Fr. Conceicao Rodrigues College of Engineering, Bandra (West), Mumbai-400 050

Subject: Applied Physics- I			Academic Year: 2019-20						
Division: B			Semester: I						
No	S	Name of the Topic	Planned	Executed	Mapped	Delivery			
Lect			Date	Date	CO	Method			
	<u> </u>								
	Module: 2 SOLIDSTATE PHYSICS - CRYSTALLOGRAPHY(03 hrs)								
1	1	Introduction to crystallography; unit cellS,	16/8/2019	16/8/20					
2	2	Diamond Structure	22/8	19					
	2	directions:	22/0	22/0					
3	3	Interplanar spacing X-ray diffraction and	23/8	23/8	-				
5	5	Bragg's law:	25/0	23/0	CO2				
4	4	Determination of Crystal structure using	26/8	26/8	FEC10				
		Bragg's diffractometer;			2.2				
	Module: 3 SOLIDSTATE PHYSICS - SEMICONDUCTORS(06 hrs)								
5	1	Classification of semiconductors(direct &	27/8	27/8	CO 3				
		indirect band gap, elemental			FEC102				
6	2	Conductivity, mobility, current density (drift &	29/8	29/8	.3				
		diffusion) in semiconductors(n type and p type);							
7	3	Fermi Dirac distribution function; Fermi energy	17/9	17/9					
		level in intrinsic & extrinsic semiconductors;							
8	4	effect of impurity concentration and	19/9	19/9					
		temperature on fermi level;			_				
9	5	Fermi Level diagram for p-n junction(unbiased,	24/9	24/9					
10	_	forward bais, reverse bias);	0.510	0.6/0	-				
10	6	Hall Effect, Numericals	26/9	26/9					
11	7	Applications of semiconductors: Rectifier	28/9	28/9					
		diode, LED, Zener diode, Photo diode,							
	Μ	lodule 4 OPTICS - I (05 hrs)							
12	1	Interference by division of amplitude,	1/10	1/10	CO4				
		Interference in thin film of constant thickness			FEC102				
12	2	due to reflected and transmitted light;	7/10	7/10	.4				
13	2	Wedge shaped film; Newton's rings	//10	//10					
14	3	Numericals on Wedge shaped film; Newton's	9/10	9/10					
15	1	rings	11/10	11/10	-				
15	4	thickness of very thin wire or foil determination	11/10	11/10					
		of refractive index of liquid wavelength of							
		incident light;							
16	5	Applications of interference- radius of curvature	15/10	15/10					
		of lens; testing of surface flatness; Anti-							
		reflecting films and Highly reflecting film.							
	Μ	lodule 1 QUANTUM MECHANICS (07 hrs)							

17	1	Introduction, Wave particle duality; de Broglie wavelength; experimental verification of de Broglie theory:	16/10	16/10	CO1 FEC102				
18	2	properties of matter waves; wave packet, phase velocity and group velocity;	17/10	17/10					
19	3	Wave function; Physical interpretation of wave function;	19/10	19/10					
20	4	Heisenberg's uncertainty principle;, Electron diffraction experiment, Applications of uncertainty principle;	22/10	22/10					
21	5	Schrodinger's time dependent wave equation; time independent wave equation;	23/10	23/10					
22	6	Motion of free particle; Particle trapped in one dimensional infinite potential well.	24/10	24/10					
23	7	Numerical problems			-				
	Module 5 SUPERCONDUCTORS & SUPER CAPACITORS(03 Hrs)								
24	1	Superconductors: Critical temperature, critical magnetic field, Meissner's effect	30/10	30/10	CO5 FEC102				
25	2	Type I and Type II and high Tc superconductors;	31/10	31/10	.5				
26	3	Supercapacitors: Principle, construction, types, materials and applications, comparison with capacitor and batteries : Energy density, Power density							
	Module 6 ENGINEERING MATERIALS & APPLICATIONS (02Hrs)								
27	1	Liquid crystals: Nematic, Smectic and cholesteric phases, Liquid crystal display.Multiferroics : Type I & Type II multiferroics and applications,			CO6 FEC102 .6				
28	2	Magnetoresistive Oxides: Magnetoresistance, GMR and CMR materials, introduction to spintronics							