Artificial Intelligence

Faculty Name: Archana Lopes

Course Code: EXC7052

Subject Name: Artificial Intelligence

Academic Year and Term: 2018-2019

Jul-Dec 2018

1. Syllabus

Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EXC7052	Artificial Intelligence	04			04			04

Course	Course		Examination Scheme								
Code	Name		1	Theory Marks		Term	Practical	Oral	Total		
		Internal assessment End Sem.				Work					
		Test	Test Test 2 Ave. Of Test Exam								
		1		1 and Test 2							
EXC7052	Artificial	20	20	20	80	-	-	-	100		
	Intelligence										

Course Prerequisite:

• Knowledge of linear algebra, multivariate calculus, and probability theory

• Knowledge of a programming language (MATLAB /C/C ++ recommended)

Course Objective:

- 1. To study basics of biological Neural Network.
- 2. To understand the different types of Artificial Neural Networks
- 3. To know the applications of ANN
- 4. To study fuzzy logic and fuzzy systems

Course Outcome: At the end of completing the course of Artificial Neural Networks, a student will be able to:

- 1. Choose between different types of neural networks
- 2. Design a neural network for a particular application
- 3. Understand the applications of neural networks
- 4. Appreciate the need for fuzzy logic and control

Module	Unit	Topics	Hrs.
1.	140,	Fundamental Concepts of Neural Networks	8
	1.1	Difference between fuzzy and crisp sets and applications of fuzzy logic and	Ŭ
	1.2	Biological neurons. McCulloch and Pitts models of neuron. Important Terms of	
		ANNs, McCulloch-Pitts Neuron, Hebb Network, Supervised learning,	
	1.3	Applications and scope of Neural Network	
2		Supervised Learning Networks	12
	2.1	Perception Networks: Adaline, Madaline	
	2.2	Back Propagation Network	
	2.3	Function Network	1
3		Unsupervised learning network	12
	3.1	Max Net, Mexican Hat, Kohonen Self-organizing Feature	
	3.2	Maps, Learning Vector Quantization, Adaptive Resonance Theory	
4		Associative networks	10
	4.1	Pattern Association, Auto-associative Memory Network, Hetero-associative	
		Memory Network, Bidirectional Associative Memory, Discrete Hopfield	
		Networks	
	4.2	Special networks:	
5		Simulated annealing neural networks, Boltzmann machine, Brain-in-a-Box	10
5	51	Fuzzy sets Properties Operations on fuzzy sets Fuzzy relation Operations on	10
	5.1	fuzzy sets, Floperations on fuzzy sets, Fuzzy relation operations on fuzzy relations.	
	5.2	The extension principle, Fuzzy mean Membership functions, Fuzzification and	
		defuzzification methods	
	5.3	Fuzzy controllers, Adaptive neuro-fuzzy information systems (ANFIS)	1
		Total	52

2. Course Outcomes

Course Objective:

- To study basics of biological Neural Network.
- To understand the different types of Artificial Neural Networks
- To know the applications of ANN
- To study fuzzy logic and fuzzy systems

Course Outcomes:

At the end of the course student will be able to

EXC7052.1	Implement the algorithms for Supervised and Unsupervised Neural Network.
EXC7052.2	Design Fuzzy Logic based controllers.
EXC7052.3	Compare various Associative Neural Networks.
EXC7052.4	Identify and Analyze the issues involved in Neural Network design.

Mapping of CO with PO/PSO:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	1		2		3								2	
CO 2	2		3		3								2	
CO 3		3												
CO 4		3	2										2	

Mapping of CO with PO with Justification

со	РО	Justification
EXC7052.1	PO1	Acquiring the understanding of various algorithms for Supervised Learning by applying knowledge of mathematics.
	PO3	Implementing algorithms of Supervised and Unsupervised Learning can be used to design and conceptualize systems to realize practical applications.
	PO5	Use MATLAB or Neural Network Simulators to implement Supervised and Unsupervised algorithms.
EXC7052.2	PO1	Acquire and apply knowledge of mathematics required for design of Fuzzy Controllers.
	PO3	Design a fuzzy controller to conceptualize systems for realizing practical applications .
	PO5	Use MATLAB/C++ to implement fuzzy controller.
EXC7052.3	PO2	Understanding the various Associative Network algorithms after analysis of system.
EXC7052.4	PO2	Identify the problems involved in designing neural network by analyzing the present problem.
	PO3	Design a Neural Network to solve practical applications.
	PO10	Preparing students for technical paper writing and paper presentation.

Mapping of CO with PSO with Justification

со	PSO	Justification
EXC7052.2	PSO2	Design and test fuzzy controller for different applications.

