FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400050.

Department of Electronics Engineering

Branch & Semester	S.E. (Electronics Engineering) – Semester IV
Academic Year	2018 – 2019
Subject Name	Electronic Devices & Circuits – II (EDC – II) – ELX 402
Subject I/C	Jayen Modi – Assistant Professor, Department of Electronics Engineering

SYLLABUS

Module No.	Topics	Hours					
1	Frequency response of amplifiers.						
1.1	High frequency equivalent circuit of BJT and MOSFET, Miller's theorem, effect of Miller's capacitance, unity gain bandwidth	8					
1.2	Effect of coupling, bypass and load capacitors on single stage BJT and MOSFET amplifiers.	8					
2	Frequency Response of Multistage Amplifiers.						
2.1	Effect of parasitic capacitances on BJT and MOSFET amplifiers. Low, mid and high frequency response of multistage amplifiers (CE-CE, CE-CB, CS-CS, CS-CG)	6					
1							
3.1	Feedback Amplifiers and Oscillators Types of Negative Feedback block diagram representation, Effect of negative feedback on Input impedance. Output impedance, Gain and Bandwidth with derivation, feedback topologies (Introduction only)						
3.2	Positive feedback and principle of oscillations, RC oscillators: Phase shift oscillators, Wien bridge oscillators, LC Oscillators: Hartley, Colpitts and clapp, Tunned Oscillator, Twin T Oscillator, Crystal Oscillator (BIT circuit analysis)						
4	Differential Amplifiers						
4.1	MOSFET current sources, Cascode current mirror, advanced MOSFET active load, small signal analysis: MOSFET active load						
4.2	Basic MOSFET differential amplifier, DC characteristics, transfer characteristics, differential and common mode input impedances.	10					
4.3	MOSFET differential amplifier with active load, MOSFET differential amplifier with cascode active load.						
5	Power Amplifiers						
	Power Amplitters Power BJTs, Heat sinks, Power BJTs, Power MOSFETs, Heat Sinks, Class A, Class B, Class C and Class AB operation, Power efficiency, Class AB output stage with diode biasing, VBE multiplier						
6	Special Semiconductor Devices - II PNPN diode, SCR, DIAC, TRIAC, UJT, IGBT, HEMT, Gunn diode, IMPATT diode, HBT	8					
	Total Hours	48					

Course		Course Name	Teaching Scheme			Credits Assigned			
-	Code	Course Maure	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
States of the second second	ELXI.401	Electronic Devices and Circuits II Laboratory		02			01	**	01

	Course Name	Examination Scheme								
Course Code		Theory Marks Internal assessment			End Sem.	Term	Óral	Total		
		Testl	Test 2	Avg.	Exam	Work	& Practical			
ELXL401	Electronic Devices and Circuits II Laboratory				••	25	25	50		

Term Work:

At least 6 experiments covering entire syllabus of ELX 402 (Electronic Devices and Circuits II) should be set to have well predefined inference and conclusion. The experiments should be student

centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. Also each student (in group of 3/4) has to perform a *Minl Project* as a part of the laboratory and report of mini project should present in laboratory journal. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks.

Suggested List of Experiments, however Instructor is free to design own experiments as per the guidelines

Laboratory Experiments

1. To perform frequency response of single stage CE amplifier.

- 2. To perform frequency response of single stage CS MOSFET amplifier..
- 3. To perform frequency response of Cascode amplifier.
- 4. To perform frequency response of two stage RC coupled CE amplifier
- 5. To perform RC phase shift oscillator
- 6. To perform Wein Bridge oscillator.
- 7. To perform Hartley oscillator.
- 8. To perform Colpitts oscillator
- 9. To perform Crystal oscilator.
- 19. To perform Class B push pull amplifier
- 11. To perform Class AB amplifier

Guidelines for Simulation Experiments:

1. SPICE simulation ofs of frequency response of single stage CE amplifier

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

COURSE OUTCOMES (CO) & ASSESSMENT PLAN OF EDC - II (ELX 402) FOR 2018 - 2019

Jayen Modi

Assistant Professor & Subject I/C Electronics Engineering Department

Course Code :- ELX 402

Subject Name :- Electronic Devices & Circuits – II (EDC – II)

Course Objectives :-

- To enhance comprehension capabilities of students through understanding of electronic devices & circuits
- To perform DC & AC analysis of single stage & multi-stage amplifiers
- To introduce & motivate students to the use of advanced microelectronic devices
- To design electronic circuits using semiconductor devices

Course Outcomes :-

At the end of the course, the students will be able to :-

- ELX 402.1 :- Evaluate frequency response of single stage & multi-stage amplifiers
- ELX 402.2 :- Design practical electronic circuits as per the given specifications
- ELX 402.3 :- Analyze oscillators, differential amplifiers, feedback amplifiers & power amplifiers
- ELX 402.4 :- Describe special semiconductor devices & their use for various practical applications
- ELX 402.5 :- Use software computer simulation tools to test & troubleshoot practically designed circuits

Mapping of CO with PO :-

	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
ELX 402.1	2	3			1							
ELX 402.2		3	3	1	2						1	
ELX 402.3	3	2		2	1							
ELX 402.4									2	3		
ELX 402.5		1		2	3							

Mapping of CO with PO with Justification :-

	PO-1	Acquire knowledge of frequency response characteristics of small signal amplifiers					
ELX 402.1	PO-2	Analyze small signal amplifiers to evaluate low & high cut-off frequencies					
	PO-5	Simulate the small signal amplifier to verify frequency response characteristics					
	PO-2	Analyze the given amplifier design problem in order to propose solutions					
	PO-3	Design a small signal amplifier / oscillator for a given set of specifications					
ELX 402.2	PO-4	Investigate whether the design specifications are satisfied or not					
	PO-5	Use software simulation tools to verify the designed circuit					
	PO-11	Manage the designed project & perform cost evaluation of the entire circuit					
	PO-1	Gain understanding of small signal / AC analysis					
	PO-2	Analyze effects of all coupling & bypass capacitors for small signal amplifiers					
ELA 402.3	PO-4	Investigate effects of device / component parameters on the circuit performance					
	PO-5	Use software simulation tools to verify the small signal / AC analysis					
	PO-9	Work together as a group / team for poster making on the given topic					
LLA 402.4	PO-10	Effectively communicate your presentation & submit report on the same					

	PO-2	Analyze to calculate differential & common mode gain, CMRR & frequency response
ELX 402.5	PO-4	Investigate circuit performance under different current sources (BJT/JFET/MOSFET)
	PO-5	Use computer simulation software tools for designing & analysis

Mapping of CO with PSO :-

	ELX 402.1	ELX 402.2	ELX 402.3	ELX 402.4	ELX 402.5
PSO-1	2	1	3		
PSO-2		2	2	1	2

Mapping of CO with PSO with Justification :-

ELX 402.1	PSO-1	Fundamental knowledge of circuit DC & AC analysis
ELV 402 2	PSO-1	Designing a circuit for a given application
ELA 402.2	PSO-2	Knowledge of various designing techniques for further applications
ELV 402 2	PSO-1	Ability to perform various AC analysis of a given amplifier circuit
ELA 402.3	PSO-2	Knowledge of different mathematical tool for AC analysis
ELX 402.4	PSO-2	Knowledge of feedback for other advanced applications
ELX 402.5	PSO-2	Ability to use various software tools for advanced simulation

Modes of Content Delivery :-

Modes of Delivery	Attained COs	Attained POs	
Class Room Lectures	Lectures conducted as per the overall theory lesson plan covering 48 contact hours in total	ALL	
Experiment (Practical)	A total of 06 practical experiments based on syllabus that reinforce theoretical concepts into practice	ALL	PO-1 to PO-5
NPTEL Videos	Audio-visual (AV) aid in form of an NPTEL video that shows an advanced topic of related syllabus topics	ELX 402.4 & ELX 402.5	
Guest Lecture	Guest lecture by resource person from academics or industry to enlighten students on certain topics	ELX 402.4	PO-12
Industrial Visit	Practical & industry-approach learning by visiting any core electronics company to understand & learn	ELX 402.2 & ELX 402.4	PO-9 to PO-12

