FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Electronics Engineering

Lecture Plan:

Subject: LINEAR CONTROL SYSTEMS (LCS-ELX406)

Credits-4

S.E. (ELECTRONICS) (semester IV) (2018-2019)

1. SYLLABUS

and and a

programme Structure for Bachelor of Engineering (B.E.) – Electronics Engineering (Rev. 2016)

Module	Topics						
No.	Madala for Co. 4 10	Hrs.					
	Models for Control System						
	forward control structure: examples of control						
	forward control structure; examples of control systems.						
	1.2 Mathematical Modelling: Types of models; Impulse response model:						
1	State Variable model and Transfer function model for Electrical. Mechanical						
	and Thermal systems						
	1.3 Manipulations: Block Diagram Representation of complex systems.	1					
	Block diagram reduction, Signal flow graph and the Mason's gain rule for						
	determining overall transfer function of Single Input, Single output systems						
	Time Response Analysis						
	2.1 Dynamic Response: Standard test signals; Transient and steady state						
	behaviour of first and second order systems						
2	2.2. Performance Specifications for a second order system and derivations for rise	08					
	time, settling time, peak time, peak overshoot and steady state error						
	2.3. Steady State errors in feedbackcontrol systems and their types, Error						
	constants and type of system.						
	State Variable Models						
	3.1 State variable models: State variable models of electrical systems	1					
	3.2 State transition equation: Concept of state transition matrix; Properties	1					
	of state transition matrix; Solution of homogeneous systems; solution of						
3	nonhomogeneous systems.	10					
	3.3 Controllability and Observability: Concept of controllability;	1					
	Controllability analysis of LTI systems; Concept of observability;						
	Observability						
	analysis of LTI systems using Kalman approach.						
	Stability Analysis in Time Domain						
	4.1 Concepts of Stability: Concept of absolute, relative and robust stability;						
4	Routh stability criterion.	06					
	4.2 Root Locus Analysis: Root-locus concepts; General rules for constructing	5					
	root-locus; Root-locus analysis of control systems.						
	Stability Analysis in Frequency Domain						
1	5.1 Introduction: Frequency domain specifications, Response peak and peal	<					
	resonating frequency; Relationship between time and frequency domain						
5	specifications of system; Stability margins.						
5	5.2 Bode plot: Magnitude and phase plot; Method of plotting Bode plo	t; 10					
	Stability margins on the Bode plots; Stability analysis using Bode plot.						
	5.3 Nyquist Criterion: Polar plots, Nyquist stability criterions; Nyquist plo	t:					
	Gain and phase margins.						
	Compensators and Controllers						
	6.1 Compensators: Types of compensation: Need of compensation: L	90					
	compensator. Lead compensator	" 5					
6	62 Controllers: Concept of ON/OFE controllers: Concept of D. D.						
v	PID Controllers						
	PID Controllers.						
	Control and Model Predictive control	ive					
		-					
	Total	4					

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

53

2. Course Outcomes:

Upon completion of this course students will be able to:

EXC404.1: Differentiate between open loop, close loop and feed forward control systems.

EXC404.2: Model simple electrical, mechanical and thermal systems using transfer function and state space method.

EXC404.3: Describe and derive time domain and frequency domain specifications of linear systems.

EXC404.4: Analyze system stability using time domain and frequency domain techniques. EXC404.5: Explain types of compensator and PID controller.

3. Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
EXC404.1	3													
EXC404.2	3	3												
EXC404.3	3	3												
EXC404.4	3	3												
EXC404.5	3													
Course Average	3	3												

4. CO Assessment Tools:

Course	Assessment Method									
Outcome	Direct M		Indirect Method (20%)							
	Unit Tests		Assignments	Tutorials	Semester End	Course exit survey				
	1 2		-		Examination					
EXC404.1	30%		-	20%	50%	100%				
EXC404.2	30%		-	20%	50%	100%				
EXC404.3	30%		-	20%	50%	100%				
EXC404.4		30%	-	20%	50%	100%				

EXC404.5	30%	20%	50%	100%

5. Curriculum Gap/Content beyond syllabus (if any).

6. Lecture Plan.

CLASS						SE Electronics, Semester IV				
Acaden	nic Term					January – May 2019				
Subject						Linear Contr	ol Systems (ELX 40)6)		
Periods (Hours) per week						Lecture	4			
						Practical				
						Tutorial	· <i>l</i>			
Ev	aluation Sy	stem					Hours	Marks		
					Theor	y examination	3	80		
					Intern	al Assessment		20		
					Practica	l Examination				
					Ora	l Examination				
						Term work				
						Total		100		
	Time Tab	le	Day				7	Sime		
			Tu	esday			09.45 am	n – 10.45 am		
			Wednesday				01.30 pm – 02.30 pm			
			Thursday				11.00 am – 12.00 pm			
			Friday				11.00 am – 12.00 pm			
Cours	e Conten	t and Le	ssoi	n plan						
Module	-1 Int	roduction t	to co	ntrol system a	nalysis					
Week	Lecture		Da	nte		То	pic	Remarks(If any)		
	No.	Planned		Actual						
1	1	02-01-	19	19 Discussion of syllabi			bus and COs			
	2	03 - 01 -	19	19 Open loop control system			system, close loop			
					contro	l system, examp	oles of open loop	Special Time Table		
					closed	loop systems		Page 3		

	3	04 01 10		Open loop control system close loop				
	5	04 - 01 - 15		Open toop control system, close toop				
				control system, examples of open loop				
				closed loop systems				
Module	- 2 Math	hematical Mode	eling of Systems	S				
Week	Lecture	Da	nte	Торіс	Remarks(If any)			
	No.	Planned	Actual					
2	4	08-01-19	08-01-19	Mathematical modeling of the system, Modeling of Mechanical systems, Modeling of electrical system using				
				transfer function model	Special Time Table			
	5	09 – 01 – 19	09 - 01 - 19	Mathematical modeling of the system, Modeling of Mechanical systems, Modeling of electrical system using transfer function model				
	6	10 - 01 - 19	10 - 01 - 19	Block reduction technique.				
	7	11 - 01 - 19	11 - 01 - 19	Block reduction technique.				
3	8	15 - 01 - 19	15 - 01 - 19	Signal flow graph, Masons gain formula, problems based on SFG.				
	9	16 - 01 - 19	16 - 01 - 19	Problems based on SFG.				
	10	17 - 01 - 19	17 - 01 - 19	Standard test signals, Impulse response model,				
	11	18-01-19	18-01-19	Type of a system, Steady state error analysis				
4	12	22-01-19	22 - 01 - 19	Type of a system, Steady state error analysis				
	13	23-01-19	23-01-19	Transient Analysis of second order system for step input. Time domain specifications of systems.				
	14	24 - 01 - 19	24 - 01 - 19	Transient Analysis of second order system for step input. Time domain specifications of systems.				
	15	25 - 01 - 19	25 - 01 - 19	Numerical Examples				
Module – 4 Stability Analysis in Time Domain								
Week	Lecture	Da	ite	Торіс	Remarks(If any)			
	No.	Planned	Actual	<u></u>	× • • •			
5	16	29 - 01 - 19	29 - 01 - 19	Concept of stability, stability analysis using Routh's stability criterion.				
	17	30 - 01 - 19	30 - 01 - 19	Stability analysis using Routh's stability criterion.				
		31 - 01 - 19			Annual Sports Day			
	18	01 - 02 - 19	01 - 02 - 19	Root locus concept, Rules for constructing root locus.				

Week	Lecture	Da	ate	Topics	Remarks (If Any)
	No.	Planned	Actual		
6		05 - 02 - 19			Unit Test 1
		06 - 02 - 19			
	19	07 - 02 - 19	07 - 02 - 19	Root locus analysis of control systems	
	20	08 - 02 - 19	08-02-19	Root locus analysis of control systems	
7	21	12 - 02 - 19	12 - 02 - 19	Root locus analysis of control systems	
		13 - 02 - 19			Cultural week
		14 02 10			
		14 - 02 - 19			
		15-02-19			
8		19-02-19			Holiday
					Shivaji Jayanti
	22	20 - 02 - 19	20 - 02 - 19	Frequency domain specifications. Relationship between time and frequency domain specification of system.	
	23	21 - 02 - 19	21 - 02 - 19	Bode plots , gain margin phase margin, stability analysis based on Bode plot .	
	24	22 - 02 - 19	22 - 02 - 19	Stability analysis using bode plot.	
9	25	26 - 02 - 19	26 - 02 - 19	Stability analysis using bode plot.	
	26	27 - 02 - 19	27 - 02 - 19	Polar plot.	
	27	28-02-19	28-02-19	Nyquist stability criterion, Nyquist plot.	
	28	01 - 03 - 19	01 - 03 - 19	Nyquist plot.	
Module	-3 Sta	te Variable Mo	dels	•	
Week	Lecture	Da	ate	Торіс	Remarks(If any)
	No.	Planned	Actual		
10	29	05 - 03 - 19	05 - 03 - 19	Examples for practice	

34.1.1. -C4-1:1:4 . C

Examples for practice 10 29 05 - 03 19 05 03 - 19 30 06 - 03 - 1906 - 03 - 19State variable model, state variable model of electrical system, 31 07 - 03 - 19State variable model of mechanical system. 07 - 03 - 19State variable model of thermal . 08 - 03 - 19State transition matrix, properties of state Adjusted by Prof. 12 - 03 - 19transition matrix. Heena 12 - 03 - 1911 32 12 - 03 - 19Problems based on state transition matrix.

33	13 - 03 - 19	13 - 03 - 19	Solution of homogeneous systems, solution of non homogeneous system.	
34	14 - 03 - 19	14 - 03 - 19	Controllability, analysis of LTI system	
	15 - 03 - 19			Crescendo

Module – 6 Compensator and Controllers

Week	Lecture	Da	ate	Торіс	Remarks(If any)
	No.	Planned	Actual	-	
12	35	19 - 03 - 19	19 - 03 - 19	Observability, analysis of LTI system	
				using kalman approach.	
	36	20 - 03 - 19	20 - 03 - 19	Compensator, Types of compensator, Need	
				of compensators.	
		21 - 03 - 19			Holi
	37	22 - 03 - 19	22 - 03 - 19	Lead compensator, Lag compensator,	
				Lead-Lag compensator.	
13	38	26 - 03 - 19	26 - 03 - 19	Lead compensator, Lag compensator,	
				Lead- Lag compensator.	
	39	27 - 03 - 19	27 - 03 - 19	Concept of ON-OFF controllers, concept	
				of Proportional Controller.	
	40	28 - 03 - 19	28 - 03 - 19	Concept of Integral controller, Derivative	
				Controller, PID Controller.	
	41	29 - 03 - 19	29 - 03 - 19	Advances in control systems, Introduction	
				to robust control.	
14	42	02 - 04 - 19	02 - 04 - 19	Concept of adaptive control, model	
	/13	03 - 04 - 19	03 - 04 - 19	Examples For Practice	
	L L	03 - 04 - 17	03 - 04 - 17		
	44	04 - 04 - 19	04 - 04 - 19	Examples For Practice	
	45	05 - 04 - 19	05 - 04 - 19	Examples For Practice	
		09 - 04 - 19			Unit Test II
		10-04-19			
Total N	umber of L	ectures	1	45	1

Text Books:

- 1. I. J. Nagrath, M. Gopal, Control Systems Engineering, New Age International, Fifth Edition, 2012.
- 2. Dhanesh N. Manik, Control Systems, Cengage Learning, First Edition, 2012.
- 3. M. Gopal, Control Systems: Principle and design, Tata McGraw Hill, First Edition, 1998
- 4. Richard C. Dorf and Robert H. Bishop, Modern Control System, Pearson, Eleventh Edition, 2013.

- 5. Norman S. Nice, Control Systems Engineering, John Wiley and Sons, Fifth Edition, 2010
- 6. Rajeev Gupta, Control Systems Engineering, Wiley India, First Edition, 2011.

Internal Assessment: (IA):

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the test will be considered as final IA marks.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No. 1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.
- 5. Weightage of marks will be as per Blueprint.