FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering

B.E. (Computer) (semester VIII) (2019-2020) Course Outcomes & Assessment Plan

Subject: Big Data Analytics (BDA-CSDL07032)

Credits-5

Course Objectives:

- 1. To provide an overview of an exciting growing field of big data analytics.
- 2. To introduce programming skills to build simple solutions using big data technologies such as MapReduce and scripting for NoSQL, and the ability to write parallel algorithms for multiprocessor execution.
- 3. To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- 4. To enable students to have skills that will help them to solve complex real-world problems in for decision support.
- 5. To provide an indication of the current research approaches that is likely to provide a basis for tomorrow's solutions.

Syllabus:

Prerequisite: Some prior knowledge about Java programming, Basics of SQL, Data mining and machine learning methods would be beneficial.

1. Introduction to Big Data and Hadoop

- 1.1 Introduction to Big Data,
- 1.2 Big Data characteristics, types of Big Data,
- 1.3 Traditional vs. Big Data business approach,
- 1.4 Case Study of Big Data Solutions.
- 1.5 Concept of Hadoop
- 1.6 Core Hadoop Components; Hadoop Ecosystem.

2. Hadoop HDFS and MapReduce

- 2.1 **Distributed File Systems**: Physical Organization of Compute Nodes, Large-Scale File-System Organization.
- 2.2 **MapReduce**: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures.
- 2.3 **Algorithms Using MapReduce**: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce
- 2.4 Hadoop Limitations

3. NoSQL

- 3.1 Introduction to NoSQL, NoSQL Business Drivers,
- 3.2 **NoSQL Data Architecture Patterns:** Key-value stores, Graph stores, Column family (Bigtable) stores, Document stores, Variations of NoSQL architectural patterns, NoSQL Case Study
- 3.3 NoSQL solution for big data, Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer-to-peer; NoSQL systems to handle big data problems.

4. Mining Data Streams:

- 4.1 **The Stream Data Model:** A Data-Stream-Management System, Examples of Stream Sources, Stream Queries, Issues in Stream Processing.
- 4.2 Sampling Data techniques in a Stream

4.3 Filtering Streams: Bloom Filter with Analysis.

- 4.4 Counting **Distinct Elements** in a Stream, Count-Distinct Problem, Flajolet-Martin Algorithm, Combining Estimates, Space Requirements
- 4.5 Counting **Frequent Items in** a Stream, Sampling Methods for Streams, Frequent Itemsets in Decaying Windows.
- 4.6 **Counting Ones in a Window**: The Cost of Exact Counts, The Datar-Gionis-Indyk-Motwani Algorithm, Query Answering in the DGIM Algorithm, Decaying Windows.

5. Finding Similar Items and Clustering

- 5.1 **Distance Measures**: Definition of a Distance Measure, Euclidean Distances, Jaccard Distance, Cosine Distance, Edit Distance, Hamming Distance.
- 5.2 CURE Algorithm, Stream-Computing, A Stream-Clustering Algorithm, Initializing & Merging Buckets, Answering Queries.

6. Real-Time Big Data Models

- 6.1 PageRank Overview, Efficient computation of PageRank: PageRank Iteration Using MapReduce, Use of Combiners to Consolidate the Result Vector.
- 6.2 A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering.
- 6.3 Social Networks as Graphs, Clustering of Social-Network Graphs, Direct Discovery of Communities in a social graph.

Term Work: Assign a case study for group of 3/4 students and each group to perform the following experiments on their case-study; Each group should perform the exercises on a large dataset created by them. The distribution of marks for term work shall be as follows:

- Programming Exercises: (10) Marks.
- Mini project: (10) Marks.
- Attendance (Theory & Practical) (05) Marks.

TOTAL: (25) Marks.

Internal Assessment: Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be selected from all the modules.

Oral examination: An oral exam will be held based on the above syllabus.

