# FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering S.E. (Computer) (semester III)

### (2019-2020)

### **Course Outcomes & Assessment Plan**

### Subject: Digital Logic Design and Analysis (Course Code CSC302)

Credits-4

### Syllabus:

### 1. Number Systems and Codes:

Introduction to number system and conversions: Binary, Octal, Decimal and Hexadecimal number Systems, Binary arithmetic: addition, subtraction (1"s and 2"s complement), multiplication and division. Octal and Hexadecimal arithmetic: Addition and Subtraction (7"s and 8"s complement method for octal) and (15"s and 16"s complement method for Hexadecimal). Codes: Gray Code, BCD Code, Excess-3 code, ASCII Code. Error Detection and Correction: Hamming codes.

### 2. Boolean algebra and Logic Gates

Theorems and Properties of Boolean Algebra, Boolean functions, Boolean function reduction using Boolean laws, Canonical forms, Standard SOP and POS form. Basic Digital gates: NOT, AND, OR, NAND, NOR, EXOR, EX-NOR, positive and negative logic, K-map method 2 variable, 3 variable, 4 variable, Don<sup>\*\*</sup>t care condition, Quine-McClusky Method, NAND-NOR Realization.

### 3. Combinational Logic Design

Introduction, Half and Full Adder, Half subtractor Full Subtractor, Four Bit Ripple adder, look ahead carry adder, 4 bit adder subtractor, one digit BCD Adder, Multiplexer, Multiplexer tree, Demultiplexer, Demultiplexer tree, Encoders Priority encoder, Decoders, One bit, Two bit, 4-bit Magnitude Comparator, ALU IC 74181.

### 4. Sequential Logic Design:

Introduction: SR latch, Concepts of Flip Flops: SR, D, J-K, T, Truth Tables and Excitation Tables of all types, Race around condition, Master Slave J-K Flip Flops, Timing Diagram, Flip-flop conversion, State machines, state diagrams, State table, concept of Moore and Mealy machine. Counters : Design of Asynchronous and Synchronous Counters, Modulus of the Counters, UP- DOWN counter, Shift Registers: SISO, SIPO, PIPO, PISO Bidirectional Shift Register, Universal Shift Register, Ring and twisted ring/Johnson Counter, sequence generator.

### 5. Introduction to VHDL

Introduction: Fundamental building blocks Library, Entity, Architecture, Modeling Styles, Concurrent and sequential statements, simple design examples for combinational circuits and sequential circuits

# 6. Digital Logic Families

Introduction: Terminologies like Propagation Delay, Power Consumption, Fan in and Fan out, current and voltage parameters, noise margin, with respect to TTL and CMOS Logic and their comparison

## **Course Objectives (optional):**

1. To introduce the fundamental concepts and methods for design of digital circuits and a pre-requisite for computer organization and architecture, microprocessor systems.

2. To provide the concept of designing Combinational and sequential circuits.

3. To provide basic knowledge of how digital building blocks are described in VHDL.

# **Course Outcomes:**

Upon completion of this course students will be able to:

**CSC302.1:** Perform number system and code conversions. (Comprehension)

CSC302.2: Design combinational circuits. (Apply)

CSC302.3: Design sequential circuits. (Apply)

**CSC302.4:** Design and implement a solution for a simple real world problem based on the learned concepts of digital Logic design. **(Analyze , Apply)** 

# Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

|          | PO1   | PO2   | PO3   | PO4    | PO5     | PO6   | PO7   | PO8   | PO9   | PO10   | PO11 | PO12  |
|----------|-------|-------|-------|--------|---------|-------|-------|-------|-------|--------|------|-------|
|          | (Engg | (Ana) | (De   | (inve  | (tools) | (engg | (Env) | (Eth) | (ind  | (com.) | (PM) | (life |
|          | Know) |       | sign) | stiga) |         | Soci) |       |       | Team) |        |      | Long) |
| CSC302.1 | 3     |       |       |        |         |       |       |       |       |        |      |       |
| CSC302.2 | 3     | 2     | 3     |        | 1       |       |       |       |       |        |      |       |
| CSC302.3 | 3     | 2     | 3     |        | 1       |       |       |       |       |        |      |       |
| CSC302.4 | 3     | 3     | 3     |        | 3       |       |       |       | 2     | 2      |      |       |
|          |       |       |       |        |         |       |       |       |       |        |      |       |
| Course   | 3     | 2.6   | 3     |        | 1.6     |       |       |       | 2     | 2      |      |       |
| To PO    |       |       |       |        |         |       |       |       |       |        |      |       |

| СО            | PSO1 | PSO2 |
|---------------|------|------|
| CSC302.1      | 3    |      |
| CSC302.2      | 3    |      |
| CSC302.3      | 3    |      |
| CSC302.4      | 3    |      |
| Course to PSO | 3    |      |

# **Justification**

**PO1:** All COs are mapped to PO1 because engineering graduates will be able to apply the knowledge of **mathematics** & **Digital electronics fundamentals** to solve complex engineering problems.

Level 3 - The course demands mathematical concept to be applied to solve given problems. Also basic knowledge of digital electronics and fundamental of computer system is required.

**PO2:** CSC302.2, CSC302.3 and CSC302.4 are mapped to PO2 because the students **analyze** the given problem statement before designing the actual circuit.

Level 2 – CSC302.2 & CSC302.3 Before designing any circuit for the given problem, students perform basic level of pre-analysis. (Analysis Includes identifying inputs - outputs, deriving truth table, minimization of output expression, Identify method for minimization, identify components to be used)

Level 3 – CSC302.4 – In order to provide a solution to a real world chosen problem, students design and then analyze the behavior of a circuit. Here students do rigorous analysis to obtain the desired output.

**PO3:** CSC302.2, CSC302.3 and CSC302.4 are mapped to PO3 because the students **design** the digital circuits and implement them using hardware components.

Level 3: Because the course involves designing of various combinational and sequential circuits, students actually design the circuit and implement it in laboratory.

## PO5:

**CSC302.2** and **CSC302.3** are mapped to PO5 because students use advance tool such as VHDL to analyze the basic combinational and sequential circuit.

Level 1 -Since basic analysis is done using VHDL.

**CSC302.4** maps to PO5 because the students use various tools for example VHDL, Arduino Uno various actuators and sensors etc. to simulate/implement a real world problem.

Level 3 - Since students translate real world problem to digital network and analyze the circuit using various tools ; the nature of the problem is more complex here.

**PO9:** CSC302.4 is mapped to PO9 because the students work in a **team** to design and implement a solution for a chosen real world problem.

Level 2 - Since it's a mini project that give them first level of experience of being in a team; not rigorous team work is involved. Hence level is 2.

**PO10:** CSC302.4 is mapped to PO10 because the students explain mini project by demonstrating the project and also submit written report for the same.

Level 2 – basic level of presentation skills and written skills are expected.

**PSO1:** All COs are mapped to PSO1 because the graduates will be able to apply knowledge of Digital Electronics to simulate the real world problem.

# **Course Outcomes Target:**

Upon completion of this course students will be able to:

- **CSC302.1:** Perform number system and code conversions. (**Comprehension**)
- **CSC302.2:** Design combinational circuits. (Apply)

**CSC302.3:** Design sequential circuits. (Apply)

CSC302.4: Simulate real world problems using VHDL. (Analyze & Apply)

## Target:

CSC302.1: 2.5 CSC302.2: 2.5 CSC302.3: 2.5 CSC302.4: 2.5

### **Previous Years' Achievements**

| <u>CO</u> | Year 2018-19 | Year 2017-18 |
|-----------|--------------|--------------|
| CSC302.1  | 1.88         | 2.36         |
| CSC302.2  | 2.2          | 2.2          |
| CSC302.3  | 2.36         | 2.04         |
| CSC302.4  | 3            | 2.44         |

# **CO Assessment Tools:**

# <u>CSC302.1:</u> Perform number system and code conversions

Direct Methods(80%): Test 1 + Module Test 1 + Quiz1 + UniExamTh + UniExam Pr CO1dm = 0.2T1 + 0.2 MT+ 0.2 Q1 + 0.2UTh + 0.2 UPr

InDirect Methods(20%): Course exit survey

CO1idm

CSC302.1 = 0.8\*CO1dm + 0.2\* CO1idm

| Direct Methods | Weightage | Target                              | Date                         | Marks     |
|----------------|-----------|-------------------------------------|------------------------------|-----------|
| Test 1         | 0.2       | 65% students will score minimum 65% |                              | Q-1 (08M) |
|                |           | marks (i.6. 6 or more out of 10)    |                              |           |
| Module Test1   | 0.2       | 70% students will score minimum 70% | 4 <sup>th</sup> week of July | 10M       |
|                |           | marks (i.e. 7 or more out of 10)    |                              |           |
| Quiz1          | 0.2       | 65% students will score minimum 70% | 4 <sup>th</sup> week of July | 20M       |
|                |           | marks (i.6. 14 or more out of 20)   |                              |           |
| Uni Theory     | 0.2       | 60% students will score minimum 60% |                              | 80M       |
| exam           |           | marks (i.6. 48 or more out of 80)   |                              |           |
| Uni. Practical | 0.2       | 60% students will score minimum 70% |                              | 25M       |
| Exam           |           | marks (i.6. 17.5 or more out of 25) |                              |           |

\_\_\_\_\_

# **<u>CSC302.2</u>**: Design combinational circuits.

Direct Methods(80%): (Test1+Test2) + Lab + Assignment1 + UniExamTh + UniExam Pr CO2dm = 0.2T1 + 0.2Lab + 0.2A1 + 0.2UTh +0.2UPr

InDirect Methods(20%): Course exit survey

CO2idm

### CSC302.2 = 0.8\*CO2dm + 0.2\* CO2idm

| Direct         | Weightage | Target                                  | Date         | Marks                       |
|----------------|-----------|-----------------------------------------|--------------|-----------------------------|
| Methods        |           |                                         |              |                             |
| Test           | 0.2       | 60% students will score minimum 60%     | T1-14/8/19   | <b>18M</b> Q-2(8)+Q-3(4) in |
|                |           | marks (i.6. score 9 or more out of 15)  |              | T1 & Q-1 (6M) T2            |
| Lab            | 0.2       | 70% students will score minimum 70%     | Exp 1 to 7 & | 80M                         |
|                |           | marks.(i.e score 56 or more out of 80)  | Exp 11       |                             |
| Assignment1    | 0.2       | 70% students will score minimum 70%     |              | 10M                         |
|                |           | marks (i.6. score 07 or more out of 10) |              |                             |
| Uni Theory     | 0.2       | 60% students will score minimum 60%     |              | 80M                         |
| exam           |           | marks (i.6. 48 or more out of 80)       |              |                             |
| Uni. Practical | 0.2       | 60% students will score minimum 70%     |              | 25M                         |
| Exam           |           | marks (i.6. 17.5 or more out of 25)     |              |                             |

<u>CSC302.3:</u> Design sequential circuits.

**Direct Methods(80%):** Test2 + Module Test 2 + Lab + UniExamTh + UniExamPr

CO3dm = 0.2T2 + 0.2M2 +0.2Lab + 0.2UTh + 0.2UPr

------

### InDirect Methods(20%): Course exit survey

CO3idm

### <u>CSC302.3 = 0.8\*CO3dm + 0.2\* CO3idm</u>

| Direct Methods | Weightage | Target                                    | Date                    | Marks                 |
|----------------|-----------|-------------------------------------------|-------------------------|-----------------------|
| Test 2         | 0.2       | 60% students will score minimum 60% marks | T2-15/10/19             | 14M                   |
|                |           | (i.6. score 9 or more out of 15)          |                         | [Q2(6) + Q3(8)] in T2 |
| Lab            | 0.2       | 70% students will score minimum 70%       | EXP 8,9,10 &            | 40M                   |
|                |           | marks.(i.e score 28 or more out of 40)    | 12                      |                       |
| Module Test 2  | 0.2       | 60% students will score minimum score 60% | 1 <sup>st</sup> week of | 20M                   |
|                |           | marks (i.e. score 12 or more out of 20)   | October                 |                       |
| Uni Theory     | 0.2       | 60% students will score minimum 60% marks |                         | 80M                   |
| exam           |           | (i.6. 48 or more out of 80)               |                         |                       |
| Uni. Practical | 0.2       | 60% students will score minimum 70% marks |                         | 25M                   |
| Exam           |           | (i.6. 17.5 or more out of 25)             |                         |                       |

------

**<u>CSC302.4</u>**: Design and implement a solution for a simple real world problem based on the learned concepts of digital Logic design.

Direct Methods(80%): MiniProject , lab

#### CO4dm = 0.2 Lab + 0.8 MP

InDirect Methods(20%): Course exit survey

#### CO4idm

### CSC302.4 = 0.8\*CO4dm + 0.2\* CO4idm

| Direct Methods | Weightage | Target                      | Date                                        | Marks |
|----------------|-----------|-----------------------------|---------------------------------------------|-------|
| Lab            | 0.2       | 70% students will score     | Exp. 3-12                                   | 100M  |
|                |           | minimum 70% marks.(i.e      |                                             |       |
|                |           | score 14 or more out of 20) |                                             |       |
| Mini Project   | 0.8       | 60% students will score     | Submission:                                 | 15M   |
|                |           | minimum 70% marks.(i.e      | 1 <sup>st</sup> and 2 <sup>nd</sup> week of |       |
|                |           | score 10.5 or more out of   | October                                     |       |
|                |           | 15)                         |                                             |       |

# **Content Beyond Syllabus:**

Introduction to IoT

# Curriculum Gap:

| Indicator Poor Average | Good | Excellent |
|------------------------|------|-----------|
|------------------------|------|-----------|

• Introduction to 8085 Processor to get better and practical applications of registers and ALU.

• In order to understand current applications, trends and new directions in logic design following topics shall be covered.

| Sr.No. | Curriculum gap contents | Action Plan                                  |
|--------|-------------------------|----------------------------------------------|
| 1      | Introduction to IOT     | Self-learning online resource is provided on |
|        |                         | Moodle and flip class room activity.         |

# List of Experiments with CO mapping

| Sr. No | Title                                                                                                  | СО               |
|--------|--------------------------------------------------------------------------------------------------------|------------------|
| 1.     | To study and verify the truth table of various logic gates using ICs and realize                       | <b>CSC302</b> .2 |
|        | Boolean expressions using gates.                                                                       |                  |
| 2.     | To realize basic gates using universal gates.                                                          | <b>CSC302</b> .2 |
| 3.     | To realize arithmetic circuits i) Half adder ii) Full adder iii) Half subtractor iv) Full subtractor.  | CSC302.2         |
| 4.     | To realize binary to gray code and gray code to binary converter.                                      | <b>CSC302</b> .2 |
| 5      | To realize parity generator and detector.                                                              | <b>CSC302</b> .2 |
| 6.     | To Study multiplexer IC and realization of full adder using multiplexer IC                             | <b>CSC302</b> .2 |
| 7.     | To realize 2 bit magnitude comparator.                                                                 | <b>CSC302</b> .2 |
| 8.     | Study of flip-flops using IC's                                                                         | CSC302.3         |
| 9.     | To realize shift registers using flip flops                                                            | CSC302.3         |
| 10.    | To realize asynchronous 3 bit up counter.                                                              | CSC302.3         |
| 11     | To realize combinational circuit using VHDL                                                            | CSC302.2         |
| 12.    | To realize basic Sequential circuit using VHDL                                                         | CSC302.3         |
| 13.    | Mini Project – Design and Implement a real world problem using learned concepts of digital Electronics | CSC302.4         |

| Timeline (2)                   | More than two session<br>late (0)                                                     | Two sessions late (1)                                                                     | One session late<br>(1.5)                                                                                | Early or on time<br>(2)                                      |
|--------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Analysis of                    | Failed to do proper                                                                   | Analysis done. The                                                                        | N.A.                                                                                                     | Detailed analysis                                            |
| Circuit<br>optimization<br>(2) | complex circuit(0.5)                                                                  | but unnecessary<br>lengthy (1.5)                                                          |                                                                                                          | structured and<br>efficient.(2)                              |
| Output (4)                     | Failed to implement a<br>complete design.<br>Partial implementation.<br>No output (1) | Hardware<br>implementation done<br>but failed to show<br>output due to some<br>error. (2) | Hardware<br>implementation<br>done.<br>Output shown<br>but some of the<br>test cases not<br>working. (3) | Expected output<br>shown. All test cases<br>verified.<br>(4) |
| PostLab<br>Assignment<br>(2)   | Not able to solve(0)                                                                  | Able to solve 25% (1)                                                                     | Able to solve<br>50%(1.5)                                                                                | Able to solve all questions(2)                               |

**Rubrics for Experiments:** 

# **Rubrics for the Mini Project:**

Mini project that covers design and implementation of important Digital circuits' concepts of the course, is allotted to the students in groups. The requirements will be announced in advance and discussed in class. The students' progress on their project will be discussed in the practical session and faculty office. Finally at the time of submission the students will present the demonstration of their project in lab session and submit a report for the same.

| Indicator                                                        | Poor                                   | Average                                     | Good                                                     | Excellent                                               |
|------------------------------------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|
| <b>Timeline</b><br>Maintains project<br>deadline (2)             | More than two<br>session late<br>(0.5) | Two sessions late (1)                       | One session late (1.5)                                   | Early or on time (2)                                    |
| <b>Completeness</b><br>Complete all parts<br>of project (3)      | < 40% complete<br>(1)                  | ~ 60% complete<br>(2)                       | ~ 80% complete<br>(2.5)                                  | 100% complete(3)                                        |
| System Design (3)<br>Block diagram<br>And circuit<br>realization | NA                                     | Designed circuit<br>with basic gates<br>(2) | Designed with<br>NAND or NOR<br>but not minimum<br>(2.5) | Correct<br>Designed with<br>NAND or NOR<br>Logic<br>(3) |
| Report<br>Submission(2)                                          | N/A                                    | Submitted one session late (1)              | Partial steps are followed (1.5)                         | All steps are<br>followed and well<br>documented (2)    |

## Schedule of mini project submission:

| Stages of mini project   | Date of submission        |
|--------------------------|---------------------------|
| Project topic submission | 16-Sep-2019               |
| Analysis submission      | 23-Sep-2019               |
| Design Submission        | 30-Oct-2019               |
| Implementation           | Second week of<br>October |

# **Rubrics for Assignments:**

| Indicator                              | Very Poor                          | Poor                                                    | Average                                                                                  | Good                                                                                   | Excellent                                                             |
|----------------------------------------|------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Timeline (2)                           | Assignment<br>not submitted<br>(0) | More than one week late (0.5)                           | Two weeks late (1)                                                                       | One week late (1.5)                                                                    | Early or on time (2)                                                  |
| Organization<br>(2)                    | N/A                                | Very poor<br>readability and<br>not structured<br>(0.5) | Poor<br>readability<br>and<br>somewhat<br>structured<br>(1)                              | Readable with<br>one or two<br>mistakes and<br>structured (1.5)                        | Very well written<br>and structured<br>without any<br>mistakes<br>(2) |
| Solution<br>(3)                        | N/A                                | All solutions<br>incorrect<br>(0)                       | More than<br>50%<br>Solutions are<br>incorrect (1)                                       | 20-30%<br>solutions<br>incorrect (2)                                                   | All problems<br>solved correctly<br>(3)                               |
| Depth and<br>breadth<br>discussion (3) | N/A                                | None in<br>evidence;<br>superficial<br>at most (0.5)    | Minor<br>points/inform<br>ation may<br>be missing<br>and<br>discussion is<br>minimal (1) | Discussion<br>centers on some<br>of<br>the points and<br>covers them<br>adequately (2) | Information is<br>presented in<br>depth and is<br>accurate (3)        |

# Assignments:

# **ASSIGNMENT 1:**

Date of Assignment: 30-08-2019 Date of submission: 12-09-2019 Maps to CSC302.2: Design Combinational circuits

Year: 2019-2020

#### Real world problems:

**Q-1** A step in space vehicle checkout depends on 4 sensors s1, s2, s3 and s4. Circuit is properly working if sensors s2 and at least two of the other three sensors are at logic 1. Implement the system.

**Q-2** Design a circuit with 4 inputs that has outputs with a binary value equal to the number of inputs that are HIGH.

**Q-3** Design a combinational logic circuit with a single output that will serve as an "auto buzzer circuit in a car. The circuit should output a HIGH signal (to sound a buzzer) for each of the following conditions:

- 1) A driver's DOOR is open and the KEYS are in the ignition.
- 2) If the SEAT is occupied and the SEATBELTS are not buckled and the KEYS are in the ignition.

Determine the truth table for the circuit described above. Determine the minimal circuit and draw it using NAND gates only.

[Hint: A – Door (1 - open , 0 - closed) , B – KEYS (1 – in ignition , 0 – Not in ignition), C – SEAT (1- occupied, 0 not occupied), D – SEAT BELT (1 – buckled, 0 – not buckled)]

Q-4 A bank wants to design an alarm system for its safety. The alarm will sound.....

- 1) If bank is open (B=1) and there is a robbery (R=1), alarm at bank (BA=1) and police station (PA=1) will sound.
- 2) If bank is closed (B=0) and there is a robbery (R=1), alarm will sound at police station only (PA=1).
- 3) If there is a fire (F=1) while the bank is open (B=1), the alarm will sound in the in the bank (BA=1) and fire station (FA=1).
- 4) If there is fire (F=1) while the bank is closed (B=0), alarm will sound at fire station (FA=1) only.

Determine the truth table and design the circuit using basic gates (AND, OR, NOT, EXOR etc).

#### Design problems:

**Q-5** Design 4- bit BCD subtractor using 4-bit parallel adder (IC 7483).

Q-6 Design BCD to seven segment display decoder.

**Q-7** Design a combinational logic circuit that will multiply two 2-bit numbers.

**Q-8** Simplify using Quine's McCluskey method.  $F(A,B,C,D) = \Sigma m(0,1,4,5,9,10,12,14,15) + \Sigma d(2,8,13)$ .

Verify your answer using KAMP.

Q-9 Design 32:1 MUX using 4:1 MUX. How many MUX do you need?

**Q-10** Design 24-bit magnitude comparator using IC 7485.

**Q-11** Implement following Boolean function using 4:1 MUX.  $F(A,B,C,D,E) = \Sigma m(0,1,2,3,6,8,9,10,13,15,17,20,24)$ 

# Module Test 1:

| Class: S.E. Comp (Sem III)                    | Date: 26-07-2019      |
|-----------------------------------------------|-----------------------|
| Subject : DLDA                                | Time : 11:00 to 12:00 |
| Maps to CO1: Perform number system conversion |                       |

# Set-1

| Q-1 Convert decimal number 576.24 into Binary, ,octal, base 9 and Hexadecimal.          | [04] |
|-----------------------------------------------------------------------------------------|------|
| Q-2 Construct Hamming code for 1010 using odd parity.                                   | [04] |
| Q-3 Convert (-89) into equivalent signed magnitude, 1'complement and 2'scomplement form | [04] |
| Q-4 Perform subtraction using 2's complement. (62) <sub>10</sub> –(99) <sub>10</sub>    | [04] |
| Q-5 Perform subtraction using 16's complement                                           | [04] |

- i) (CB1)<sub>16</sub> (971)16
- ii) (426)<sub>16</sub> DBA)<sub>16</sub>

# Set -2

| Q-1 Convert decimal number 1762.46 into Binary, octal , base 7 and Hexadecimal.         | [04] |
|-----------------------------------------------------------------------------------------|------|
| Q-2 Construct Hamming code for 1010 using even parity.                                  | [04] |
| Q-3 Convert (-80) into equivalent signed magnitude, 1'complement and 2'scomplement form | [04] |
| Q-4 Convert (47.3) <sub>10</sub> to Gray code                                           | [04] |
| Q-5 Perform Following                                                                   | [04] |
|                                                                                         |      |

- i) addition of  $(34)_8$  and  $(62)_8$ .
- ii) Perform  $(289)_{H} (1AD)_{H}$  without converting to any other base.

# Module Test 2:

| Brach/ Semester: Computer/III                                                                       | Date: 09-10-2019 |  |
|-----------------------------------------------------------------------------------------------------|------------------|--|
| Course: DLDA (CSC302)                                                                               | Duration: 1 Hr.  |  |
| Q-1 Implement following logic function using 8:1 Mux.<br>$F(A,B,C,D) = \Sigma m(1,3,5,10,11,13,14)$ | [06]             |  |
| Q-2 Design Mod – 6 asynchronous counter. Also draw timing diagram.                                  | [07]             |  |
| Q-3 Design MOD-6 synchronous counter using T flipflops.                                             | [07]             |  |
| OR                                                                                                  |                  |  |
| Q-3 Design synchronous counter for the following sequence                                           |                  |  |
|                                                                                                     |                  |  |

0->1->3->4->6->0

# FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering S.E. (Computer) (semester III)

### (2017-2018)

# Lesson Plan : Digital Logic Design And Analysis

# Semester III Modes of Content Delivery:

# Year: 2019-20

| i   | Class Room Teaching | v    | Self Learning Online Resources | Ix  | Industry Visit   |
|-----|---------------------|------|--------------------------------|-----|------------------|
| ii  | Tutorial            | vi   | Slides                         | Х   | Group Discussion |
| iii | Remedial Coaching   | vii  | Simulations/Demonstrations     | xi  | Seminar          |
| iv  | Lab Experiment      | viii | Expert Lecture                 | xii | Case Study       |

| Lect.<br>No. | Portion to be covered                                                                           | Planned<br>date | Actual<br>date | Content<br>Delivery<br>Method/Lea<br>rning<br>Activities | Refere<br>nce<br>materi<br>al |
|--------------|-------------------------------------------------------------------------------------------------|-----------------|----------------|----------------------------------------------------------|-------------------------------|
|              | MODULE 1: Number Systems and Codes                                                              |                 |                |                                                          |                               |
| 1.           | Introduction to the subject, Revision of Binary, Octal, Decimal and Hexadecimal number Systems. | 1/7/19          | 1/7/19         | Class Room<br>Teaching                                   | i                             |
| 2            | Number system conversion and Numerical on number system conversion                              | 3/7/19          | 3/7/19         | Class Room<br>Teaching                                   | i                             |
| 3            | Number system conversion and Numerical on number system conversion                              | 4/7/19          | 4/7/19         | Class Room<br>Teaching                                   | i                             |
| 4            | Binary Arithmetic: Binary Addition and<br>Subtraction (1's complement and 2's<br>complement)    | 5/7/19          | 5/7/19         | Class Room<br>Teaching                                   | i                             |
| 5            | Multiplication & Division                                                                       | 8/7/19          | 8/7/19         | Class Room<br>Teaching                                   | I                             |
| 6            | Octal and Hexadecimal arithmetic                                                                | 10/7/19         | 10/7/19        | Class Room<br>Teaching                                   | 1                             |
| 7            | Codes: Gray, BCD, Excess 3 , ASCII Code                                                         | 11/7/19         | 11/7/19        | Class Room<br>Teaching                                   | 1                             |

