FR. Conceicao Rodrigues College of Engineering

Father Agnel Ashram, Bandstand, Bandra - west, Mumbai-50 Department of Computer Engineering (2020-2021) Course Outcomes & Assessment Plan

CLASS-SEM: S.E.(COMPUTER) - B DIVISION

COURSE NAME: Database Management Systems (DBMS) TOTAL CREDITS :3+1=4

SUBJECT CODE	SUBJECT NAME	Credits
CSC403	Database Management Systems (DBMS)	3

Lab Code	Lab Name	Credits
CSL402	Database Management System Lab	1

Professor : Ms. Dipali Koshti

PAC Members:	Head Of Department:

Syllabus:

Module		Content I				
1		Introduction Database Concepts	3			
	1.1	Introduction, Characteristics of databases, File system v/s Database system, Data abstraction and data Independence, DBMS system architecture, Database Administrator				
2		Entity–Relationship Data Model	6			
	2.1	The Entity-Relationship (ER) Model: Entity types: Weak and strong entity sets, Entity sets, Types of Attributes, Keys, Relationship constraints: Cardinality and Participation, Extended Entity-Relationship (EER) Model: Generalization, Specialization and Aggregation				
3		Relational Model and relational Algebra	8			
	3.1	Introduction to the Relational Model, relational schema and concept of keys. Mapping the ER and EER Model to the Relational Model, Relational Algebra-operators, Relational Algebra Queries.				
4		Structured Query Language (SQL)				
	4.1	Overview of SQL, Data Definition Commands, Integrity constraints: key constraints, Domain Constraints, Referential integrity, check constraints, Data Manipulation commands, Data Control commands, Set and string operations, aggregate function-group by, having, Views in SQL, joins, Nested and complex queries, Triggers				
5		Relational-Database Design	6			
	5.1	Pitfalls in Relational-Database designs, Concept of normalization, Function Dependencies, First Normal Form, 2NF, 3NF, BCNF.				
6		Transactions Management and Concurrency and Recovery	10			
	6.1	Transaction concept, Transaction states, ACID properties, Transaction Control Commands, Concurrent Executions, Serializability-Conflict and View, Concurrency Control: Lock-based, Timestamp-based protocols, Recovery System: Log based recovery, Deadlock handling				

Tex	tbooks:			
1	Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition, McGraw Hill			
2	Elmasri and Navathe, Fundamentals of Database Systems, 5thEdition, Pearson Education			
3	Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH			
Refe	erences:			
1	Peter Rob and Carlos Coronel, Database Systems Design, Implementation and			
	Managementl, Thomson Learning, 5th Edition.			
2	Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.			
3	G. K. Gupta, Database Management Systems, McGraw Hill, 2012			

Course Outcomes:

Upon completion of this course students will be able to:

CO-	Course Outcomes	Blooms T.	
CODE			
CSC403.1	Demonstrate the fundamental concepts of database systems	Comprehension	
CSC403.2	Design conceptual model for a real world problem using ER diagram and	Apply and Design	
	convert it to a relational model.		
CSC403.3	Design and querying database using SQL and Relational algebra.	Apply and Design	
CSC403.4	Analyze and apply concepts of normalization to relational database design.	Analyze, Apply	
CSC403.5	Apply the concept of transaction, concurrency and recovery to the	Comprehension,	
	relational database.	Apply	

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	(Engg	(Ana)	(De	(inve	(tools)	(engg	(Env)	(Eth)	(ind/	(comm.)	(PM)	(life
	Know)		sign)	stiga)		Soci)			Team)			Long)
CSC403.1	3											
CSC403.2	3	3	3						3	2	2	2
CSC403.3	3	3	3		3				3	2	2	2
CSC403.4	3	3	3						2	3	3	2
CSC403.5	3	3	3						2	2	2	
Course												
To PO												

СО	PSO1(real word	PSO2(design
	challenges)	and implement)
CSC403.1	3	
CSC403.2	3	3
CSC403.3	3	3
CSC403.4	3	3
CSC403.5	3	
Course to PSO		

Justification

PO1: All COs are mapped to PO1 because engineering graduates will be able to apply the knowledge of DBMS fundamentals to solve complex engineering problems.

PO2: CSC403.2-CSC403.5, are mapped to PO2 because the students analyze a database system.

PO3: CSC403.2-CSC403.5, are mapped to PO3 because the students design a database system using Relational Model.

PO5: CO404.3 is mapped to this PO5 because the students use the postgresql por MySql database software to query the database and do query optimization.

PO9: CSC403.2-CSC403.5, are mapped to this PO9 because the students work in a team to develop the mini project database system.

PO10: CSC403.2-CSC403.5, are mapped to this PO10 because Students communicate effectively on MINI project aspects by writing reports, and giving PPT

PO11: CSC403.2-CSC403.5, are mapped to this PO11 because students demonstrate the knowledge and concept applied to MINI project as a team leader or group member.

PO12: CSC403.2-CSC403.4, are mapped to this PO12 because students develop the ability to handle and to think independently using the concepts of ER diagram to learn futuristic subjects.

PSO1: All COs are mapped to PSO1 because the graduates will be able to apply fundamental knowledge of DBMS to provide databases for real world problems.

PSO2: CSC403.2-CSC403.4, are mapped to PSO2 because the students design and implement the mini project using the knowledge of database concepts of ER modeling, relational modeling and SQL.

<u>CO Assessment Tools:</u>

CSC403.1: Demonstrate the fundamental concepts of database systems

Direct Method Tools (dm)	Wt=80%	
Lab (lab)	0.1	
Quiz	0.2	
Mini project	0.1	
UnitTest1 (ut1)	0.2	
End Sem Marks(Theory) (uth)	0.2	
End Sem Marks(practical and oral) (utpra)	0.2	
Indirect Method Tools(idm)	Wt=20%	
Course Exit Survey (C03idm)		
<u>CSC403.1= 0.8*</u> <u>CSC403.1dm</u> + 0.2* <u>CSC403.1idm</u>		

Direct Method Tools (dm)	Wt=80%
Lab (lab 1-2)	0.2
Mini project	0.2
UnitTest1(ut1)	0.2
End Sem Marks(Theory) (uth)	0.2
End Sem Marks(practical) (utpra)	0.2
Indirect Method Tools(idm)	Wt=20%
Course Exit Survey (C03idm)	
<u>CSC403.2= 0.8*</u> <u>CSC403.2dm</u> + 0.2* CS	C403.2idm

CSC403.2: Design conceptual model for a real world problem using ER diagram and convert it to relational model

CSC4033 : Design and querying database using Relational algebra and SQL

Direct Method Tools (dm)	Wt=80%
Lab (lab)	0.4
Assignment (Assignment1)	0.1
Mini project	0.2
UnitTest1(ut1 + ut2)	0.1
End Sem Marks(Theory) (uth)	0.1
End Sem Marks(practical) (utpra)	0.1
Indirect Method Tools(idm)	Wt=20%
Course Exit Survey (C03idm)	
<u>CSC403.4= 0.8* CSC403.4dm + 0.2* CSC</u>	C5403.4idm

CSC403.4 : Analyze and apply concepts of normalization to relational database design.

Direct Method Tools (dm)	Wt=80%		
Assignment (Assignment2)	0.2		
Mini project	0.2		
UnitTest2(ut2)	0.2		
End Sem Marks(Theory) (uth)	0.2		
End Sem Marks(practical) (utpra)	0.2		
Indirect Method Tools(idm)	Wt=20%		
Course Exit Survey (C03idm)			
<u>CSC502.5= 0.8*</u> <u>CSC502.5dm</u> + 0.2* <u>CSC502.5idm</u>			

Direct Method Tools (dm)	Wt=80%			
Lab	0.2			
Mini project	0.2			
UnitTest2(ut2)	0.2			
End Sem Marks(Theory) (uth)	0.2			
End Sem Marks(practical) (utpra)	0.2			
Indirect Method Tools(idm)	Wt=20%			
Course Exit Survey (C03idm)				
<u>CSC403.6= 0.8*</u> <u>CSC403.6dm</u> + 0.2* <u>CSC403.6idm</u>				

CSC403.5: Apply the concept of transaction, concurrency and recovery to the relational database.

Course Outcomes Target:

Upon completion of this course students will be able to:

CO-CODE	Course Outcomes	Blooms T.	Target 2018-19
CSC403.1	Demonstrate the fundamental concepts of	Comprehension	2.5
	database systems		
CSC403.2	Design conceptual model for a real	Apply and Design	2.5
	world problem using ER diagram and		
	convert it to relational model		
CSC403.3	Design and querying database using	Apply and Design	2.5
	relational algebra and SQL.		
CSC403.4	Analyze and apply concepts of	Analyze, Apply	2.5
	normalization to relational database		
	design.		
CSC403.5	Apply the concept of transaction,	Comprehension,	2.5
	concurrency and recovery to the	apply	
	relational database.		

Content Beyond Syllabus:

Distributed Databases

Curriculum Gap:

Distributed Database system and NOSQL is not included in this revised syllabus of 2019. It is important from the perspective of Data mining and warehouse where system need to integrate heterogeneous / homogenous databases from different locations. Mapped with PO12 AND PSO2.