Teaching Scheme

Course	Course Name	Teaching	Teaching Scheme			Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical/Oral	Tut	Credits		
CSDLO	Big Data	04			04			04		
7032	Analytics									
CSL704	Computational		02			1		01		
	Lab-I									

Examination Scheme

Course	Course Name				Examinat	tion Scheme					
Code		Theory M	larks			Term	Practical	Oral	Total		
		Internal A	Assessment	t	End	Work					
		Test1	Test2	Avg	Sem						
					Exam						
CSDLO	Big Data	20	20	20	80	25		25	100		
7032	Analytics				(3hr)						
CSL704	Computational					25		25	50		
	Lab-I										

Lecture Plan : SEM_VIII-BDA-CPE8035

Modes of Content Delivery:

i	Class Room	v	Self Learning Online	ix	Industry Visit
	Teaching		Resources		
ii	Tutorial	vi	Slides	X	Group
					Discussion
iii	Remedial Coaching	vii	Simulations/Demonstrations	xi	Seminar
iv	Lab Experiment	viii	Expert Lecture	xii	Case Study

No	Portion to be covered	Planned	Actual date	Content
		date		Delivery -
				Reference
				/Assessment
				Method
1	Introduction to Big Data: Introduction to	02/07/2019		PPT [1_BigData]
2	Big Data, Big Data characteristics, types of	05/07/2019		– Video1, [TB1]
	Big Data.			/ UT1
3	Traditional vs. Big Data business approach,	09/07/2019		PPT[1_BigData]-
	Case Study of Big Data, Solutions.			[TB1] / Group
				Discussion
4	Big Data Case Study	11/07/2019		
5	Introduction to Hadoop: What is	12/07/2019		PPT[2_Hadoop]-
6	Hadoop? Core Hadoop Components;	16/07/2019		Video2,[TB1_4],
7	Hadoon Facture Dhysical Architecture	17/07/2019		Chart/
/	Hadoop Ecosystem; Physical Architecture;.	1//0//2019		UT1
8	Hadoop EcoSystem; Hadoop limitations.	18/07/2019		
9	Hadoop HDFS and MapReduce:	19/07/2019		PPT[2_Hadoop]-
	Distributed File Systems: Physical			Video3,[TB1_4]
	Organization of Compute Nodes, Large-			/ UT1
10	Scale File-System Organization. MapReduce: The Map Tasks, Grouping by	23/07/2019		PPT[2_Hadoop]-
10	Key, The Reduce Tasks, Grouping by	23/07/2017		[TB1_4]
	Combiners, Details of MapReduce	24/07/2019		/PostLab
11	Execution, Coping With Node Failures.			
	Algorithms using MapReduce:			
12	Word Count Problem	25/07/2019		ClassDoore
12	Matrix Vector Multiplication by MapReduce,	25/07/2019		ClassRoom Teaching -
13	Relational Algebra Operations. Computing	26/07/2019		[TB1_4] /
	Selections by MapReduce			Lab Expt, UT1
14	Computing Projections by MapReduce,	30/07/2019		
	Union, Intersection and difference by			

MapReduce, Computing Natural join by		
MapReduce, Grouping and Aggregation by		
MapReduce		

15	Matrix Multiplication (One-step)	31/07/2019	ClassRoom
	Hadoop limitations.		Teaching-
			[TB1]/
			Lab Expt
16	NoSQL: What is NoSQL? NoSQL business	01/07/2019	PPT[3_NoSQL],
17	drivers; NoSQL case studies.	00/00/0040	Case Study-
		02/08/2019	[TB4]/UT1
18	Variations of NoSQL architectural patterns:	31/07/2019	PPT[3_NoSQL],
	Key-value stores, Graph stores		Case Study
19	Column family (Bigtable) stores, Document	06/08/2019	[TB3_4]/ UT1
	stores,		
20	HBase NoSQL	07/08/2019	
21	BigTable NoSQL	08/08/2019	
21	bigi able NoSQL	00/00/2017	
22	MongoDB NoSQL	09/08/2019	
23	Neo4j NoSQL	19/08/2019	
24	Using NoSQL to manage big data: What is a	20/08/2019	PPT[3_NoSQL]-
	big data NoSQL solution? Understanding		[TB4] /
	the types of big data problems; Analyzing		UT1
	big data with a shared-nothing		
	architecture; Choosing distribution		
	models: master-slave versus peer-to-peer;		
	Four ways that NoSQL systems handle big		
	data Problem		
25	Mining Data Streams	21/08/2019	
	The Stream Data Model: A Data-Stream-		
	Management System		
26	Stream Querie, Issues in Stream	22/08/2019	
	Processing. Examples of Stream Sources		
27	Sampling Data in a Stream : Obtaining a	23/08/2019	
	Representative Sample		
28	The General Sampling Problem, Varying	27/08/2019	
	the Sample Size.		
29	Filtering Streams:	28/08/2019	
	The Bloom Filter, Analysis.		
30	Counting Distinct Elements in a Stream	29/08/2019	
	The Count-Distinct Problem,		
31	The Flajolet-Martin Algorithm,	30/08/2019	
32	Combining		