| 8  | Error Detection and correction codes:          | 12/7/19      | 12/7/19  | Class Room      | i, iv |
|----|------------------------------------------------|--------------|----------|-----------------|-------|
|    | Hamming codes :                                |              |          | Teaching        |       |
|    | MODULE 2:Boolean Algebra and Logic Gat         | es           |          |                 |       |
| 9  | Theorem and properties of Boolean algebra.     | 16/7/19      | 16/7/19  | Class Room      | i     |
|    | Boolean functions and function reduction       |              |          | Teaching        |       |
|    | using Boolean laws.                            |              |          | _               |       |
| 10 | Canonical forms: SOP POS                       | 17/7/10      | 17/7/10  | Class Boom      | Liv   |
| 10 |                                                | 1///15       | 1///15   | Teaching        | 1,1 V |
|    |                                                |              |          |                 |       |
| 11 | Basic Digital gates: NOT , AND , OR , NAND ,   | 18/7/19      | 19/7/19  | Class Room      | i, iv |
|    | NOR , EXOR , EX-NOR, positive and negative     | (cancelled   |          | Teaching        |       |
|    | logic. NAND-NOR Realization                    | due to taik) |          | [Video1]        |       |
|    |                                                |              |          | [video1]        |       |
|    |                                                |              |          | [TPS activity]  |       |
|    |                                                |              |          |                 |       |
| 12 | K-map method 2 variable, 3 variable, 4         | 19/7/19      | 22/7/19  | Class Room      | i, iv |
|    | Variable, Don't care condition                 |              |          | Teaching        |       |
| 12 | K-man method 2 variable 3 variable 4           | 22/7/10      | 22/7/10  | Class Room      | i iv  |
| 13 | variable. Don''t care condition.               | 23/7/15      | 23/7/15  | Teaching        | 1, 1V |
|    |                                                |              |          |                 |       |
| 14 | Solving more problems using K-Maps and         | 24/7/19      | 24/7/19  | Class Room      | i, iv |
|    |                                                |              |          | Teaching        |       |
|    |                                                |              |          | [TPS activity]  |       |
|    |                                                |              |          | [11 5 detinity] |       |
| 15 | Quine-McClusky Method, NAND-NOR                | 25/7/19      | 25/7/19  | Class Room      | i, iv |
|    | Realization.                                   |              |          | Teaching        |       |
| 10 | Quine McClusly Method Quine McClusly           | 20/7/10      | 25/7/10  | Class Room      |       |
| 10 | Method NAND-NOR Realization                    | 26/7/19      | 25/7/19  |                 | I, IV |
|    | Method. NAND NON Realization.                  |              |          | reacting        |       |
| 17 | Module Test1 -1                                | 30/7/19      | 26/7/19  |                 |       |
|    |                                                |              |          |                 |       |
|    | Module 3: Combinational Logic Design           | o. /= /. o   |          |                 |       |
| 18 | Introduction to combinational logic, Half      | 31/7/19      | 30/7/19  | Class Room      | Î     |
|    | Adder , Full Adder                             |              |          | reaching        |       |
| 19 | Half Subtractor , Full subtractor              | 1/8/19       | 31/7/19  | Class Room      | i     |
|    |                                                |              |          | Teaching        |       |
|    |                                                |              |          |                 |       |
| 20 | Four Bit Ripple adder, look ahead carry adder, | 2/8/19       | 2/8/19   | Class Room      | 1     |
|    | 4 DIT adder subtractor                         |              |          | Teaching        |       |
| 21 | Code converters : Binary to Grav. Grav to      | 6/8/19       | 6/8/19   | Class Room      | j, iv |
|    | Binary, BCD to Binary, Binary to BCD           | -, -, -,     | -, -, =, | Teaching,       | .,    |
|    |                                                |              |          | Lab             |       |

| 22<br>23<br>24 | Code converters: BCD to EX-3, EX-3 to BCD<br>One digit BCD Adder, One digit BCD<br>Subtractor<br>Encoders, Priority encoder, Decoders<br>Multiplexer, Multiplexer tree | 7/8/19<br>8/8/19<br>9/8/19 | 7/8/19<br>8/8/19<br>9/8/19 | Class Room<br>Teaching<br>Class Room<br>Teaching<br>Class Room | i, iv<br>i |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------------------------------------------|------------|
| 23<br>24       | One digit BCD Adder, One digit BCD<br>Subtractor<br>Encoders, Priority encoder, Decoders<br>Multiplexer, Multiplexer tree                                              | 8/8/19<br>9/8/19           | 8/8/19<br>9/8/19           | Teaching<br>Class Room<br>Teaching<br>Class Room               | i          |
| 23<br>24       | One digit BCD Adder, One digit BCD<br>Subtractor<br>Encoders, Priority encoder, Decoders<br>Multiplexer, Multiplexer tree                                              | 8/8/19<br>9/8/19           | 8/8/19<br>9/8/19           | Class Room<br>Teaching<br>Class Room                           | i<br>i iv  |
| 23<br>24       | One digit BCD Adder, One digit BCD<br>Subtractor<br>Encoders, Priority encoder, Decoders<br>Multiplexer, Multiplexer tree                                              | 8/8/19<br>9/8/19           | 8/8/19<br>9/8/19           | Class Room<br>Teaching<br>Class Room                           | i<br>i iv  |
| 24             | Subtractor<br>Encoders, Priority encoder, Decoders<br>Multiplexer, Multiplexer tree                                                                                    | 9/8/19                     | 9/8/19                     | Teaching<br>Class Room                                         | i iv       |
| 24             | Encoders, Priority encoder, Decoders<br>Multiplexer, Multiplexer tree                                                                                                  | 9/8/19                     | 9/8/19                     | Class Room                                                     | j iv       |
| 24             | Multiplexer, Multiplexer tree                                                                                                                                          | 20/8/19                    | 9/8/19                     | Teaching                                                       |            |
|                | Multiplexer, Multiplexer tree                                                                                                                                          | 20/8/10                    |                            |                                                                | ', IV      |
|                | Multiplexer, Multiplexer tree                                                                                                                                          | 20/2/10                    |                            | reaching                                                       |            |
| 25             |                                                                                                                                                                        | 20/0/13                    | 20/8/19                    | Class Room                                                     | i. iv      |
|                |                                                                                                                                                                        | -,-, -                     |                            | Teaching,                                                      | ,          |
|                |                                                                                                                                                                        |                            |                            | Lab                                                            |            |
|                |                                                                                                                                                                        |                            |                            | Experiment                                                     |            |
|                |                                                                                                                                                                        |                            |                            |                                                                |            |
| 26             | Demultiplexer, Demultiplexer tree                                                                                                                                      | 21/8/19                    | 21/8/19                    | Class Room                                                     | i, iv      |
|                |                                                                                                                                                                        |                            |                            | Teaching                                                       |            |
|                |                                                                                                                                                                        |                            |                            |                                                                |            |
| 27             | One bit, Two bit, 4-bit Magnitude                                                                                                                                      | 22/8/19                    | 22/8/19                    | Class Room                                                     | i, iv      |
|                | Comparator, ALU IC 74181.                                                                                                                                              |                            |                            | Teaching,                                                      |            |
|                |                                                                                                                                                                        |                            |                            | Lab                                                            |            |
|                |                                                                                                                                                                        |                            |                            | Experiment                                                     |            |
|                | Module 1: Sequential Logic Design                                                                                                                                      |                            |                            |                                                                |            |
| 20             | Introduction: SR latch Concents of Elin                                                                                                                                | 22/0/10                    | 22/0/10                    | Class Boom                                                     | 1          |
| 20             |                                                                                                                                                                        | 23/0/19                    | 23/0/19                    | Teaching                                                       |            |
|                | FIOPS: SR, D, J-K, T,                                                                                                                                                  |                            |                            | reaching                                                       |            |
|                |                                                                                                                                                                        |                            |                            | [video2]                                                       |            |
|                |                                                                                                                                                                        |                            |                            |                                                                |            |
| 29             | Truth Tables and Excitation Tables of all                                                                                                                              | 27/8/19                    | 27/8/19                    | Class Room                                                     | 1          |
|                | types, Race around condition                                                                                                                                           |                            |                            | Teaching,                                                      |            |
|                |                                                                                                                                                                        |                            |                            | Lab                                                            |            |
|                |                                                                                                                                                                        |                            |                            | Experiment                                                     |            |
| 30             | Master Slave I-K Flin Flons, Timing Diagram                                                                                                                            | 28/8/10                    | 28/8/10                    | Class Room                                                     | 1          |
| 30             | Master slave s K rip riops, rinning blagrani,                                                                                                                          | 20/0/19                    | 20/0/15                    | Teaching                                                       | 1          |
|                |                                                                                                                                                                        |                            |                            | reaching                                                       |            |
| 31             | Flip-flop conversion                                                                                                                                                   | 29/8/19                    | 29/8/19                    | Class Room                                                     | i, iv      |
|                |                                                                                                                                                                        |                            |                            | Teaching                                                       |            |
|                |                                                                                                                                                                        |                            |                            |                                                                |            |
| 32             | Shift Registers: SISO, SIPO, PIPO, PISO                                                                                                                                | 30/8/19                    | 1/9/19                     | Class Room                                                     | i, iv      |
|                |                                                                                                                                                                        |                            |                            | Teaching                                                       |            |
| 22             | Ridirectional Shift Persister                                                                                                                                          | 11/0/10                    | 12/0/10                    | Class Room                                                     | ; ;,       |
| 55             | DIGITECTIONAL STILL REGISTEL                                                                                                                                           | 11/3/13                    | 12/3/13                    | Teaching                                                       | I, IV      |
|                |                                                                                                                                                                        |                            |                            | reaching                                                       |            |
| 34             | Universal Shift Register                                                                                                                                               | 12/9/19                    | 17/9/19                    | Class Room                                                     | i. iv      |
|                |                                                                                                                                                                        | , 0, 10                    |                            | Teaching,                                                      | .,         |
|                |                                                                                                                                                                        |                            |                            | Lab                                                            |            |
| 34             | Universal Shift Register                                                                                                                                               | 12/9/19                    | 17/9/19                    | Class Room<br>Teaching,                                        | i, iv      |

|    |                                                                                                          |         |         | Experiment                                               |       |
|----|----------------------------------------------------------------------------------------------------------|---------|---------|----------------------------------------------------------|-------|
| 35 | Ring and twisted ring/Johnson Counter                                                                    | 13/9/19 | 18/9/19 | Class Room<br>Teaching                                   | i, iv |
| 36 | State machines, state diagrams, state tables.<br>Concept of Moore and Mealy machine.                     | 17/9/19 | 18/9/19 | Class Room<br>Teaching                                   | i, iv |
| 37 | Counters: Design of Asynchronous Counters                                                                | 18/9/19 | 19/9/19 | Class Room<br>Teaching,<br>Lab<br>Experiment<br>[Video3] | i, iv |
| 38 | Counters: Design of Synchronous Counters                                                                 | 19/9/19 | 20/9/19 | Class Room<br>Teaching                                   | i,iv  |
| 39 | Modulus of the Counters                                                                                  | 20/9/19 | 24/9/19 | Class Room<br>Teaching                                   | i,iv  |
| 40 | UP- DOWN counter                                                                                         | 24/9/19 | 25/9/19 | Class Room<br>Teaching                                   | i,iv  |
| 41 | Sequence generator.                                                                                      | 25/9/19 | 26/9/19 | Class Room<br>Teaching                                   | i,iv  |
|    | Module 5: Introduction to VHDL                                                                           |         |         |                                                          | •     |
| 42 | Introduction: Fundamental building blocks<br>Library, Entity                                             | 26/9/19 | 3/10/19 | Class Room<br>Teaching,<br><b>slides</b>                 | iii,v |
| 43 | Architecture, Modeling Styles                                                                            | 27/9/19 | 3/10/19 | Class Room<br>Teaching,<br><b>slides</b>                 | iii,v |
| 44 | Concurrent and sequential statements.                                                                    | 30/9/19 | 4/10/19 | Class Room<br>Teaching,<br>slides                        | iii,v |
| 45 | simple design examples for combinational<br>circuits, simple design examples for<br>Sequential circuits. | 1/10/19 | 4/10/19 | Class Room<br>Teaching,<br>Lab<br>Experiment             | iii,v |
|    | Module 6: Digital Logic Families                                                                         | 1       | T       | Ι                                                        |       |
| 46 | Introduction: Terminologies like Propagation<br>Delay, Power Consumption, Fan in and Fan                 | 3/10/19 | 9/10/19 | Class Room<br>Teaching                                   |       |

|    | out , current and voltage parameters, noise margin,                                                   |         |              |                        |   |
|----|-------------------------------------------------------------------------------------------------------|---------|--------------|------------------------|---|
| 47 | Comparison of TTL and CMOS Logic                                                                      | 4/10/19 | 9/10/19      | Class Room<br>Teaching | I |
| 48 | Flipped class room activity for ½ an hour and<br>University Question papers Solution for ½ an<br>hour | 5/10/19 | 11/10/1<br>9 | Class Room<br>Teaching |   |

| Resource  | Торіс           | Source                                      | Туре     |
|-----------|-----------------|---------------------------------------------|----------|
| Video1    | Transistors and | https://www.youtube.com/watch?v=SW2Bwc17_wA | You tube |
|           | Boolean logic   |                                             |          |
| Video2    | RS Flip Flop    | https://www.youtube.com/watch?v=pv3MZMoo0   | You tube |
| Animation |                 |                                             |          |
| Video3    | Introduction    | https://www.youtube.com/watch?v=iaIu5SYmWVM | You tube |
|           | to counter      |                                             |          |

# Text Books/ Reference Books: <u>Text Books:</u> Text Books:

- 1. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 2. Yarbrough John M., "Digital Logic Applications and Design ", Cengage Learning
- 3. J. Bhasker." VHDL Primer", Pearson Education

### **Reference Books:**

- 4. M. Morris Mano, "Digital Logic and computer Design", PHI.
- 5. Douglas L. Perry, "VHDL Programming by Example", Tata McGraw Hill.
- 6. Donald p Leach, Albert Paul Malvino, "Digital principles and Applications", Tata McGraw Hill.

# FR. Conceicao Rodrigues College Of Engineering

## Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering

# S.E. (Computer) (semester III)

### (2019-2020)

### LABORATOTY PLAN: DIGITAL SYSTEM LAB

### Semester III

#### Year: 2019-20

| Sr. | Title                                                                                                                         | CO               | Planned                              | Actual  |          |         |         |
|-----|-------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|---------|----------|---------|---------|
| No  |                                                                                                                               |                  | dates                                | dates   |          |         |         |
|     | ватсн 🗲                                                                                                                       |                  |                                      | A       | В        | С       | D       |
| 1.  | To study and verify the<br>truth table of various logic<br>gates using ICs and realize<br>Boolean expressions using<br>gates. | CSC302.2         | 3 <sup>rd</sup> week of<br>July      | 17/7/19 | 16/7/19  | 15/7/19 | 15/7/19 |
| 2.  | To realize basic gates using universal gates.                                                                                 | <b>CSC302</b> .2 | 4 <sup>th</sup> week of<br>July      | 24/7/19 | 23/7/19  | 22/7/19 | 22/7/19 |
| 3.  | To realize arithmetic circuits<br>i) Half adder ii) Full adder iii)<br>Half subtractor iv) Full<br>subtractor.                | <b>CSC302</b> .2 | 1 <sup>st</sup> week of<br>August    | 31/7/19 | 30/7/19  | 29/7/19 | 29/7/19 |
| 4.  | To realize binary to gray<br>code and gray code to<br>binary converter.                                                       | <b>CSC302</b> .2 | 2 <sup>nd</sup> week of<br>August    | 7/8/19  | 6/8/19   | 6/8/19  | 6/8/19  |
| 5   | To realize parity generator and detector. (New)                                                                               | <b>CSC302</b> .2 | 4th week of<br>August                | 21/8/19 | 20/8/19  | 20/8/19 | 20/8/19 |
| 6.  | To Study multiplexer IC and<br>realization of full adder<br>using multiplexer IC.                                             | <b>CSC302</b> .2 | 1st week of<br>September             | 28/8/19 | 27/8/19  | 27/8/19 | 27/8/19 |
| 7.  | To realize 2 bit magnitude comparator.                                                                                        | CSC302.2         | 1st week of<br>September             | 28/8/19 | 27/8/19  | 27/8/19 | 27/8/19 |
| 8.  | Study of flip-flops using IC's                                                                                                | CSC302.3         | 2 <sup>nd</sup> week of<br>September | 11/9/19 | 17/9/19  | 16/9/19 | 16/9/19 |
| 9.  | To realize shift registers<br>using flip flops                                                                                | CSC302.3         | 2 <sup>nd</sup> week of<br>September | 18/9/19 | 17/9/19  | 24/9/19 | 24/9/19 |
| 10. | To realize asynchronous 3 bit up counter.                                                                                     | CSC302.3         | 3 <sup>rd</sup> week of<br>September | 25/9/19 | 24/10/19 | 30/9/19 | 30/9/19 |

| 11  | To realize combinational    | CSC302.2 | 3rd week of             | 9/10/19                                    | 1/10/19 | 7/10/19 | 7/10/19 |
|-----|-----------------------------|----------|-------------------------|--------------------------------------------|---------|---------|---------|
|     | circuit using VHDL          | CSC302.4 | September               |                                            |         |         |         |
| 12. | To realize basic Sequential | CSC302.3 | 4 <sup>th</sup> week of | 9/10/19                                    | 1/10/19 | 7/10/19 | 7/10/19 |
|     | circuit using VHDL          | CSC302.4 | September               |                                            |         |         |         |
| 13. | Mini Project                | CSC302.4 |                         | Submission 2 <sup>nd</sup> week of October |         |         |         |
|     |                             |          |                         |                                            |         |         |         |