Course Outcomes (CO) Assessment Tools :-

	Assessment Methods							
		Dir	Indirect Method (20 %)					
Course Outcomes (CO)	Unit Tests (UT-1 & 2)	Assignments (Self Study)	Laboratory Experiments	Multiple Choice Quiz	Student Activity	University Examination	Course Exit Survey (CES)	
ELX 402.1	10 %	20 %	20 %			50 %	100 %	
ELX 402.2		25 %	50 %		25 %		100 %	
ELX 402.3	10 %		20 %	20 %		50 %	100 %	
ELX 402.4		20 %	20 %	10 %		50 %	100 %	
ELX 402.5		50 %	50 %				100 %	

Calculation of Individual Course Outcomes (CO) is performed as shown below :-

ELX 402.1 (CO-1) :- 0.8 [0.1 (UT) + 0.2 (A) + 0.2 (LE) + 0.5 (ESE)] + 0.2 (CES) ELX 402.2 (CO-2) :- 0.8 [0.25 (A) + 0.5 (LE) + 0.25 (SA)] + 0.2 (CES) ELX 402.3 (CO-3) :- 0.8 [0.1 (UT) + 0.2 (A) + 0.2 (MCQ) + 0.5 (ESE)] + 0.2 (CES) ELX 402.4 (CO-4) :- 0.8 [0.2 (A) + 0.2 (LE) + 0.1 (MCQ) + 0.5 (ESE)] + 0.2 (CES) ELX 402.5 (CO-5) :- 0.8 [0.5 (A) + 0.5 (LE)] + 0.2 (CES)

Rubrics for Assignment Grading :-

Indicators & Marks Awarded	Timeline, Involvement, Participation & Skills	Structure, Approach, Organization & Presentation	Contents, Understanding, Procedure & Methodology
01 Mark	After the due date & late submission next week	Very shabby & haphazard work with casual approach	No understanding shown & seemingly copied contents
02 Marks	On or before due date, during the college hours	Major topics covered & are delivered with proper structure	Little understanding but has improper procedure followed
03 Marks		Addressed all major points & delivered what was expected	Slight improvement in the methodology & understanding
04 Marks			Proper contents, procedure followed & well understood
05 Marks			Original work – precise, concise & systematic details

Rubrics for Experiment (Journal) Grading :-

Indicators & Rubrics	Method / Basis of	Grading Scale (Marks)			
Parameters	Assessment	Minimum	Maximum		
Attendance & Timelines	Punctuality & Regularity (Timely Completion)	0 Marks	2 Marks		
Experiment Set-up & Performance	Practical Skills & Applied Knowledge	1 Marks	3 Marks		
Involvement & Participation	Team work, Ethics & Communication	1 Marks	2 Marks		
Data Evaluation & Presentation Format	Theoretical Knowledge, Capability of Analysis	1 Marks	3 Marks		
TOTAL	Overall Individual Laboratory Assessment	3 Marks	10 Marks		