Contribution to outcomes will be achieved through content delivery: Modes of Content Delivery:

i	Class Room Teaching	v	Self Learning Online Resources	ix	Industry Visit
ii	Tutorial	vi	Slides	Х	Group Discussion
iii	Remedial Coaching	vii	Simulations/Demonstrations	xi	Seminar
iv	Lab Experiment	viii	Expert Lecture	xii	Case Study

Modes of delivery

Modes of Delivery	Brief description of content delivered	Attained COs	Attained POs
Class room lecture	 Fundamental Concepts of Neural Networks Supervised Learning Networks Unsupervised learning network Associative networks Fuzzy logic Assignment 1 on problems based on algorithms of Supervised and 	EXC7052.1 EXC7052.2 EXC7052.3 EXC7052.1	PO1 PO2 PO3 PO5 PO1
Assignments	 Unsupervised Learning Algorithms Assignment 2 on Associative Networks Assignment 3 on Fuzzy Logic 	EXC7052.2 EXC7052.3	PO2 PO3 PO5
Students presentations	 IEEE paper on Neural Network and fuzzy system will be given to the students Mini Project Poster Presentation 	EXC7052.4	PO2 PO3 PO5 PO10

CO Assessment Tool

Course						As	sessment Meth	od			
Outcome			Direct	t Metho	d (70 %						
	Unit 7	Sests	Assig	nments		Laboratory	Case Study	Mini Project	End Sem Result	Cou sur	
	1	2	1	2	3	Tractical					
EXC705 2.1	20%		10%			20%			50%	100	
EXC705 2.2		30%			10%	10%			50%	100	
EXC705 2.3		20%		10%		20%			50%	100	
EXC705 2.4							25%	25%	50%	100	

Rubrics for assessing Course Outcome CO1, CO2 and CO3 with each assessment tool:

Rubrics		

Assignment	Timeline(2)	Level of content(4)	Reading and Understanding(4)	
Laboratory Experiments	Timeline(3)	Knowledge(4)	Skill(3)	
Case study	Timeline(2)	Level of content(4)	Reading and Understanding(4)	Presentation and Report (20)
Mini Project	Timeline(3)	Implementation(5)	Understanding(2)	

3. Lesson Plan

Faculty : Archana Lopes

CLASS					BE Electronics, Semester VII							
Academic Term				July-Dec 2018								
Subject						Artificial Intelligence						
Periods (Hours) per week				Lecture			4	4				
				Practical				2				
				Tutorial								
Evaluation System							Hours Mar		Marks			
					Theo	ry examination		3		80		
					Interr	nal Assessment				20	20	
					Practic	al Examination				 25 25		
					Or	al Examination						
						Term work						
				Total						150		
							-					
	Time Tabl	е	Day				Time					
			Tuesday					1.30 p.m.				
			We	Wednesday Thursday				1.30 p.m.				
			Τhι					1.30 p.m.				
			Friday				8.45 a.m.					
Course	Conten	t and Les	sson	plan								
Module	1:Fundam	ental conce	epts c	of Neural Netw	vorks							
Week	Lecture		Da	te	Торіс			Remarks(If any)	Text	СО	РО	
	No.	Planned		Actual					воо k			
1	1	03/07/20	18	03/07/2018	Introd	uction			TB1	EXC7052.1	PO1	
-	2	05/07/20	18	04/07/2018	Biolog	ical			TB2		PO3	
					neuro	n,McCulloch and	d		TB4		PO5	
				Pitts n	nodels <i>of</i> neuror	n,		TB6				
				ANNs								
F	3 06/07/2018 05/07/2018 4 10/07/2018 13/07/2018 H		Le	Learning Rule								
F			Hebb	ebb Network								
	5	11/07/20	18	17/07/2018	Applic	ations of neural						
2					netwo	orks						
F	6	13/07/20	18	17/07/2018	Proble	ms solving base	ed					
					on Mc model	-culloch and Pit	.ts					

				network.				
	7	17/07/2018	18/07/2018	Problems solving based				
				on Mc-Culloch and Pitts				
				model and Hebb				
				network.				
	8	18/07/2018	18/07/2018	Perceptron	-			
				Networks				
	Module 2	: Supervised Le	earning Networ	ks		1	r	
3	9	19/07/201	19/07/2018	Problems based on	Assignment 1			
		8		Perceptron networks				
	10	20/07/201	20/07/2018	Adaline-Delta Learning		TB1	EXC7052.1	PO1
		8		rule		TB2		PO3
	11	24/07/201	24/07/2018	Problems based on		TB4		P05
		8		Adaline		100		
	12	25/07/201	25/07/2018	Madeline				
		8						
	13	26/07/201	27/07/2018	Back Propagation				
		8		Neural Networks				
4	14	27/07/201	31/07/2018	Back Propagation				
		8		Neural Networks				
	15	31/07/201	02/08/2018	Problems based on				
		8		BPNN				
	16	01/08/201	03/08/2018	RBF networks	Submission			
		8			of			
					Assignment 1			
	17	02/08/201	03/08/2018	Problems based on	0		EXC7052.1	PO1
		8	,,	RBF networks				PO3
5	18	03/08/201	04/08/2018	Functional Link				PO5
	10	8	01/00/2010	networks				
	10	07/08/201	04/08/2018	Revision Problems	Assignment 2			
	19	07/08/201	04/00/2010	Revision Problems	Assignment 2			
		0					5405050 4	
	20	08/08/201	07/08/2018	Introduction to			EXC7052.1	PO1
		8		Unsupervised learning				PO3
				network.				
Module	3:Unsuper	vised Learning	Networks	1 1		1	I	I

7	21	09/08/2018	07/08/2018		Maxnet		TB1	EXC7052.1	PO1
	22	10/08/2018	08/08/2018		Maxican Hat net		TB2		PO3
	23	21/08/2018	09/08/2018		Hamming Network		TB4		PO5
	24	23/08/2018	10/08/2018		Kohonen Self		100		
					Organizing				
					Feature				
					Mans				
	25	24/08/2018	11/08/2018		Learning				
	25	21,00,2010	11,00,2010		Vector				
8					quantization				
	20	20/00/2010	22/09/2019		quantization				
	20	28/08/2018	23/08/2018		ARI				
	27	20/00/2010	22/22/2242		networks				
	27	29/08/2018	23/08/2018		ART networks				
9	28	30/08/2018	23/08/2018		Problem solving				
Module	4: Associa	tive Networks							
9	29	31/08/2018	24/08/201	As	sociative Networks-	Submission of			
			8	+	aining algorithms	Assignment 2			
				tra	aining algorithm				
9	30	04/09/2018	28/08/201	Αι	uto Associative		TB1	EXC7052.3	PO2
			8		owoow (Nioturovila		TB2		
				IVI	emory Network		TB/		
	31	05/09/2018	29/08/201	Bi-directional					
			8	•	a a aiatika Ndawa a wa		186		
				AS	sociative wemory				
	32	06/09/2018	30/08/201	Но	opfield Networks				
10			8						
10	33	11/09/2018	30/08/201	Но	opfield Networks				
			8						
	34	12/09/2018	31/08/201	Sp	ecial Networks-				
			8	c :.	aulated Annalian				
				511	nuiated Annealing				
				Ne	etwork				
11	35	18/09/2018	04/09/201	Bo	oltzmann Machine				
			8						
	36	19/09/2018	05/09/201		Brain in a box				
			8						
Module	5: Fuzzy Lo	ogic		1					1
11	37	25/09/2018	25/09/201	Fu	zzy sets and fuzzy set	Assignment 3			
			8	or	perations Fuzzy				
			0	0	Jerations, 1 422 y				
				re	lations				
	38	26/09/2018	26/09/201	Op	perations on Fuzzy	Submission of	TB3	EXC7052.2	PO1
			8	Re	elations, The extension	Assignment 3	TB5		PO3P
					,				05
				pr	incipie				

	39	27/09/2018	27/09/201	Fuzzy mean		
12			8	membership functions		
	40	28/09/2018	28/09/201	Fuzzy controllers and		
			8	ANFIS		

Text- Books:

1. Simon Haykin, "Neural Network a -Comprehensive Foundation"

- 2. Dr. S.N. Sivanandam, Mrs. S. N. Deepa, Introduction to Soft Computing tool
- 3. Timothy Ross, "Fuzzy Logic with Engineering Applications"
- 4. Satish Kumar, Neural Network: A classroom Approach
- 5. Rajsekaran S, Vijayalakshmi Pai, Neural Networks, Fuzzy Logic and Genetic Algorithms
- 6. Hagan, Demuth, "Neural Network Design"

Examination Scheme

	Module	Lecture	Marks distribution in		Approximate Marks
		Hours	Test (For internal		distribution in Sem. End
			assessment/TW)		Examination
			Test 1	Test 2	
1.	Fundamental Concepts		08		20
	of Neural Networks	8			
2.	Supervised Learning		08		30
	Networks	12			
3	Unsupervised Learning		04		20
	Networks	12			
4	Associative Networks	10		08	20
5	Fuzzy Logic	10		12	30

Term Work:

The term work shall consist of at least **two assignments and ten experiments** covering the whole of syllabus, duly recorded and graded.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal) : 15 marks.