FR. Conceicao Rodrigues College Of Engineering Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Electronics Engineering

Subject: Signals and Systems (PCE-ELX 604) Credits-5

T.E. (Electronics) (Semester 6)(2018-19)

1.Syllabus

Module	Unit	Topics	Irs.						
No. 1.	No.	Continue Discontinue Signals	8						
	1.1	Continuous and Discrete Time Signals Mathematical Representation and Classification of CT and DT signals,	o						
	1.1	Orthogonality of signals							
	1.2	Arithmetic operations on the signals, Time Shifting, Time scaling, Time Reversal							
		of signals							
	1.3	Sampling and Reconstruction, Aliasing effect							
2		Continuous and Discrete Systems	8						
	2.1	Mathematical Representation and classification of CT and DT systems							
	2.2	Properties of LTI systems, impulse and step response.							
	2.3	Use of convolution integral, convolution sum and correlation for analysis of LTI							
		systems							
	2.4	Properties of convolution integral and convolution sum							
3		Frequency Domain Analysis of Continuous Time System using Laplace	6						
		Transform							
	3.1	Concept of Complex frequency, Region of Convergence for Causal, Non-causal							
		and Anti-causal systems, Poles and Zero of transfer function							
	3.2	Unilateral Laplace Transform							
and the	3.3	Analysis and characterization of LTI system using Laplace Transform: Impulse							
		and Step Response, Causality, Stability, Stability of Causal system	12						
4		Frequency Domain Analysis of Discrete Time System using Z Transform	1.						
	4.1	Need for Z transform, definition, properties of unilateral and bilateral Z							
		Transform, mapping with s plane, relationship with Laplace transform							
	4.2	Z transform of standard signals, ROC, poles and zeros of transfer function,							
		Inverse Z transform							
	4.3	Analysis and characterization of LTI system using Z transform: impulse and step							
		response, causality, stability, stability of causal system							
	4.4	System realization-Direct, Direct Canonic, Cascade and Parallel forms	6						
5		Frequency Domaine Analysis of Continuous Signals							
	5.1	Frequency Domain Analysis of periodic non-sinusoidal signals							
	5.2	Frequency Domain Analysis of aperiodic Signals-Introduction, Properties of							
	3.2	- Tansform based amplitude and phase response of							
	1	standard signals Relationship with Laplace and Z transform, Energy Spectral	0						
	-	Frequency Domain Analysis of Discrete Signals	8						
6		Former Series Evaluation of DTFS coefficients, Magnitude and							
	6.1	Phase Spectrum of Discrete time periodic signals, Power Spectral Density							
		Phase Spectrum of Discrete time periods of discrete time signal in frequency	1						
	6.2	Discrete Time Fourier Transform - Concept of discrete time signal in frequency							
	-	Discrete Time Fourier Transform - Concept of discrete time by domain, definition of DTFT, determination of magnitude and phase functions using	1						
		DTFT	-						
		Total							

2.Course outcome

Upon completion of this course students will be able to:

ELX604.1: Differentiate and classify CT and DT signals and systems

ELX604.2 :Understand time domain analysis of CT and DT system

ELX604..3 : Analyse CT and DT system using Laplace and Z transform

ELX604.4: Apply frequency domain techniques for analysis of CT and DT systems.

3. Relationship of course outcomes with program outcomes: indicates 1-low importance,2-Moderate importace,3-High importance in each mapping cell

	РО	PO	PO1	PO1	PO1	PSO	PSO							
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
ELX 604.1	3												3	
ELX 604.2	3	2												
ELX 604.3	3												2	
ELX 604.4	3			2									2	

4.CO Assessment Tools:

Course Outcome	Direct N	Aethod			Indirect method
	Unit Tests		Tutorial	End Sem Exam	Course exit survey
	1	2			
ELX604.1	30%		20%	50%	100%
ELX604.2	30%		20%	50%	100%
ELX604.3		40%		50%	100%
ELX604.4		40%		50%	100%

CO calculation= (0.8 *Direct method + 0.2*Indirect method)

5.Curriculam Gap /content beyond syllabus (if any)

6.Lecture plan

CLASS	TE Electronics, Semester VI				
Academic Term		Jan – April 2019			
Subject	Signals and Systems (ELX 604)				
Periods (Hours) per week		Lecture	4		
		Practical			
		Tutorial	2		
Evaluation System			Hours	Marks	
	Theor	y examination	3	80	
	Interna	al Assessment		20	
	Practica	al Examination			
	Ora	al Examination			
		Term work		25	
		Total		125	
			l		
Time Table	Day		Time		
	Monday		9.45-10.45 am		
	Wednesday		1.30 – 2.30 pm		
	Thursday		9.45-10.45 am		
	Thursday(Tutorial)		2.30-4.30 pm		
	Friday		11.00 – 12.00 pm		
	Friday(Tutorial)		2.30-4.30 pm		

Course Content and Lesson plan

Module 1 Continuous And Discrete Time Signals

	Lecture	Date		Topic	Remarks(If any)
	No.	Planned Actual			
	1	1-1-19	1-1-19	Introduction to Signals and Systems,	
				Classification of CT and DT signals	
	2	2-1-19	2-1-19	Mathematical representation and	
				arithmetic operations on the signals	
	3	3-1-19	3-1-19	Examples based on arithmetic operations	
				on the signals	
	4	4-1-19	4-1-19	Transformation of independent variable	
				for CT signals and problems on it	
	5	7-1-19	7-1-19	Transformation of independent variable	
				for DT signals and problems on it	
	6	8-1-19	8-1-19	Mathematical representation and	
				classification of CT and DT signal	
	7	9-1-19	9-1-19	Problems based energy and power of CT	
				and DT signal	
	8	10-1-19	10-1-19	Problems based energy and power of CT	
				and DT signal	
	9	11-1-19	11-1-19	Problems based on periodicity of signals	
	10	14-1-19	14-1-19	Sampling and reconstruction, aliasing	
				effect	
Module	2 Continu	ous and Disci	ete system		<u> </u>
	11	16-1-19	16-1-19	Mathematical representation and classification of CT and DT sytem	
	12	17-1-19	17-1-19	Problems based on classification of CT system	

	13	18-1-19	18-1-19	Problems based on classification of DT system	
	14	21-1-19	21-1-19	Use of convolution integral for analysis of	
				LTI systems	
	15	23-1-19	23-1-19	Use of convolution sum for analysis of LTI	
				systems	
	16	24-1-19	24-1-19	Problems based on convolution	
				integral/sum.	
	17	25-1-19	25-1-19	Problems based on convolution	
				integral/sum	
5	18	28-1-19	28-1-19	Problems based on convolution	
				integral/sum	
	19	30-1-19	30-1-19	Problems based on system properties in	
				terms of impulse response	
	20	1-2-19	1-2-19	Problems based on system properties in	
				terms of impulse response	
	21	7-2-19	7-2-19	Revision of module 1 and 2	UT1: 4,5,6
					Feb2019
Module	_			nuous Time System Using Laplace Transform	
	22	8-2-19	8-2-19	Need of Laplace transform and review of Laplace transform	
	23	11-2-19	11-2-19	Properties of Laplace transform and	
				inverse of Laplace transform, Concept of	
				ROC and poles and zeros	
	24	18-2-19	18-2-19	Unilateral Laplace transform	Euphoria
					13,14,15
					Feb2019

	25	20-2-19	20-2-19	Analysis and characterization of LTI system
				using Laplace transform: impulse and step
				response
	26	21-2-19	21-2-19	causality, stability, stability of causal
				system
	27	22-2-19	22-2-19	Block diagram representation
Module	4 Freque	ncy Domain An	alysis of Discre	te Time System Using Z Transform
7	28	25-2-19	25-2-19	Need of Z transform and its definition,
				properties of unilateral and bilateral Z
				transform
	29	27-2-19	27-2-19	mapping of Z transform with s plane,
	29	27-2-19	27-2-19	
				relationship with Laplace transform
	30	28-2-19	28-2-19	Z transform of standard signals, ROC,
				poles and zeros of transfer function
	31	1-3-19	1-3-19	inverse Z transform
	32	6-3-19	6-3-19	Analysis and characterization of LTI system
				using Z transform: impulse response
	33	7-3-19	7-3-19	Analysis and characterization of LTI system
				using Z transform: step response,
				causality, stability and stability of causal
				system
	34	8-3-19	8-3-19	Problems on causality and stability
	35	11-3-19	11-3-19	Problems on Block diagram
				representation
	36	13-3-19	13-3-19	Problems on system realisation
Module	5 Frequen	cy Domain Ana	lysis of Continu	ious Signals
iviouule	J <u>Frequell</u>	cy Domain Alla	nysis of Contille	acus Signais
	37	14-3-19	14-3-19	Frequency domain analysis of periodic non
				sinusoidal signal

	38	18-3-19	18-3-19	Frequency domain analysis of aperiodic	
				non sinusoidal signal	
	39	20-3-19	20-3-19	Properties of Fourier transform,	
	40	22-3-19	22-3-19	Fourier transform based on amplitude and	
	40	22-3-19	22-3-19	·	
				phase response standard signal	
	41	25-3-19	25-3-19	Relationship between Laplace and ZT	
Module	6 Freque	ncy Domain A	nalysis of Discre	ete Signals	
		1		T	1
	42	27-3-19	27-3-19	Discrete time Fourier series	
	43	28-3-19	28-3-19	Evaluation of DTFS coefficient, Magnitude	
				and phase spectrum Concept of DTFT and	
				numericals based on that	
				numericals based on that	
	44	29-3-19	29-3-19	Numericals based on DTFT(Contd)	
	45	1-4-19	1-4-19	Determination of magnitude and phase	
	45	1-4-19	1-4-19	Determination of magnitude and phase function using DTFT	
				function using DTFT	
	45	1-4-19 3-4-19	1-4-19 3-4-19		UT2:8,9,10 April

Recommended Books:

- 1. Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab, "Signals and Systems", 2nd Edition, PHI learning, 2010.
- 2. Tarun Kumar Rawat, "Signals and Systems", Oxford University Press 2010.
- 3. John Proakis and Dimitris Monolakis, "Digital Signal Processing", Pearson Publication, 4th Edition.

7. Tutorials

8 tutorials will be conducted covering each topic in syllabus