	THEORY LESSON PLAN FOR EDC – II (ELX 402)											
Clas	Class & Division S.E. (Electronics Engineering) – Semester IV											
Aca	demic	: Term	1			1 st January 20	19 – 20 ^t	^h April 20)19			
Sub	ject	_				Electronic Dev	ices & C	Circuits –	II (EDC	– II) –	ELX 4	102
Fac	ulty I/(C			1	Jayen Modi						
						Lectures	04 Ho	urs / We	ek			
P	eriods	s (Hou	rs) pe	er week		Practicals	02 Ho	urs / we	ek			
						lutorials				Marka		
					Thor	n over instign		Hours		N		
								<u> </u>			20	
	Fva	luatio	n Svei	tom	Practic	al Examination					20	
	Lva	iuatio	ii Oysi			ral Examination					25	
						Term work					25	
						Total					150	
					Davs	i otai			Timino	as		
					Tuesdavs			08:45	am to C)9:45 a	am	
		Time	Table		Wednesdays			09:45	am to 1	10:45 a	am	
					Thursdays			01:30) pm to ()2:30 p	m	
					Fridays			12 n	oon to 0	1:00 p	m	
					COURSE CONTENTS	& LESSON PL/	AN					
	_	Da	tes	-				me	. 6		<u>v</u>	
Week No.	Lecture No.	Scheduled	Conducted		Topics Planned to be (Covered		Course Outco (CO)	Programme Outcome (PC	Assignments	Teaching Aic	Remarks
1	1	01/01/2019	01/01/2019	Introducti course ot programn	on to the course / subject EI ojectives, course outcomes (C ne outcomes (PO) & academi	DC – II (ELX 40 CO) & the mappir c administration	2) with ng with				Handouts	NBA
1	2	02/01/2019	01/01/2019	Introducti viz. nega disadvant	on to the concept of feedbac tive & positive feedback alo tages & their real-life applicati	ck – types of fee ng with advanta ons	edback ages &				Chalk, duster &	
1	3	03/01/2019	02/01/2019	Mathema criterion f classificat	tical model of positive feedb or sustained oscillations, intro tion of oscillators	al model of positive feedback, the Barkhausen's sustained oscillations, introduction to oscillators & n of oscillators					Chalk, duster &	
1	4	04/01/2019	02/01/2019	RC oscilla Wien Bric frequency	ators – the 3 stage RC phas lge oscillator with circuit diagr / of oscillations, numerical exa	se shift oscillator ram, operation & amples	* & the output	ELX 402.3	PO-3	Experiment No.	Chalk, duster &	Syllabus for UT - 1

2	5	08/01/2019	03/01/2019	LC oscillators – Hartley, Colpitts & Clapp oscillators with their circuit diagram, working, output frequency of oscillations & numerical examples based on above	ELX 402.3	PO-3		Chalk, duster	Syllabus for UT – 1
2	6	09/01/2019	03/01/2019	Other types of oscillators – Tuned Collector oscillator, Twin T oscillator & crystal oscillator with circuit diagrams, operation, advantages & disadvantages of each case				ЪРТ	Syllabus for UT – 1
2	7	10/01/2019	08/01/2019	Introduction to negative feedback & mathematical model, the advantages & disadvantages, different types of the negative feedback topologies – sampling & mixing networks				РРТ	
2	8	11/01/2019	09/01/2019	Voltage series feedback topology – the block diagram, circuit diagram, derivation of both input & output resistances with feedback with advantages & disadvantages	ELX 402.3	PO-3		Chalk, duster	Syllabus for UT – 1
3	9	15/01/2019	10/01/2019	Current series feedback topology – the block diagram, circuit diagram, derivation of both input & output resistances with feedback with advantages & disadvantages	ELX 402.3	PO-3	Experiment	Chalk, duster	Syllabus for LIT – 1
3	10	16/01/2019	10/01/2019	Voltage shunt feedback topology – the block diagram, circuit diagram, derivation of both input & output resistances with feedback with advantages & disadvantages	ELX 402.3	PO-3		Chalk, duster	Syllabus for LIT – 1
3	11	17/01/2019	11/01/2019	Current shunt feedback topology – the block diagram, circuit diagram, derivation of both input & output resistances with feedback with advantages & disadvantages	ELX 402.3	PO-3		Chalk, duster	Syllabus for UT – 1
3	12	18/01/2019	15/01/2019	Introduction & concept of the power amplifiers, difference between voltage & power amplifier, classification of different types of power (large signal) amplifiers				ЪРТ	
4	13	22/01/2019	16/01/2019	Class A – series fed / directly coupled power amplifier with circuit diagram, operation & working, analysis for overall & collector conversion efficiency	ELX 402.3	PO-2 & PO-3		Chalk, duster	
4	14	23/01/2019	17/01/2019	Class A – the transformer coupled power amplifier with circuit diagram, operation & working, analysis for overall & collector conversion efficiency	ELX 402.3	PO-2 & PO-3		Chalk, duster	

4	15	24/01/2019	18/01/2019	Class B – the transformer coupled power amplifier with circuit diagram, operation & working, analysis for overall & collector conversion efficiency	ELX 402.3	PO-2 & PO-3		Chalk, duster	
4	16	25/01/2019	19/01/2019	Cross-over distortion in Class B power amplifiers, Class AB power amplifier to remove the cross-over distortion, circuit diagram & operation of various configurations	ELX 402.3	PO-2 & PO-3	Experiment	РРТ	
5	17	29/01/2019	22/01/2019	Class C power amplifier – circuit diagram & working, design steps, advantages, disadvantages & comparison of different types of power amplifiers (Class A, Class B & Class C)		PO-4		Chalk, duster &	
5	18	30/01/2019	23/01/2019	Concept of heat sinks, numerical examples & calculations on heat sinks, introduction to power BJT & power MOSFET with their structure & operation / working	ELX402.3	PO-2 & PO-3	Assignment	ррТ	
5		31/01/2019	-	SPORTS DAY					Academically Off
5	19	01/02/2019	24/01/2019	Introduction to multi-stage amplifiers, advantages over single stage amplifier configurations, types of multistage amplifier configurations & various types of couplings			MCQ No. 1	РРТ	YouTube Video
6		05/02/2019		FIRST UNIT TEST (UT – 1)					Academically Off
6		06/02/2019	1	FIRST UNIT TEST (UT – 1)					Academically Off
6	20	07/02/2019	25/01/2019	Analysis of the BJT CE – CE & CE – CB configuration, circuit diagram & operation, advantages & disadvantages, cascode configuration & its advantages over CE – CE BJT amplifier				Chalk, duster	
6	21	08/02/2019	29/01/2019	Analysis of the JFET/MOSFET CS – CS & CS – CG amplifier configuration, circuit diagram & operation, the advantages & disadvantages, cascade configuration & its analysis			Experiment	Chalk, duster	

7	22	12/02/2019	30/01/2019	Designing steps for cascade BJT CE – CE & JFET CS – CS amplifier configurations as per specifications & simulation of designed circuit for verification	ELX 402.5		Assignment	MultiSim 10	
7		13/02/2019		EUPHORIA					Academically Off
7		14/02/2019		EUPHORIA					Academically Off
7		15/02/2019		EUPHORIA					Academically Off
8		19/02/2019		SHIVAJI MAHARAJ JAYANTI					Holiday
8	23	20/02/2019	01/02/2019	Introduction to frequency response in small signal amplifiers, description of the frequency response measurement process & definition of low & high cut-off frequencies, bandwidth (BW)	ELX 402.1			ррТ	
8	24	21/02/2019	07/02/2019	Effect of input & output coupling capacitor, emitter & source bypass capacitor on the BJT & MOSFET amplifier frequency response with lower cut-off frequency equations (f_L)		PO-1		Chalk, duster	
8	25	22/02/2019	08/02/2019	Mathematical analysis of low frequency response for CB-BJT & CG-JFET amplifiers with numerical example for calculation of $ Av \& f_L$	ELX 402.1	PO-2		Chalk, duster	
9	26	26/02/2019	12/02/2019	Mathematical analysis of low frequency response for CE-BJT & CS-JFET amplifiers with numerical example for calculation of $ Av \& f_L$	ELX 402.1	PO-2	Experiment	Chalk, duster	UT – 2 Svllahus
9	27	27/02/2019	20/02/2019	Mathematical analysis of low frequency response for CC-BJT & CD-JFET amplifiers with numerical example for calculation of $ Av \& f_{L}$	ELX 402.1	P0-2	Assignment	Chalk, duster	

9	28	28/02/2019	21/02/2019	Mathematical analysis of low & high frequency response for CD-MOSFET amplifiers with numerical examples for the calculation of $ Av \& f_L$ with f_H	ELX 402.1	PO-2 & PO-3	Chalk, duster	
9	29	01/03/2019	22/02/2019	Mathematical analysis of low & high frequency response for CS-MOSFET amplifiers with numerical examples for the calculation of $ Av \& f_L$ with f_H	ELX 402.1	PO-2 & PO-3	Chalk, duster	UT – 2 Svllahus
10	30	05/03/2019	26/02/2019	Mathematical analysis of low & high frequency response for CG-MOSFET amplifiers with numerical examples for the calculation of $ Av $ & f_L with f_H	ELX 402.1	PO-5	Chalk, duster &	
10	31	06/03/2019	27/02/2019	High frequency equivalent circuit of BJT & MOSFET, effect of Miller capacitance, Miller's theorem & unity gain bandwidth with wiring & stray / unwanted capacitance		PO-4	РРТ	UT – 2 Svllabus
10	32	07/03/2019	28/02/2019	Small signal / AC analysis in multi-stage amplifiers for lower cut-off frequency (f_L) in various configurations in CE-CE & the CE-CB (cascode) configuration		PO-2	ррТ	
10	33	08/03/2019	01/03/2019	Small signal / AC analysis in multi-stage amplifiers for lower cut-off frequency (f_L) in various configurations in CS-CS & the CS-CG (cascode) configuration		PO-2	РРТ	YouTube Video
11	34	12/03/2019	05/03/2019	Introduction of the concept of differential amplifiers, concept of differential mode gain (A _d), common mode gain (A _c) & the common mode rejection ratio (CMRR)			Handouts &	
11	35	13/03/2019	06/03/2019	Working / operation of the MOSFET differential amplifier with the differential & common mode configuration, configurations of differential amplifiers – DIBO, DIUO, SIBO, SIUO			PPTs &	NPTEL Video
11	36	14/03/2019	07/03/2019	DC analysis / Q – Point calculations of MOSFET differential amplifier with numerical examples, DC characteristics & the transfer characteristics	ELX 402.3	PO-1	Chalk, duster &	
11		15/03/2019	1	CRESCENDO				Academically

12	37	19/03/2019	08/03/2019	Small signal / AC analysis of MOSFET differential amplifier in the differential mode of operation – calculation of differentia mode gain (A _d) & differential mode input resistance (R _{id})		PO-2		Chalk &	
12	38	20/03/2019	08/03/2019	Small signal / AC analysis of MOSFET differential amplifier in common mode of operation – calculations of common mode gain (A_c) & common mode input resistance (R_{ic})				Chalk &	
12		21/03/2019		HOLI (2 ND DAY)					Holiday
12	39	22/03/2019	12/03/2019	Calculation of common mode rejection ratio (CMRR) & how to improve CMRR using different techniques – using constant current source & active load	ELX 402.3	PO-4		Chalk &	
13	40	26/03/2019	13/03/2019	MOSFET current sources to improve CMRR, cascode current mirror, small signal analysis, various type of MOSFET current sources & their description / analysis			Assignment	PPTs	
13	41	27/03/2019	14/03/2019	MOSFET active load, small signal / AC analysis of MOSFET active load with numerical examples		PO-1		Chalk &	
13	42	28/03/2019	18/03/2019	Cascode current mirror & advanced MOSFET active load, the small signal / AC analysis of cascode current mirror & active load of advanced MOSFET				Chalk &	
13	43	29/03/2019	19/03/2019	MOSFET differential amplifier with active load & MOSFET differential amplifier with cascode current mirror – the AC or small signal analysis		PO-2		Chalk &	
14	44	02/04/2019	22/03/2019	Introduction to PNPN diode, structure & construction, working & operation, V-I characteristics, symbol & applications, how it is different from conventional PN junction diode	ELX 402.4	PO-1 & PO-2	Experiment	РРТ	
14	45	03/04/2019	22/03/2019	Introduction to silicon controlled rectifier (SCR), structure & two transistor analogy, working & operation, characteristics & applications	ELX 402.4	PO-1 & PO-2		РРТ	
14	46	04/04/2019	26/03/2019	DIAC construction & structure, operation & working, the V-I characteristics, applications, symbol & difference between the SCR & DIAC	ELX 402.4	PO-1 & PO-2		РРТ	

14	47	05/04/2019	27/03/2019	TRIAC construction & structure, operation & working, the V-I characteristics, applications, symbol & difference between the TRIAC & DIAC	ELX 402.4	PO-1 & PO-2		ЪРТ	
15		09/04/2019	-	SECOND UNIT TEST (UT – 2)					Academically Off
15		10/04/2019	1	SECOND UNIT TEST (UT – 2)					Academically Off
15	48	11/04/2019	28/03/2019	Uni-junction transistor (UJT) construction structure, operation & working, the V-I characteristics, applications, symbol & use as a relaxation oscillator	ELX 402.4	PO-1 & PO-2	Assignment	РРТ	
15	49	12/04/2019	29/03/2019	Insulated gate bipolar junction transistor (IGBT) construction & structure, operation & working, V-I characteristics, symbol & applications, advantages over the SCR	ELX 402.4	PO-1 & PO-2	MCQ No. 2	ЪРТ	

List of Reference & Text Books :-

- 1. Donald A. Neamen Electronic Circuit Analysis & Design, 2nd edition by Tata McGraw Hill.
- 2. David A. Bell Electronic Devices & Circuits, 5th edition by Oxford Publishing.
- 3. S. Salivahanan & N. Suresh Kumar Electronic Devices & Circuits, 3rd edition by Tata McGraw Hill.
- 4. Muhammad Rashid Microelectronics Circuits Analysis & Design, 2nd edition by Cengage Learning.
- 5. Jacob Millman & Arvin Grabel Microelectronics, 2nd edition by Tata McGraw Hill.
- 6. Millman & Halkias Electronic Devices & Circuits, 2nd edition by McGraw Hill.
- 7. Boylestad & Nashelsky Electronic Devices & Circuit Theory, 3rd edition by Tata McGraw Hill.
- 8. R. S. Sedha Textbook of Applied Electronics, 4th edition by S. Chand Publishing Co. Ltd.

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Class, Div	ision & Semester			S.E. (Electronics Engineering) – Semester IV				
Academic	Term			14 th January 2019 – 5 th April 2019				
Subject Na	ame			Electronic Devices & Circuits – II La	boratory (ELXL 401)			
Faculty I/C	;			Jayen Modi				
				Hours	Marks			
		Practical Examination			25			
Evalu	ation System	Oral	Examination					
	-		Term work		25			
		Tota			50			
		DAYS	BATCHES	TIMINGS				
		Monday	A	01:30 pm to 03:30	pm			
Ti	me Table	Tuesday	В	01:30 pm to 03:30	pm			
		Wednesday	С	02:30 pm to 03:30	pm			
		Thursday	D	02:30 pm to 03:30	pm			
			TITLE OF EX	(PERIMENTS				
No.		Title		Module No.	Attained POs			
1.	Frequency Respo	nse CS-JFET A	Amplifier	1. Frequency Response	PO-1 & PO-2			
2.	Class AB Power A	mplifier (Push	– Pull)	5. Power Amplifiers	PO-1 & PO-2			
3.	Wien Bridge & Ph	ase Shift Oscill	ators	3. Feedback Amplifier & Oscillators	PO-3 & PO-4			
4.	4. Negative Feedba		Amplifier	3. Feedback Amplifier & Oscillators	PO-3 & PO-4			
5.	Multi-stage BJT /	JFET Amplifier	Design	2. Multi-stage Amplifiers	PO-5			
6.	V-I Characteristics	s of SCR		6. Special Semiconductor Devices	PO-1 & PO-2			
Overall Ma	pping with Progra	mme Outcom	es (POs)					
	LEVEL OF IMF	ORTANCE		Programme Outcome	es (POs)			
03 – High I	mportance (HI)			PO-1 & PO-2				
02 – Mode	rate Importance (N	II)		PO-3 & PO-4				
01 – Low I	mportance (LI)			PO-5				
BAT	сн		SCHEDUL	ED DATES	Course Outcomes			
DAIN	PI PI	anned Dates		Actual Dates	(COs)			
Experimer	nt No. 1 – 3 Stage F	RC Phase Shift	t & Wien Brid	lge Oscillator				
A		14/01/2019		14/01/2019	FLX /02 3 (CO_3)			
В		15/01/2019		15/01/2019	Hardware			
C		16/01/2019		16/01/2019	Performance			
D		17/01/2019		17/01/2019	1 onormanoo			
Experimer	nt No. 2 – Negative	Feedback of (<u>CS – JFET Ar</u>	nplifier				
A		21/01/2019		21/01/2019	FLX 402 3 (CO-3)			
В		22/01/2019		22/01/2019	Hardware			
C		23/01/2019		23/01/2019	Performance			
D		24/01/2019		24/01/2019	1 onormanoo			
Experimer	nt No. 3 – Class AB	Power Ampli	fier (Push – F	Pull)				
A		28/01/2019		28/01/2019	FLX /02 3 (CO_3)			
В		29/01/2019		29/01/2019	Hardware			
С		30/01/2019		30/01/2019	Performance			
D		07/02/2019		07/02/2019				
Experimer	nt No. 4 – Frequenc	y Response o	of CS – JFET	Amplifier				
A		11/02/2019		11/02/2019				
B				12/02/2019 ELX 402.1 (C				

