Lesson Plan

Faculty : Swapnali Makdey

CLASS					BE Electronics Semester –VIII			
Academic Term					June 2019-Dec2019			
Subject					IC Technology	(ELXDL07034)		
Period	s (Hours) p	per week	Lecture			2		
			-		Practical	2		
			Tutorial					
Eva	Evaluation System					Hours	Marks	
				,	Theory examination	3	80	
				Iı	nternal Assessment		20	
			Practical Examination					
			Oral Examination					
			Term work					
			Total				100	
						11		
Time Table		Day			Time			
			Tuesday			8.45am – 9.45am		
			Wednesday			1.30pm to 2.30pm		
			Thursday			2.30pm to 3.30pm		
			Friday			9.45am – 10.45am		
Cours	e Conten	t and Le	sson j	plan		1		
(Also in	clude dates	s of assign	ments,	test paper an	d mention as remarks))		
Module	1: Envi	ronment	and C	rystal Grow	th for VLSI Techno	ology		
Week Lecture Date				•	Topic Remarks(If any			
	No.	Planne	ed	Actual	1	*		
	1	2-7-2019)		1.1 Environment : Semiconduct Technology trend			
	2	3-7-2019)		Clean rooms, Wafer	cleaning		
	3	4-7-2019)		1.2 Semiconducto diagram and solid so			

	4 8-7-2019		Cascode current mirrors and Active current mirrors					
	5	9-7-2019	Crystal structure, Crystal defects					
	6	10-7-2019	Czochralski growth, Float Zone growth					
	7	11-7-2019	Bridgman growth of GaAs					
	8	16-7-2019	Wafer Preparation and specification					
Module 2:Fabrication Process Part 1								
	9	18-7-2019	2.1 Deposition: Evaporation, Sputtering					
	10	19-7-2019	Chemical Vapor Deposition					
	11	23-7-2019	2.2 Epitaxy: Molecular Beam Epitaxy, Vapor Phase					
	12	24-7-2019	Epitaxy, Liquid Phase Epitaxy, Evaluation of epitaxial layers					
	13	25-7-2019	Silicon Oxidation: Thermal oxidation process					
	14	26-7-2019	Kinetics of growth, high к and low к dielectrics					
	15	29-7-2019	Diffusion: Nature of diffusion, Diffusion in a concentration gradient,					
	16	30-7-2019	Diffusion equation					
	17	31-7-2019	Impurity behavior, diffusion systems, evaluation of diffused layers Problems in diffusion,					
	18	1-8-2019	Ion Implantation: Penetration range, ion implantation systems					
	19	Process considerations, implantation damage and annealing						
Module 3 Fabrication Processess Part 2								
	20	6-8-2019	Etching : Wet chemical etching, dry physical etching, dry chemical etching.					
	21	7-8-2019	reactive ion etching, ion beam techniques					
	22	8-8-2019	Lithography: Photoreactive materials, Pattern generation and mask making,					
	23	9-8-2019	pattern transfer, Electron beam, Ion beam and X-ray lithography					
	24	20-8-2019	Device Isolation, Contacts and Metallization: Junction and oxide					
	25	21-8-2019	Schottky contacts, Ohmic contacts,					

			Metallization and Packaging			
	26	22-8-2019	CMOS Process Flow: N well, P-well and			
			Twin tub			
	27	23-8-2019	Design rules, Layout of MOS based			
	20	27.9.2010	Circuits			
	28	27-8-2019	Burled and Butting Contact			
Module	e 4 Measu	irements, Pacl	kaging and Testing			
		28-8-2019	Semiconductor Measurements:			
	20		Conductivity type, Resistivity, Hall Effect			
	29		Measurements			
	30	29-8-2019	Drift Mobility, Minority Carrier Lifetime			
	21	20.0.2010	and diffusion length			
	31	30-8-2019	Packaging: Integrated circuit packages			
	32	11-9-2019	Electronics package reliability			
	33	11-9-2019	Testing: Technology trends affecting			
			testing, VLSI testing process and test			
			equipment			
Module	e 5 SOI, G	aAs and Bipol	lar Technologies			
	34	11-9-2019	SOI Technology: SOI fabrication using			
			SIMOX,			
	35	12-9-2019	Bonded SOI and Smart Cut			
	36	13-9-2019	PD SOI and FD SOI Device structure and			
			their features			
	37	17-9-2019	GaAs Technologies: MESFET			
	20	10.0.2010	Technology,			
	38	18-9-2019	Digital lechnologies, MMIC			
			Ontoelectronic Devices			
	39	19-9-2019	Silicon Bipolar Technologies: Second			
	07	17 7 2017	order effects in bipolar transistor.			
			Performance of BJT, Bipolar processes			
			and BiCMOS			
Novel Devices						
	40	20-9-2019	Multigate Device: Various multigate			
			device configurations (device structure			
			and important features			
	41	24-9-2019	Nanowire: Fabrication and applications			
	42	25-9-2019	Graphene Device: Carbon nanotube			
			transistor fabrication, CNT applications			
	43	26-9-2019	FINFET Operation			
	44	27-9-2019	Video on IC fabrication			

45	3-10-2019	Video on nano devices	
46	4-10-2019	Discussion on university paper	

Recommended Books:

1. James D. Plummer, Michael D. Deal and Peter B. Griffin, "*Silicon VLSI Technology*", Pearson, Indian Edition.

2. Stephen A. Campbell, "*The Science and Engineering of Microelectronic Fabrication*", Oxford University Press, 2nd Edition.

3. Sorab K. Gandhi, "VLSI Fabrication Principles", Wiley, Student Edition.

4. G. S. May and S. M. Sze, "Fundamentals of Semiconductor Fabrication", Wiley, First Edition.

5. Kerry Bernstein and N. J. Rohrer, "SOI Circuit Design Concepts", Kluwer Academic Publishers, 1st edition.

6. Jean-Pierre Colinge, "FinFETs and Other Multigate Transistors", Springer, 1st edition

7. M. S. Tyagi, "Introduction to Semiconductor Materials and Devices", John Wiley and Sons, 1st edition.

8. James E. Morris and Krzysztol Iniewski, "*Nanoelectronic Device Applications Handbook*", CRC Press

9. Glenn R. Blackwell, "The electronic packaging", CRC Press

10. Michael L. Bushnell and Vishwani D. Agrawal, "Essentials of Electronic Testing for digital, memory and mixed-signal VLSI circuits", Springer

Examination Scheme

	Module	Lecture	Marks distribution in		Approximate Marks
		Hours	Test (For internal		distribution in Sem.
			assessment/TW)		End Examination
			Test 1	Test 2	
1	Environment and	08	05		20 marks
	Crystal Growth for				
	VLSI Technology				
5	Fabrication Process	10	05	04	20 marks
	Part 1				
6	Fabrication Process	10		06	8 marks
	Part II				

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2
- to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules