Fr. Conceicao Rodrigues College of Engineering, Bandra (West), Mumbai-400 050

Subject:Applied Physics- I Division: A			Academic Year: 2019-20					
			Semester: I					
No Lec t	Sr	Name of the Topic	Planned Date	Executed Date	Mapped CO	Delivery Method		
	Module: 2 SOLIDSTATE PHYSICS - CRYSTALLOGRAPHY(03 hrs)							
1	1	Introduction to crystallography; unit cellS, Diamond Structure	13/8/2019	13/8/2019	CO2 FEC102.2			
2	2	Miller indices of crystallographic planes & directions;	14/8	14/8				
3	3	Interplanar spacing, X-ray diffraction and Bragg's law;	16/8	16/8				
4	4	Determination of Crystal structure using Bragg's diffractometer;	20/8	20/8				
	Module: 3 SOLIDSTATE PHYSICS - SEMICONDUCTORS(06 hrs)							
5	1	Classification of semiconductors(direct & indirect band gap, elemental	21/8	21/8	CO 3 FEC102.3			
6	2	Conductivity, mobility, current density (drift & diffusion) in semiconductors(n type and p type);	23/8	23/8				
7	3	Fermi Dirac distribution function; Fermi energy level in intrinsic & extrinsic semiconductors;	28/8	28/8				
8	4	effect of impurity concentration and temperature on fermi level;	29/8	29/8				
9	5	Fermi Level diagram for p-n junction(unbiased, forward bais, reverse bias);	30/8	30/8				
10	6	Hall Effect, Numericals	19/9	19/9				
11	7	Applications of semiconductors: Rectifier diode, LED, Zener diode, Photo diode,	20/9	20/9				
	Mo	dule 4 OPTICS - I (05 hrs)						
12	1	Interference by division of amplitude, Interference in thin film of constant thickness due to reflected and transmitted light;	23/9	23/9	CO4 FEC102.4			
13	2	Wedge shaped film; Newton's rings	26/9	26/9				
14	3	Numericals on Wedge shaped film; Newton's rings	27/9	27/9				
15	4	Applications of interference- Determination of thickness of very thin wire or foil;determination of refractive index of liquid; wavelength of incident light;	28/9	28/9				
16	5	Applications of interference- radius of curvature of lens; testing of surface flatness; Anti-reflecting films and Highly reflecting	9/10	9/10				

		film.					
	Module 1 QUANTUM MECHANICS (07 hrs)						
17	1	Introduction, Wave particle duality; de Broglie wavelength; experimental verification of de Broglie theory;	10/11/201	10/11/201	CO1 FEC102.1		
18	2	properties of matter waves; wave packet, phase velocity and group velocity;	14/10	14/10			
19	3	Wave function; Physical interpretation of wave function;	16/10	16/10			
20	4	Heisenberg's uncertainty principle;, Electron diffraction experiment, Applications of uncertainty principle;	17/10	17/10			
21	5	Schrodinger's time dependent wave equation; time independent wave equation;	18/10	18/10			
22	6	Motion of free particle; Particle trapped in one dimensional infinite potential well.	19/10	19/10			
23	7	Numerical problems					
	Module 5 SUPERCONDUCTORS & SUPER CAPACITORS(03 Hrs)						
24	1	Superconductors: Critical temperature, critical magnetic field, Meissner's effect	23/10	23/10	CO5 FEC102.5		
25	2	Type I and Type II and high Tc superconductors;	24/10	24/10			
26	3	Supercapacitors: Principle, construction, types, materials and applications, comparison with capacitor and batteries: Energy density, Power density	30/10	30/10			
	Module 6 ENGINEERING MATERIALS & APPLICATIONS (02Hrs)						
27	1	Liquid crystals: Nematic, Smectic and cholesteric phases, Liquid crystal display.Multiferroics: Type I & Type II multiferroics and applications,	31/10	31/10	CO6 FEC102.6		
28	2	Magnetoresistive Oxides: Magnetoresistance, GMR and CMR materials, introduction to spintronics	1/10	1/10			