T.E. COMP/S.E /19-20(II)

Academic year- JAN-APR 2020

COURSE FILE – SOFTWARE ENGINEERING

SUBJECT INCHARGE – Dr. B.S. DAGA

Course Code	Course/Subject Name	Credits
CSC601	Software Engineering	05

University Syllabus:

Module	Detailed Contents	Hrs
1.	Introduction To Software Engineering and Process Models 1.1 Nature of Software, Software Engineering, Software Process, Capability Maturity Model (CMM) 1.2 Generic Process Model, Prescriptive Process Models: The Waterfall Model, V-model, Incremental Process Models, Evolutionary Process Models, Concurrent Models, Agile process, Agility Principles, Extreme Programming (XP), Scrum, Kanban model	08
2.	Requirements Analysis and Modelling 2.1 Requirement Elicitation, Software requirement specification (SRS), Developing Use Cases (UML) 2.2 Requirement Model – Scenario-based model, Class-based model, Behavioural model.	08
3.	Project Scheduling and Tracking 3.1 Management Spectrum, 3Ps (people, product and process) 3.2 Process and Project metrics 3.3 Software Project Estimation: LOC, FP, Empirical Estimation Models - COCOMO II Model, Specialized Estimation Techniques 3.4 Project scheduling: Defining a Task Set for the Software Project, Timeline charts, Tracking the Schedule, Earned Value Analysis	08

4.	Software Design	10
	4.1 Design Principles, Design Concepts, Effective Modular	
	Design – Cohesion and Coupling.	
	4.2 Architectural Design	
	4.3 Component-level design	
	4.4 User Interface Design	
5.	Software Risk, Configuration Management & Quality	08
	Assurance	
	5.1 Risk Identification, Risk Assessment, Risk Projection,	
	RMMM	
	5.2 Software Configuration management, SCM repositories,	
	SCM process	
	5.3 Software Quality Assurance Task and Plan, Metrics,	
	Software Reliability, Formal Technical Review (FTR),	
	Walkthrough.	
6.	Software Testing and Maintenance	10
	6.1 Strategic Approach to Software Testing, Unit testing,	
	Integration testing Verification, Validation Testing, System	
	Testing	
	6.2 Software Testing Fundamentals, White-Box Testing, Basis	
	Path Testing, Control Structure Testing, Black-Box Testing	
	6.3 Software maintenance and its types, Software Re-	
	engineering, ReverseEngineering	

Course Objectives:

The main objective is to introduce to the students about the product that is to be engineered andthe process that provides a framework for the engineering technology.

- 1. To provide knowledge of software engineering discipline.
- 2. To analyze risk in software design and quality.
- 3. To introduce the concept of advance software methodology.

Course Outcomes

Upon completion of this course students will have:

No	Course Outcome	Blooms	Explanation			
		Taxonomy				
CSC601.1	To compare different types of software development models and choose one based	Comprehension (explains, gives examples, shows relationship of)	Demonstrate/understanding of Software Development Models			

CSC601.2	on types of application To Gather therequirements and model them using UML principles.	Analysis	Students will be able to identify problem and analyse the requirements and document them
CSC601.3 CSC601.4	To Design Software System effectively To Apply Software Testing and Maintenance Principles on given problem	Application (applies, solves, uses, demonstrates) Application (applies, solves, uses, demonstrates)	They will apply software design principles on to make it effective and modular (Flexible) Apply different testing types and testing strategies for making bug free software
CSC601.5	To apply umbrella activities on software projects	Application (applies, solves, uses, demonstrates)	Applying Umbrella Activities in different phases of core software development process to help making quality software

CO Assessment Tools:

 $\pmb{CSC601.1}\ \textbf{To compare different types of software development models and choose one based on types of application}\\$

Direct Method Tools (dm)	1
Test (UT)	0.2
Assignment(Assign)	0.2
Practicals(lab)	0.2
End Sem Marks(THEORY)(utTH)	0.2
End Sem Marks(ORAL)(utOral)	0.2
Indirect Method Tools(idm)	1
Course Exit Survey (C01idm)	0.2

CSC601.1 = 0.8*CO1dm + 0.2*CO1idm

CSC601.2.To Gather the requirements and model them using UML principles.

Direct Method Tools (dm)	1
Test (UT)	0.2
Assignment (Assign)	0.2
Practicals(lab)	0.2
End Sem Marks(THEORY)(utTH)	0.2
End Sem Marks(ORAL)(utOral)	0.2
Indirect Method Tools(idm)	1
Course Exit Survey (C02idm)	0.2
CSC601.2 = 0.8*CO2dm + 0.2*CO2idm	

CSC601.3.To Design SoftwareSystem effectively.

Direct Method Tools (dm)	1
Test (UT)	0.2
Assignment (Assign)	0.2
Practicals(lab)	0.2
End Sem Marks(THEORY)(utTH)	0.2
End Sem Marks(ORAL)(utOral)	0.2
Indirect Method Tools(idm)	1
Course Exit Survey (C03idm)	0.2
CSC601.3 = 0.8*CO3dm + 0.2*CO3idm	

CSC601.4.To Apply SoftwareTesting and Maintenance Principles on givenproblem.

Direct Method Tools (dm)	1
Test (UT)	0.2
Assignment (Assign)	0.2
Practicals(lab)	0.2
End Sem Marks(THEORY)(utTH)	0.2
End Sem Marks(ORAL)(utOral)	0.2
Indirect Method Tools(idm)	1
Course Exit Survey (C04idm)	0.2
CSC601.4 = 0.8*CO4dm + 0.2*CO4idm	·

CSC601.5.To apply umbrellaactivities on software projects.

Direct Method Tools (dm)	1
Assignment (Assign)	0.3
Practicals(lab)	0.3
End Sem Marks(THEORY)(utTH)	0.2
End Sem Marks(ORAL)(utOral)	0.2
Indirect Method Tools(idm)	1
Course Exit Survey (C05idm)	
CSC601.5 = 0.8*CO5dm + 0.2*CO5idm	,

Weak Student Coverage by Retest and coaching

Course Outcomes Target:

Target	Attainment 19-20	Attainment 18-19	Attainment 17-18(By
		(ByProf.	Dr. SunilSurve)
		SunilChaudhari)	
CSC601.1 – Target: 2.6		2.8	2.84
CSC601.2 – Target: 2.6		2.48	2.36
CSC601.3 – Target: 2.6		2.8	2.68
CSC601.4 – Target: 2.6		2.48	2.84
CSC601.5 – Target: 2.6		2.64	2.3

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CSC601.1	2	3											3	3
CSC601.2	2	3			3				2			3	3	3
CSC601.3	2	2	3		3				2			3	3	3
CSC601.4	2	2	3		3				2			3	3	3
CSC601.5	2	3			3				2			3	3	3

Justification

PO1: This subject all COs are mapped to PO1 because engineering graduates will be able to apply the Software Engineering knowledge to solve business problems

PO2: All COs are in general related to PO2 because students analyze the different scenarios of business to decide the solution for the problem

C03: mapped to PO2 because students can analyze the information flow in the organization. CSC4: mapped to PO2 because student perform review of literature of real world problem to develop business application

PO3: C03 &CO4 is mapped to PO3 because students design an application for domain.

PO5: C0s2,3,4,5 are mapped to PO5 because the students use the tools and defined processes for development.

PO9: C0 2,3,4,5 is mapped to PO9 because the students work in a team

PO12: C0 2,3,4,5

PSO1: All COs are mapped to PSO1 because the graduates will be able to apply fundamental knowledge of software Engineering to solve the real world problems.

PSO2: All COs are mapped to PSO2 because students design and implement the solution to meet specific requirement.

Rubrics for the Assignments:

Indicator	Average	Good	Excellent	Marks
Organization (2)	Readable with some mistakes and structured (1)	Readable with some mistakes and structured (1)	Very well written and structured without any mistakes (2)	
Level of content(4)	All major topics are covered, the information is accurate (2)	Most major and some minor criteria are included. Information is accurate (3)	All major and minor criteria are covered and are accurate (4)	
Depth and breadth of discussion and representation(4)	Minor points/information maybe missing and representation isminimal (1)	Discussion focused on some ofthe points and covers themadequately (2)	Information is presented indepth and is accurate (4)	
Total				

Assignment 1

Chapter 1:SDLC Models

- Q.1) Explain the Spiral Model of software development with advantages, disadvantages and diagram.
- Q.2) Explain the Agile Software Development Methodology with advantages, disadvantages.
- Q.3) CMM.
- Q.4) Explain Project and Process metrics