С	20/02/2019	20/02/2019	Hardware
D	21/02/2019	21/02/2019	Performance
Experiment No. 5 -	V-I Characteristics of Silicon	Controlled Rectifier (SCR)	·
A	18/02/2019	18/02/2019	
В	26/02/2019	26/02/2019	ELX 402.4 (CO-4)
С	27/02/2019	27/02/2019	Software Simulation
D	28/02/2019	28/02/2019	
Experiment No. 6 -	Multistage Amplifier Design 8	& Simulation	
A	25/02/2019	25/02/2019	
В	05/03/2019	05/03/2019	EXL 402.5 (CO-5)
С	06/03/2019	06/03/2019	Software Simulation
D	07/03/2019	07/03/2019	
Mini Project (MP)			
	11/03/2019	11/03/2019	
A	18/03/2019	18/03/2019	
	25/03/2019	25/03/2019	
	12/03/2019	12/03/2019	
В	19/03/2019	19/03/2019	
	26/03/2019	26/03/2019	= ELX 402.2 (CO-2)
	13/03/2019	13/03/2019	
С	20/03/2019	20/03/2019	Implementation
	27/03/2019	27/03/2019	
	14/03/2019	14/03/2019	
D	28/03/2019	28/03/2019	
	30/03/2019	30/03/2019	

Recommended Books :-

1. Donald A. Neamen – Electronic Circuit Analysis & Design, 2nd edition by Tata McGraw Hill.

- 2. David A. Bell Electronic Devices & Circuits, 5th edition by Oxford Publishing.
- 3. S. Salivahanan & N. Suresh Kumar Electronic Devices & Circuits, 3rd edition by Tata McGraw Hill.
- 4. Muhammad Rashid Microelectronics Circuits Analysis & Design, 2nd edition by Cengage Learning.
- 5. Jacob Millman & Arvin Grabel Microelectronics, 2nd edition by Tata McGraw Hill.
- 6. Millman & Halkias Electronic Devices & Circuits, 2nd edition by McGraw Hill.
- 7. Boylestad & Nashelsky Electronic Devices & Circuit Theory, 3rd edition by Tata McGraw Hill.
- 8. R. S. Sedha Textbook of Applied Electronics, 4th edition by S. Chand Publishing Co. Ltd.

Experiments Mapping with Programme Outcomes (POs)

EXPERIMENTS MAPPING	PO-1	PO-2	PO-3	PO-4	PO-5
Experiment No. 1	02	03			
Experiment No. 2	02	03		01	
Experiment No. 3	02	03		02	
Experiment No. 4	02	03		01	
Experiment No. 5		01	03	02	03
Experiment No. 6			01	02	03

Term Work :-

At least 6 experiments covering entire syllabus of ELX 402 (Electronic Devices and Circuits II) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. Also each student (in group of 3/4) has to perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks.