LESSON PLAN

Class: B.E. Engineering

Academic Term: July -OCT 2018

Course: Automation and Control Engineering

Faculty Member: Saurabh Korgaonkar

Prerequisites: None

Course Objectives:

- 1. Students will be able to understand Pneumatic and Hydraulic circuits of medium complexity.
- 2. Students will understand basic working of PLC and Electropnumatics circuits.
- **3.** Students will be able to model simple system and find Transfer function.
- **4.** Students will be able to check stability of a mechanical system

Periods (Hours) per week:

Lecture: 4 Practical: 2

University Evaluation Method:

Theory examination: 80 Marks (3 Hrs)

Internal Assessment: 20 Practical Examination: 25

Term work: 25 Total: 150

Syllabus

Modules	Details						
01	Automation						
	Definition; Automation in production systems; Automation principles						
	and strategies; Basic elements of an automated system; Advanced						
	automation functions; Levels of automation; Types of automation;						
	Benefits and Impact of Automation in Manufacturing and Process						
02	Industries. Architecture of Industrial Automation Systems.	11					
02	Pneumatic control systems Overview of different types of valves and Actuators in Pneumatics,	11					
	their applications and their ISO symbols. Design of Pneumatic circuits						
	using Cascade method and Shift register method (up to 3 cylinders).						
	Design of Electro-Pneumatic Circuits using single solenoid and double						
	solenoid valves with and without grouping.						
	Design of Pneumatic circuits using PLC Control (ladder programming						
	only and up to 3 cylinders) with applications of Timers and Counters						
	and concept of Flag and latching.						
03	Hydraulic control systems	07					
	Overview of different types of valves, Actuators and Accumulators used						
	in Oil hydraulic circuits, their applications and their ISO symbols. Basic hydraulic circuits involving linear and rotary actuators (No						
	sequential circuits).						
	Fundamental concepts of digital and servo hydraulic controls.						
	Comparison between proportional, digital and servo hydraulic control						
	systems.						
04	Digital logic: Number systems; Logic Gates; Boolean Algebra;	11					
	Simplification of Boolean equations using Karnaugh Maps.						
	Microprocessors and Microcontrollers (Only basic understanding						
	and applications)						
	Concept of Microprocessor based control and its application; Parts of a						
	Microprocessor system with block diagram of the general form of a microprocessor system; Data bus, Address bus and Control Bus;						
	General internal Architecture of a Microprocessor; Functions of						
	constituent parts such as ALU, Various Registers and the Control unit.						
	Difference between a Microprocessor and a Microcontroller. General						
	Block diagram of Microcontroller.						
05	Sensors and Transducers	02					
	Fundamentals of displacement, position and Proximity Sensors;						
	Velocity and Motion Sensors; Force and Fluid Pressure Sensors; Liquid						
	level and Flow sensors; Temperature and light Sensors; Control of						
	stepper motors.						

06	Fundamentals of Control System					
	Control system concepts, classification of control systems,					
	mathematical representation of system equations, response					
	characteristics of components and systems through classical solution.					
	Analog computer and Laplace transformation, Frequency response					
	analysis, polar plots, Testing of System's stability using Routh's criteria, Bode plots, Nyquist plot and Root locus method of analysis.					

Mapping of CO's to PO's:

CO# / PO#	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEC801.1	2	2	2	0	0	0	0	0	0	0	0	2
PEC801.2	2	2	2	0	3	0	0	0	0	0	0	2
PEC801.3	2	2	2	2	0	0	0	0	0	0	0	2
PEC801.4	2	2	2	2	0	0	0	0	0	0	0	2

Lesson Plan

Week	Date	Duration	Topic	Methodology
1	2/7/2018	1	Definition, types of automation	Blackboard, interactive problem discussion
	3/7/2018	1	Applications of automation	Ppt, interactive problem discussion
2	4/7/2018	1	Introduction pneumatics, Symbols and standards in Pneumatics	Blackboard
	9/7/2018	1	Design of circuit diagram	Blackboard, simulation
	10/7/2018	1	Direct and indirect control	Blackboard
3	11/7/2018	1	Logic functions AND and OR	Blackboard
	16/7/2018	1	Pressure relief valve, delay valve and air throttling	Blackboard
	17/7/2018	1	Multiple cylinder circuits	Blackboard Simulation
	18/7/2018	1	Cascade introduction	Blackboard
4	20/7/2018	1	Cascading practice	Blackboard
	23/7/2018	1	Shift register introduction	Blackboard Simulation
	24/7/2018	1	Shift register practice	Blackboard
	25/7/2018	1	Introduction to electro pneumatics	Blackboard
5	27/7/2018	1	Design of electro pneumatics	Blackboard Simulation
	30/7/2018	1	Logic functions AND and OR	Blackboard

	31/7/2018	1	Signal storage and delay	Blackboard
	1/8/2018	1	Cascading	Blackboard
6	1/8/2018	1	Introduction to hydraulics	Blackboard
	3/8/2018	1	Fluid power pumps and motors	Blackboard
	6/8/2018	1	Pressure control valves	Blackboard
	7/8/2018	1	Flow control valves	Blackboard
7	8/8/2018	1	Design of hydraulic circuits	Blackboard, Simulation
	10/8/2018	1	Hydraulic circuits	Blackboard
	13/8/2018	1	Hydraulic circuits	Blackboard
	14/8/2018	1	Electrical components in hydraulic circuits	Blackboard
8	15/8/2018	1	Electro hydraulics	Blackboard
	20/8/2018	1	Industrial examples	Blackboard
	21/8/2018	1	Introduction to logic control, karnaugh map	Blackboard
	24/8/2018	1	Basic control circuits	Blackboard
9	27/8/2018	1	Introduction to plc	Blackboard
	28/8/2018	1	Ladder diagrams	Blackboard
	29/8/2018	1	Introduction to microprocessor based systems	Blackboard
	31/8/2018	1	Features and design principles of electrical circuit drives	Blackboard
10	4/9/2018	1	Control system concepts,	Blackboard
	5/9/2018	1	Classification of control systems	Blackboard
	7/9/2018	1	Mathematical representation of C.S.	Blackboard
	10/9/2018	1	Transfer function	Blackboard
11	11/9/2018	1	Block diagram Reduction	Blackboard
	12/9/2018	1	Block diagram Reduction with examples	Blackboard
	14/9/2018	1	MIMO with examples	Blackboard
	17/9/2018	1	Classical solution method	Blackboard
12	18/9/2018	1	Analog Computer method	Blackboard
	19/9/2018	1	Laplace Transformations	Blackboard
	24/9/2018	1	Root Locus Introduction	Blackboard, Simulation
	25/9/2018	1	Root Locus Examples	Blackboard
	26/9/2018	1	Bode plot Introduction	Blackboard
	28/9/2018	1	Bode plot Examples	Blackboard
	1/10/2018	1	Polar plot Introduction with examples	Blackboard
	3/10/2018		Nyquist plot Introduction with examples	Blackboard
	5/10/2018		Discussion of Exam papers	Blackboard

- * Methods of Teaching include but are not limited to following list:
 - ✔ Lecture
 - **✓** Demonstration
 - ✓ PPTs
 - ✓ Simulations and Animations
 - ✓ Role Plays
 - ✓ Case Studies
 - ✓ Industrial Visits

Reference Books

- 1. Automation, Production Systems, and Computer-integrated Manufacturing (3rd Edition), by Mikell P. Groover, PHI Learning Private Limited, New Delhi.
- 2. Pneumatic Controls, by Joji P., Wiley India Pvt. Ltd.
- 3. Principles Of Control Systems, by U.A.Bakshi, V.U.Bakshi, Technical Publications Pune
- 4. Pneumatics Basic Level, by Peter Croser, Frank Ebel, Festo Didactic GmbH & Co. Germany
- 5. Electropneumatics Basic Level, by G. Prede, D. Scholz, Festo Didactic GmbH & Co. Germany.
- 6. Programmable logic controllers Basic Level, by R. Bliesener, F. Ebel, C. Löffler, B. Plagemann, H. Regber, E. V. Terzi, A. Winter, Festo Didactic GmbH & Co. Germany.
- 7. Vickers Industrial Hydraulics Manual (3rd Edition), Vickers Inc.; Maumee, OH. Hydraulic and Pneumatic Controls (2nd Edition), by R. Srinivasan, Vijay Nicole Imprints Pvt. Ltd. Chennai.
- 8. Introduction to Hydraulics and Pneumatics, by S.Ilango and V. Soundararajan, PHI Learning Pvt. Ltd. New Delhi.

Tutorial / Practical's Plan:

Week	Duration	Topic	Method of Conducting
	(Hrs.)		Practical
1	2	Pneumatics Introduction	Conducted On Festo
			Pneumatics Trainer
2	2	Pneumatics with Limit Switches	Conducted On Festo
			Pneumatics Trainer
3	2	Pneumatics with Time delay	Conducted On Festo
			Pneumatics Trainer

4	2	Simulation On Fluid Sim	Simulation conducted on Fluid Sim Software
5	2	Electro-Pneumatics Introduction	Conducted On Festo ElectroPneumatics
			Trainer
6	2	Electro-Pneumatics with Limit Switches	Conducted On Festo
			Elctro-Pneumatics
			Trainer
7	2	Electro-Pneumatics with Time delay	Conducted On Festo
			Electro-Pneumatics
			Trainer

- ExperimentsAssignmentsPresentations
- Mini Project

^{*} Method of Conducting Practicals / Tutorials include but not limited to: