examination based on initial 50% syllabus ESE: Three hours 100 marks(30% weightage) written examination based on entire syllabus

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, TV Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press
- 7. Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
	Major Project 2	L	T	P	L	T	P	Total
				12			6	6
CSP801		Examination Scheme						
			ISE1	MSE	ISE2	ESE	To	otal
		Theory						
		Lab	50		50	50	1	50

Pre-requisite	Course	Codes				
	CO1	Identify problems based on societal/research needs.				
	CO2	Apply Knowledge and skill to solve societal problems in a group				
	CO3	Draw the proper inferences from available results through theoretical/				
		experimental/simulations				
Course	CO4	Analyse the impact of solutions in societal and environmental context for				
Outcomes		sustainable development. Demonstrate capabilities of self-learning in a				
		group, which leads to lifelong learning				
	CO5	Demonstrate capabilities of self-learning in a group, which leads to				
		lifelong learning				
	CO6	Demonstrate project management principles during project work.				

Guidelines:

1. Internal guide has to keep track of the progress of the project and also has to maintain attendance report. This progress report can be used for awarding term work Marks.

2. Project Report Format:

At the end of semester, each group needs to prepare a project report as per the guidelines issued by the University of Mumbai. Report should be submitted in hardcopy. Also, each group should submit softcopy of the report along with project documentation, implementation code, required utilities, software and user Manuals.

A project report should preferably contain at least following details:

- Abstract
- Introduction
- Literature Survey/ Existing system
- Limitation Existing system or research gap
- Problem Statement and Objective
- Proposed System
- Analysis/Framework/ Algorithm
- Design details
- Methodology (your approach to solve the problem) Proposed System
- Experimental Set up
- Details of Database or details about input to systems or selected data
- Performance Evaluation Parameters (for Validation)
- Software and Hardware Setup
- Results and Discussion
- Conclusion and Future Work
- References

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

• Appendix – List of Publications or certificates

Desirable:

Students should be encouraged –

- To participate in various project competition.
- To write minimum one technical paper & publish in good journal.
- To participate in national / international conference.

Course Assessment:

ISE-1: Implementation & Presentation (50 Marks)

ISE-2: Report Writing, Poster Presentation and paper publication (50 Marks)

ESE: Project Exam (50 Marks)

Suggested quality evaluation parameters are as following:

- a. Relevance to the specialization / industrial trends
- b. Modern tools used
- c. Innovation
- d. Quality of work and completeness of the project
- e. Validation of results
- f. Impact and business value
- g. Quality of written and oral presentation
- h. Individual as well as teamwork