FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering

T.E. (IT) (semester VI) (2018-2019) Subject: Data Mining & Business Intelligence (DMBI-ITC602) Credits-4

<u>Syllabus</u>

Course Code	Course	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
	Name					Practical		
ITC602	Data Mining and Business Intelligence	04			04	-		04

		Examination Scheme								
Course	Course		Theo	ory Marks						
Code	Name	Internal assessment			End	Term	Oral & Practical	Total		
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work				
ITC602	Data Mining and Business Intelligence	20	20	20	80			100		

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisites	Knowledge of databases, and Date warehousing, OLAP	02	
I	Introduction to Data Mining	What is Data Mining; Kind of patterns to be mined; Technologies used; Major issues in Data Mining	03	CO1
II	Data Exploration and Data Preprocessing	Types of Attributes;StatisticalDescriptionofData;DataVisualization;Measuring similarityand dissimilarity.WhyPreprocessing?DataCleaning;Data Integration;DataReduction:Attributesubsetselection,Histograms,Clusteringand Sampling;DataDiscretization:Normalization,Binning,HistogramAnalysisandConceptgeneration.	09	CO2 CO3
III	Classification	BasicConcepts;Classificationmethods:1.DecisionTreeInduction:AttributeSelectionMeasures,Treepruning.2.BayesianClassification:NaïveBayes"Classifier.Prediction:Structureofregressionmodels;Simplelinearregression,Multiplelinearregression.Accuracy andErrormeasures,Precision,Recall,Holdout,RandomSampling,CrossValidation.Validation.Name	09	CO4 CO5
IV	Clustering	Cluster Analysis: Basic Concepts; Partitioning Methods: K-Means, K- Mediods; Hierarchical Methods: Agglomerative, Divisive, BIRCH; Density-Based Methods: DBSCAN What are outliers? Types, Challenges; Outlier Detection Methods: Supervised, Semi Supervised, Unsupervised, Proximity based, Clustering Based.	10	CO4 CO5

University of Mumbai, B. E. (Information Technology), Rev 2016

		Market Basket analysis, Frequent		
	Frequent Pattern	itemsets, closed itemsets and		CO4
M	Mining	Association Rules; Frequent Pattern	10	CO5
		Mining, Efficient and Scalable		
		Frequent Itemset Mining Methods,		
		The Apriori Algorithm for finding		
		Frequent Itemsets Using Candidate		
		Generation, Generating Association		
		Rules from Frequent Itemsets,		
		Improving the Efficiency of		
		Apriori, A pattern growth approach		
		for mining Frequent Itemsets;		
		Mining Frequent itemsets using		
		vertical data formats; Introduction		
		to Mining Multilevel Association		
		Rules and Multidimensional		
		Association Rules; From		
		Association Mining to Correlation		
		Analysis, lift, ; Introduction to		
		Constraint-Based Association		
		Mining.		
		ivining.		
VI	Business	What is BI? Business intelligence	09	CO6
	Intelligence	architectures; Definition of decision		
	-	support system; Development of a		
		business intelligence system using		
		Data Mining for business		
		Applications like Fraud Detection,		
		Clickstream Mining, Market		
		Segmentation, retail industry,		
		telecommunications industry,		
		banking & finance CRM etc.		
L				

Text Books:

Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3nd Edition.

P. N. Tan, M. Steinbach, Vipin Kumar, "Introduction to Data Mining", Pearson Education.

Business Intelligence: Data Mining and Optimization for Decision Making by Carlo Vercellis , Wiley India Publications.

G. Shmueli, N.R. Patel, P.C. Bruce, "Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner", 2nd Edition, Wiley India.

Course Outcomes

CO1: Demonstrate an understanding of the importance of data mining and the principles of business intelligence.

CO2: Organize and Prepare the data needed for data mining using pre preprocessing techniques.

CO3: Perform exploratory analysis of the data to be used for mining.

CO4: Implement the appropriate data mining methods like classification, clustering or Frequent Pattern mining on large data sets.

CO5: Define and apply metrics to measure the performance of various data mining algorithms.

CO6: Apply BI to solve practical problems : Analyze the problem domain, use the data collected in enterprise apply the appropriate data mining technique, interpret and visualize the results and provide decision support.

Cours e Name	P0 1	P0 2	РО 3	PO 4	PO 5	P0 6	PO 7	РО 8	РО 9	PO1 0	P0 11	P 0 12	PSO 1	PSO 2
C01	1													1
CO2	2	1												
CO3		3	2										3	2
CO4		2	3		2								2	
CO5	2	1	1										2	1
C06	2	3	3		1								2	1

<u>CO-PO and CO-PSO Mapping</u>

<u>CO Assessment Tools</u>

	Direct Methods										
	Test 1	Assig1	Lab Work/ Tutorial	Test2	Assig2	University Theory Exam	University Practical Exam	Course Exit Survey			
C01	25%	20%	10%			20%	25%	100%			
CO2	25%	20%	10%			20%	25%	100%			
CO3	25%	20%	10%			20%	25%	100%			
C04			10%	25%	20%	20%	25%	100%			
C05			10%	25%	20%	20%	25%	100%			
C06			10%	25%	20%	20%	25%	100%			

Lecture Plan:

No of classes available:	40	No of Classes taken:	41	
Sr. No.	Topic Planned	Planned Date	Actual Date	Delivery Mechanisms
1	What is Data Mining; Kind of patterns to be mined	9/1	9/1	Chalk and board
2	Technologies used, Major issues in data mining	10/1	9/1	Chalk and board
3	Types of attributes, statistical distribution	11/1	10/1	Chalk and board
4	Data visualization, statistical distribution	15/1	11/1	Chalk and board
5	Measuring dissimilarity	16/1	14/1,15/1	Chalk and board
6	Measuring similarity, dissimilarity	17/1	16/1	Chalk and board
7	Preprocessing, Data cleaning, data integration	18/1	17/1,22/1	Chalk and board
8	Data reduction, attribute subset selection, sampling	22/1	23/1	Chalk and board
9	histogram, clustering, data transformation	23/1	24/1	Chalk and board
10	Discretization, normalization, binning, concept hierarchy generation	24/1	24/1	Chalk and board
11	Classification, Basic concepts, Decision tree induction	25/1	25/1	Chalk and board
12	Attribute selection measures, tree pruning	29/1	29/1	Chalk and board
13	Bayesian classification, Naïve bayesian	30/1	30/1	Chalk and board

14	Prediction: structure of regression	1/2	7/2	Chalk and
	model, Simple linear regression			board
15	multiple regression ,Accuracy , error	12/2	8/2	Chalk and
	measures			board
16	holdout, random sampling, cross	20/2	8/2	Chalk and
10	validation	2072	0/2	board
	valuation			board
17	Bootstrap, Roc curves, Bagging	21/2	20/2	Chalk and
				board
18	Boosting, Random forests	22/2	20/2	Chalk and
				board
19	Cluster analysis: basic	26/2	21/2	Chalk and
				board
20	Partiitoning: kmeans	27/2	21/2	Chalk and
				board
21	kmediods	28/2	22/2	Chalk and
		1.10	0.7.10	board
22	Hierarchical: agglomerative	1/3	27/2,	Chalk and
		F (0	28/2	board
23	Divisive, BIRCH	5/3	28/2	Chalk and
24	Density hand DRCAN	(1)	1 /2 5 /2	board
24	Density based: DBSCAN	6/3	1/3, 5/3	Chalk and board
25	Ontigo	7/3	6/3	Chalk and
25	Optics	//5	0/3	board
26	What are outliers, types, challenges	8/3	6/3	Chalk and
20	what are outliers, types, chancinges	0/5	075	board
27	Outlier detection methods: supervised,	12/3	7/3	Chalk and
	semisupervised,Proximity based,	7 -	7 -	board
	clustering			
28	Market basket analysis, frequent	13/3	7/3	Chalk and
	itemsets, association rules			board
29	Frequent pattern mining methods,	14/3	12/3	Chalk and
	Apriori using candidate generation			board
30	Generating association rules from	19/3	13/3	Chalk and
	frequent items, efficicency, using			board
	vertical data formats			
31	Closed mining, maximal patterns	20/3	14/3	Chalk and
0.0		00.0	10.0	board
32	Multilevel association rules,	22/3	18/3	Chalk and
22	multidimensional	26/2	20.72	board,
33	Correlation analysis	26/3	20/3	Chalk and
24	Dattorn avaluation macaures	27/2	20/2	board, Chalk and
34	Pattern evaluation measures	27/3	20/3	board,
35	Constraint based association mining	27/3	22/3	Chalk and
55		21/3	22/3	board
36	What is BI, Data information ,	28/3	26/3	Chalk and
50	knowledge	20/3	20/5	board
	MIOWICUEC	l		board

37	Mathematical models, BI architectures	28/3	26/3	Chalk and board,
38	Enabling factors in BI project, Development of BI system	29/3	27/3	Chalk and board,
39	Representation of decision making process, evolution of information systems	29/3	27/3	Chalk and board,
40	Decision support systems	02/4	28/3	Chalk and board,
41	Development of decision support systems	02/4	28/3	Chalk and board
42	Data mining for business application like fraud detection	03/4	01/4	Chalk and board,
43	Click stream mining	03/4	01/4	Chalk and board
44	Market segmentation, CRM	04/4	02/4	Chalk and board
45	Retail industry, banking	05/4	02/4	Chalk and board