Chapter 2:Scheduling, Control & Monitoring

Q.1) Explain Function Point Analysis (FPA) with help of an example

- Q.2) Short Note on COCOMO Model
- Q.3) Distinguish between CPM and PERT (min. 5 points)
- Q.4) Explain how to do qualitative cost estimation using Earned Value Analysis(EVA)

Chapter 3:Risk Management

- Q.1) Explain process of Risk Management
- Q.2) Explain RMM plan for your project
- Q.3) Short Note on Risk Exposure

Chapter 4: Software Configuration Management

- Q.1) Short Note on SCM
- Q.2) Explain Change Control Process
- Q.3) Explain Version Control Process

Assignment 2

Chapter:Software Testing

1) Write short note on White box & Back box testing.

Chapter: SQA

2) Write short note on SQA plan.

Chapter: Design

3) Write short note on Cohesion & Coupling.

Chapter: Web Engineering

4) Write short note on Service Oriented Software Architecture.

Unit Test I

1. Explain the various types of models with examples which are used in software Engineering? –

(10 MARKS)

2. Do cost estimation in terms of Effort for the given problem by using Basic COCOMO Model .Use Function Point as size estimator by assuming development language.

(10 MARKS)

Problem Statement: The spell Checker Accepts as input a document file & optional personal dictionary file .The checker lists all words not contained in either of these files. The user can query the number of words processed & number of spelling errors found at any stage during processing.

Mode	a	b
Organic	2.4	1.05
Semi-detached	3.0	1.12
Embedded	3.6	1.20

Unit Test II:

- Q1. Explain software design principle based on types of cohesion and coupling with example. (10 MARKS)
- Q2. Compute cyclomaticcomplexity for given code. Also compute basis set & determine test data for each basis set. (10 MARKS)

```
intfunctionY(void)
1
2
 3
       int x = 0;
       int y = 19;
  A: x++;
       if (x > 999)
 6
 7
          goto D;
       if (x % 11 == 0)
          goto B;
 9
10
       else goto A;
    B: if (x % y == 0)
11
12
          goto C;
13
       else goto A;
14
    C: printf("%d\n", x);
15
       goto A;
    D: printf("End of list\n");
16
17
       return 0;
18
    }
```

List of Practical's:

#	Experiment Name	Aim	CO map
1	SOFTWARE REQUIREMENTS SPECIFICATION	To prepare software requirements specification document for a selected case study in IEEE format	CO1
2	FUNCTION POINT CALCULATION	To calculate function point for a selected case study	CO2
3	COST ESTIMATION USING COCOMO MODEL	To calculate function point for a selected case study	CO2
4	PROJECT SCHEDULING USING PROJECT	Use project management tool to schedule project plan for a selected	CO2

	MANAGEMENT TOOL	case study	
5	RISK MANAGEMENT MONITORING AND MITIGATION PLAN	Develop a risk table for a selected case study	
6	General Test-Driven Development	General test driven development for a selected case study	CO4
7	BLACK BOX TESTING	To design test cases for performing black box testing (equivalence partitioning and boundary value analysis) for a selected case study	CO4
8	WHITE BOX TESTING	To design test cases for performing white box testing for a selected case study	CO4
9	COHESION AND COUPLING	Draw Architecture diagram and incorporate Cohesion and Coupling for each module of <type case="" selected="" study<="" td="" your=""><td>CO3</td></type>	CO3
10	DESIGN PATTERNS	Application of at least two types of design patterns in selected case study	CO3

Practical Submission Date (Batch wise)

#	Experiment Name	Date (A	Date (C	Date (D
		Batch)	Batch)	Batch)
1	GOTTHIA DE DECLUDENCENTES			
1	SOFTWARE REQUIREMENTS			
	SPECIFICATION			
2	FUNCTION POINT CALCULATION			
3	COST ESTIMATION USING COCOMO			
	MODEL			
4	PROJECT SCHEDULING USING			
	PROJECT MANAGEMENT TOOL			
5				
	RISK MANAGEMENT MONITORING			

	AND MITIGATION PLAN		
6	General Test-Driven Development		
7	BLACK BOX TESTING		
8	WHITE BOX TESTING		
9	COHESION AND COUPLING		
10	DESIGN PATTERNS		

Exit Survey For Software Engineering – Sem VI, Academic Term II (19-20)

	Student Name:			Roll No:		
		Very Well	Well	Neutral	Average	
1.	How well you can apply software engineering principles/processes for software project					
2.	How well you have understood Project Scheduling and Tracking					
3.	How well you understood software Design Principles					
4.	How well you have understood principles of software testing					
5.	How well you have understood advance software Engineering principles like (RMMM,SCM,SQA) to create high quality software Applications					

Lecture/Lesson Plan:

Modes of Content Delivery:

Ι	Class Room/Lab	v	Self Learning Online	Ix	Industry Visit
	Teaching		Resources		
Ii	Tutorial	vi	Slides	X	Group
					Discussion
Iii	Remedial Coaching	vii	Simulations/Demonstrations	xi	Seminar
Iv	Lab Experiment	viii	Expert Lecture	xii	Case Study

Date wise Lesson Plan –

Module	Detailed Contents	Content	Text book	Hrs	Dates
		Delivery	and		
		Mode	references		
	Introduction To Software Engineering	T1, R1		08	
	and Process Models				
1.	1.1 Nature of Software, Software				
	Engineering, Software Process,				
	Capability Maturity Model (CMM)				
	1.2 Generic Process Model, Prescriptive				
	Process Models: The Waterfall Model,				
	V-model, Incremental Process Models,				
	Evolutionary Process Models,				
	Concurrent Models, Agile process,				
	Agility Principles, Extreme				
	Programming (XP), Scrum, Kanban				
	model	T1 D2		00	
2.	Requirements Analysis and Modelling	T1, R2		08	
	2.1 Requirement Elicitation, Software				
	requirement specification (SRS),				
	Developing Use Cases (UML)				
	2.2 Requirement Model – Scenario-				
	based model, Class-based model,				
2	Behavioural model.	TO DO		00	
3.	Project Scheduling and Tracking	T2, R2.		08	
	3.1 Management Spectrum, 3Ps (people,	R1			
	product and process)				
	3.2 Process and Project metrics				
	3.3 Software Project Estimation: LOC,				
	FP, Empirical Estimation Models - COCOMO II Model, Specialized				
	Estimation Techniques				
	Estimation rechinques				

	3.4 Project scheduling: Defining a Task			
	Set for the Software Project, Timeline			
	charts, Tracking the Schedule, Earned			
	Value Analysis			
4.	Software Design	T2, R1,	10	
	4.1 Design Principles, Design Concepts,	R2		
	Effective Modular Design – Cohesion			
	and Coupling.			
	4.2 Architectural Design			
	4.3 Component-level design			
	4.4 User Interface Design			
5.	Software Risk, Configuration	T2, R1,	08	
	Management & Quality Assurance	R3		
	5.1 Risk Identification, Risk			
	Assessment, Risk Projection, RMMM			
	5.2 Software Configuration			
	management, SCM repositories, SCM			
	process			
	5.3 Software Quality Assurance Task			
	and Plan, Metrics, Software Reliability,			
	Formal Technical Review (FTR),			
	Walkthrough.			
6.	Software Testing and Maintenance	T2, R1,	10	
	6.1 Strategic Approach to Software	R3		
	Testing, Unit testing, Integration testing			
	Verification, Validation Testing, System			
	Testing			
	6.2 Software Testing Fundamentals,			
	White-Box Testing, Basis Path Testing,			
	Control Structure Testing, Black-Box			
	Testing			
	6.3 Software maintenance and its types,			
	Software Re-engineering, Reverse			
	Engineering			

Text Books:

- T1. Roger Pressman, Software Engineering: A Practitioners Approach, (6th Edition), McGraw Hill, 2010
- T2. Ian Somerville, Software Engineering, 9th edition, Addison Wesley, 2011

Reference Books:

- R1. Eric J. Braude and Micheal E. Bernstein, Software Engineering Modern Approach, 2ndedition, Wiley, 2011.
- R2. Ali Behforooz Fredrick Hudson, Software Engineering Fundamentals, Oxford UniversityPress, 2006.
- R3. PankajJalote, "IntegratedSoftware Engineering", Wiley.

Reference Web sites: Study Material On Moodle, tutorialpoint.com, mkyong.com

Term Work consists of 25 Marks (15 Marks for Practicals and Presentation +5 Marks for Attendance+ 5 Marks for Assignment)

Total Software Engineering Marks

TW +ORAL+THEORY=25+25+100=150