	Estimates, Space Requirements		
33	Counting Ones in a Window:	11/09/2019	
	The Cost of Exact Counts, The Datar-Gionis-		
	Indyk-Motwani Algorithm, Query		
	Answering in the DGIM Algorithm,		
	Decaying Windows.		
34	Counting Frequent items in a Stream,	12/09/2019	
	Sampling Methods for Streams, Frequent		
	itemsets in a decaying Windows.		
35	Finding Similar Items and Clustering	13/09/2019	
	Applications of Near-Neighbor Search,.		
36	Distance Measures: Definition of a	16/09/2019	ClassRoom
	Distance Measure, Euclidean		Teaching –
	Distances, Cosine Distance,		[TB1_4]/ Quiz1
37	Edit Distance, Hamming Distance.	17/09/2019	
38	Jaccard Distance, Jaccard Similarity of Sets,	18/09/2019	
	Similarity of Documents, Collaborative		
	Filtering as a Similar-Sets Problem		
39	Clustering - CURE Algorithm,	19/09/2019	PPT-
			[TB1_4]/
40	Stream-Computing , A Stream-Clustering	20/09/2019	ClassRoom
	Algorithm, Initializing & Merging Buckets,		Teaching-
	Answering Queries		[TB1_4]
41	Real-Time Big Data Models	24/09/2019	/UT2/ Lab_Expt
	PageRank Definition, Structure of the web,		
	dead ends, Using Page rank		
	in a search engine		
42	Efficient computation of Page Rank,	25/09/2019	PPT
	PageRank Iteration Using MapReduce, Use		[TB1_4]
	of Combiners to Consolidate the Result		
	Vector.		
43	Topic sensitive Page Rank, link Spam	26/09/2019	
44	Hubs and Authorities.	27/09/2019	
45	Recommendation Systems	01/10/2019	Case Study-
	A Model for Recommendation Systems,		Seminar
	Content-Based Recommendations,	03/10/2019	[TB1_4]
46	Collaborative Filtering.	04/10/2019	/UT2
47	Mining Social-Network Graphs	09/10/2019	PPT
	Social Networks as Graphs, Clustering of	10/10/2010	[TB4] , HB
	Social-Network Graphs	10/10/2019	/UT2, Lab Expt
48	Direct Discovery of Communities, SimRank,	11/10/2019	PPT
	Counting triangles using Map-Reduce		[TB4]
	al Lacturas 1 49	II	

Text Books:

- 1. Anand Rajaraman and Jeff Ullman Mining of Massive Datasets, Cambridge University Press,
- 2. Alex Holmes —Hadoop in Practice, Manning Press, Dreamtech Press.
- 3. Dan Mcary and Ann Kelly —Making Sense of NoSQL A guide for managers and the rest of us, Manning Press.

References books:

- 1. Bill Franks , —Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analytics, Wiley
- 2. Chuck Lam, —Hadoop in Action||, Dreamtech Press
- 3. Jared Dean, —Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners, Wiley India Private Limited, 2014.
- 4. Jiawei Han and Micheline Kamber, —Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 3rd ed, 2010.
- 5. Lior Rokach and Oded Maimon, —Data Mining and Knowledge Discovery Handbook, Springer, 2nd edition, 2010.
- 6. Ronen Feldman and James Sanger, —The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data, Cambridge University Press, 2006.
- 7. Vojislav Kecman, —Learning and Soft Computing, MIT Press, 2010.

<u>Reference</u>

[HB1]-Handbook with sample real life problems solution **Slides**

Reference Web Resources:

- **1.** Stanford University Lecture series on Mining Massive Data Sets.
- **2.** BigDataUniversity web site.

Course Outcomes:

Upon completion of this course students will be able to:

- **CSDL07032.1:** Understand the key issues in big data management and its associated applications for business decisions and strategy. [B1: Understanding]
- **CSDL07032.2:** Develop problem solving and critical thinking skills in fundamental enabling Techniques like Hadoop and MapReduce in big data analytics. [B3: Application]
- **CSDL07032.3:** Collect, manage, store, query and analyze various forms of Big Data[B4: Analysis]
- **CSDL07032.4:** Interpret business models and scientific computing paradigms, and apply software tools for big data analytics. [B3: Application]
- **CSDL07032.5:** Adapt adequate perspectives of big data analytics in various applications like Recommender systems, Social Media applications etc. [B3: Application]
- **CSDL07032.6:** Solve Complex real world problems in various applications like Recommender systems, Social media applications, health and medical systems, etc. [B3: Application]

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CSDL07032.1	3												3	
CSDL07032.2	3	3	3	1	3				2				3	3
CSDL07032.3	3	3	3	2	3				2				3	3
CSDL07032.4	3	3	3	2	3				2				3	3
CSDL07032.5	3	3	3	2	3	3			2			2	3	3
CSDL07032.6	3	3	3	2	3	3			3	3	2	3	3	3
TOTAL	12	12	12	9	12	6			11	3	2	5	12	9
CO-PO MATRIX	3	3	3	2	3	2			2	3	2	3	3	3

Course Outcomes Target: [Target 2.5]

Upon completion of this course students will be able to

CSDL07032.1: Understand the key issues in big data management and its associated applications for business decisions and strategy.

- **CSDL07032.2:** Develop problem solving and critical thinking skills in fundamental enabling Techniques like Hadoop and MapReduce in big data analytics. [B3: Application]
- CSDL07032.3: Collect, manage, store, query and analyze various forms of Big Data. [B4: Analysis]
- **CSDL07032.4:** Interpret business models and scientific computing paradigms, and apply software tools for big data analytics. [B3: Application]
- **CSDL07032.5:** Adapt adequate perspectives of big data analytics in various applications like Recommender systems, Social Media applications etc. [B3: Application]
- **CSDL07032.6:** Solve Complex real world problems in various applications like Recommender systems, Social media applications, health and medical systems, etc. [B3: Application]

CO ASSESSMENT TOOLS

	Direct Methoo	ls (80%)	1	1			Indirect Methods (20%)
CSDL07032.1	Assignment 1 (60%)		UE –P (20%)	UE-O (20%)			(100%)
CSDL07032.2	Test1 (30%)	Lab 1-2-4-6 (30%)	UE –P (20%)	UE-O (20%)			(100%)
CSDL07032.3	Test1 (30%)	Lab 2-3-5 (30%)	UE –P (20%)	UE-0 (20%)			(100%)
CSDL07032.4	Test2 (30%)	Lab 7-8-9 (30%)	UE –P (20%)	UE-0 (20%)			(100%)
CSDL07032.5	Test2 (30%)	Lab 10-11 (10%)	UE –P (10%)	UE-0 (10%)	MP (20%)	Assig2 (20%)	(100%)
CSDL07032.6	MP (50%)	Lab 10-11-12 (30%)	UE –P (10%)	UE-0 (10%)			(100%)

Content Beyond Syllabus:

- 1. Blooms Filter (Guest Lecture)
- 2. Research Paper study individually.

Curriculum Gap:

The students need to know basics of Data Mining Algorithms.

In order to achieve the course objectives, there are some topics listed below are not given much importance.

Sr.No.	Content Beyond Syllabus	Action Plan	PO Mapping	
1	Blooms Filter	Planned one lecture.	PO2, PSO2	

Department of Computer Engineering Academic Term: Jan-April 2019

Rubrics for Lab Experiments

Class	: B. <i>E. Computer</i>
Semester	: VII

Subject Name :*BDA* Subject Code :*CSDL08032*

Practical No:	
Title:	
Date of Performance:	
Roll No:	
Name of the Student:	

Evaluation:

Indicator	Very Poor	Poor	Average	Good	Excellent
Timeline (2)	More than three sessions late (0)	More than two sessions late (0.5)	Two sessions late (1)	One session late (1.5)	Early or on time (2)
Efforts(3)	N/A	N/A	Not Completed (1)	Partially Completed (2)	Completed(3)
Legibility(3)	N/A	N/A	Poor(1)	Good(2)	Very Good(3)
PostLab(2)	N/A	N/A	N/A	Partially Correct(1)	All Correct(2)

Total Marks Signature of the Teacher

:

:

Department of Computer Engineering Academic Term : Jan-April 2019

<u>Rubrics for Assignments</u>

Class : B.E. Computer Semester : VII Subject Name :*BDA* Subject Code :*CSDL08032*

Assignment No:	
Title:	
Date of Performance:	
Roll No:	
Name of the Student:	

Rubrics for Assignment Grading:

Indicator	ndicator Very Poor Poor		Average	Good	Excellent
Timeline (2)	More than three sessions late (0)	More than two sessions late (0.5)	Two sessions late (1)	One session late (1.5)	Early or on time (2)
Organization (3)	N/A	Very poor readability and not structured (0.5)	Poor readability and somewhat structured (1)	Readable with one or two mistakes and structured (2)	Very well written and structured without any mistakes (3)
Level of content (3)	Major points		All major topics are covered, the information is accurate.(1)	Most major and some minor criteria are included. Information is Accurate (2)	All major and minor criteria are covered and are accurate. (3)
Depth of Knowledge(2)	N/A	One answer correct(0.5)	Two answers correct(1)	Three answers correct(1.5)	Four answers correct(2)

:

:

Department of Computer Engineering Academic Term: Jan-April 2019 <u>Rubrics for Mini Project</u>

Class : B.E. Computer Semester : VII

Subject Name :*BDA* Subject Code :*CSDL08032*

Practical No:	
Title:	
Date of Performance:	
Roll No:	
Name of the Student:	

Rubric for Mini Project

Indicator Very Poor		Poor	Average	Good	Excellent
Timeline: Maintains project deadline (2)	laintains rojectProject not done (0)More than two session late (0.5)		Two sessions late (1)	One session late (1.5)	Early or on time (2)
Completeness: Complete all parts of project (2)	Complete all parts of project< 40% complete (0.5)		~ 60% complete ~ 80% (1) complete(1.5)		100% complete(2)
Application design: (4)	esign:		Project with limited functionalities (2)	Working project with good design (3)	Working project with good design and advanced techniques are used (4)
Presentation(2)	resentation(2) Not submitted report (0) Poorly written and poorly kept report(0.5)		Report with major mistakes(1)	Report with less than 3-4 mistakes (1.5)	Well written accurate report(2)

Total marks:

Signature of Teacher:

SEM VII- BDA Lab/Assignments (2019-2020) List of Experiments/Mini Project Plan

Expt No.	Batch D Tues	Batch C Wed	Batch B Thurs	CO Mapp ing	Title/aim
01	16 July	17 July	18 July	CO2	Hadoop HDFS Practical
02	23 July	24 July	25 July	CO2, CO3	Use of Sqoop tool to transfer data between Hadoop and relational database servers.
03	30 July	31 July	1 Aug	CO3	To install and configure MongoDB/ Cassandra/ HBase/ Hypertable to execute NoSQL commands.
04	06 Aug	07 Aug	08 Aug	CO2	Write a program to implement word count program using MapReduce /PySpark.
05	06 Aug	07 Aug	08 Aug	CO3	Matrix – Vector Multiplication using Map-reduce, Aggregate, Join, Search, Sort. (Map-Reduce/PySpark)
06	20 Aug	21 Aug	22 Aug	CO2	Create HIVE Database and Descriptive analytics-basic statistics, visualization using Hive/PIG/R.
07	27Aug	28 Aug	29 Aug	CO4	Implementing DGIM algorithm using any Programming Language/ Implement Bloom Filter using any programming language.
08	17 Sept	11 Sept	12 Sept	CO4	Implementing any one Clustering algorithm (K-Means/CURE) using Map- Reduce/PySpark
09	24 Sept	18 Sept	18 Sept	CO4	Streaming data analysis – use flume for data capture, HIVE/PYSpark for analysis of twitter data, chat data, weblog analysis (nehal)
10	01 Oct	25 Sept	26 Sept	CO5	Implement basic PageRank algorithm using Map-reduce/PySpark.
11	05 Oct	09 Oct	10 Oct	CO5	Implement predictive Analytics techniques (regression / time series, etc.) using R/ Scilab/ Tableau/ Rapid miner.
12				CO6	Mini Project: One real life large data application using standard dataset (Group of 2/3).
	16 July				Topic Submission
	06 Aug				Progress review
	17 Sept				Presentation and Demo
	10 Oct				Mini Project Report submission

Assignments Plan

Assig	Assignments							
01	16 July	CO4	Provide the trends and solution using Big data Analytics. (use diagrams) Traffic Analysis					
	2019		 1. An organization wants to create a real-time traffic analysis and prediction application that can be used to control traffic congestion and streamline traffic flow. The application must be targeted to provide cost optimization in commuting and help reduce waiting time and pollution levels. Data has to be captured from existing government provided datasets that include sources such as traffic-camera, traffic sensor, GPS and weather prediction systems. The government data needs to be coupled with social media to assist in predicting traffic speed and volume on reads. The analysis scenarios include the following: Analysis of historical data to gain insights and understand patterns of behavior of traffic and road incidents, Prediction of traffic speed and volume well ahead of time, Based on analysis of real-time and historical traffic data prediction of alternate cost-effective commute paths by analyzing situational traffic conditions across the entire transportation network. The application needs to provide a catalog of services based on social media, governmental data and different data options. 					
			 Telecom Industry 2. A telecommunication organization needs a solution for analyzing customer behaviour and viewing patterns in advance of rollout of video-over-IP (VOIP) offereings. The logs have to be compared to region specific, feature specific existing system data spread across multiple applications. Because the volume of data is already huge and the VOIP logs data will add many terabutes, the organization is looking for a robust solution to apply across all devices and systems. 					
			3. Health Care Sector					
02	06 August	CO3-4	Topic of Study					
03	30 August	CO4 /PO12	Study of Research Paper					

SEM VII- BDA Lab/Assignments (2019-2020)

Assignment on Recommendation systems and mining social network graphs

Q.1

	M1	M2	M3	M4	M5	M6	M7	M8
A	4	5		5	1		3	2
B		3	4	3	1	2	1	
С	2		1	3		4	5	3

Treating the utility matrix representing the ratings on a 1-5 star scale of eight movies provided by users A, B, C. Compute the following from the data of the matrix.

- 1. Treat the utility matrix as Boolean, compute the jaccard distance between each pair of users.
- 2. Repeat Part(1), but use Cosine distance.
- 3. Treat ratings of 3,4 and 5 as 1,2 and blank as 0. Compute the Jaccard distance between each pair of users.
- 4. Repeat part (3), but use the cosine distance.
- 5. Normalize the matrix by subtracting from each non blank entry the average value for its user.
- 6. Using the normalized matrix from part(5), compute the cosine distance between each pair of users.

Q. 2

Write an algorithm for finding triangles in social network graphs. How to use the algorithm using Map Reduce?