Lab Experiments:

No.	List of experiments	CO mapping
1	Identify the case study and detail statement of problem. Design an Entity- Relationship (ER) / Extended Entity-Relationship (EER) Model.	CSC403.2
2	Mapping ER/EER to Relational schema model.	CSC403.2
3	Create and populate database using Data Definition Language (DDL) and DML Commands for you're the specified System.	CSC403.3
4	Perform Simple queries, Date operations.	CSC403.3
5	Apply Integrity Constraints for the specified system.(Part1,2,3)	CSC403.3
6	Perform Join operations and Complex queries	CSC403.3
7	Perform nested sub-queries in SQL	CSC403.3
8	PL/SQL and procedure.	CSC403.3
9	Function and Triggers	CSC403.3
10	Transaction and Concurrency control	CSC403.5
11	Innovative Expt. – Distributed database	
12	Mini project- Creating a 2/3-tier client-server database applications using JDBC/ODBC	CSC403.1 – CSC403.5

Rubrics for Experiment Grading of DBMS Expt. 1 and 2

Indicator	Poor	Average	Good
 Timeliness Maintains assignment deadline (3) 	Assignment not done (0)	One or More than One week late (1-2)	Maintains deadline (3)
 Completeness and neatness Complete all parts of ER diagram(3) 	N/A	< 80% complete (1- 2)	100% complete (3)
OriginalityExtent of plagiarism(2)	Copied it from someone else(0)	At least few parts of diagram have been done without copying(1)	Assignment has been solved completely without copying (2)
KnowledgeIn depth knowledge assi	Unable to answer 2 questions(0)	Unable to answer 1 question (1)	Able to answer 2 questions (2)

Indicator	Excellent	Good	Average
Timeline (2)	submitted on time or early (2)	Submitted in same week (1)	Submitted in next week (0)
DDL/DML/TCL Commands(2)	Applies all DDL/DML/TCL commands with all specified constraint successfully (2)	Not able to enforce few constraints or not able to write proper TCL commands (1)	Tables created without constraints or Failed to implement transaction (0.5)
Applies Appropriate SQL / PLSQL (3)	Able to apply optimized SQL/PLSQL query (3)	Able to apply appropriate SQL/PLSQL query and getting correct output (2)	Able to solved few queries or queries with partially correct output (1)
 Knowledge In depth knowledge of the topic(2) 	Unable to answer 2 questions(0)	Unable to answer 1 question (1)	Able to answer 2 questions (2)

Rubrics for Experiment Grading of DBMS Expt. 3 to 10

Mini-Project:

Students to work in a group of minimum two and maximum three students for a Mini project. Students have to select the problem statement addressing the real-world problems preferably keeping in mind societal, health an environmental issue. Analyze the problem and develop solution for the same by applying the concept learnt in theory and laboratory. The students' progress on their project will be discussed in the practical session. Finally, at the time of submission the students will present the demonstration of their project.

Mini-Project Schedule:

Sr. No	Торіс	submission
1	Abstract Submission	3rd week of Feb 2021
2	Project Approval	4 th week of Feb 2021
3	First Review	10 th – 12 th April 2021
4	Final Demonstration	2 nd week of May
5	Report Submission	2 nd week of May

Indicator	Poor	Average	Good	Excellent
Timeline(1)	More than two sessions late (0)	Two sessions late (0)	One session late (0.5)	Early or on time (1)
Analysis and Design (3)	Lack of analysis and Incorrect design (0)	Lack of proper analysis and Pitfalls in design (1)	Enough Analysis done with correct basic design (2)	Through Analysis of the problem statement and detailed Design (3)
Implementation of advanced SQL(4)	Implemented only basic queries (1)	Implemented Nested queries and Complex queries, with Views(2)	Nested queries and Complex queries, with Views and Triggers(3)	Views and Triggers, Functions , cursor and procedure with proper validation(4)
Mini Project Report(2)	<i>iect</i> Important content / diagrams missing with major grammatical /spelling mistakes. (0,5)		Well organized, includes all sections of reports, but few mistakes in diagrams/content. (1.5)	Well organized, includes all sections of reports without any grammatical and spelling mistakes (2)

Rubrics for Mini-project grading

Rubrics for the Assignments:

Assignment1 (Maps to CSC403.1)

Indicator	Excellent	Good	Average
Timeline (2)	submitted on time or early (2)	Submitted in same week (1)	Submitted in next week (0)
DDL and DML Commands(2)	Applies all DDL commands with all specified constraint successfully (2)	Not able to enforce few constraints (1)	Tables created without constraints (0.5)
Understands the Relational algebra(3)	Explains why procedures are appropriate for relational algebra(3)	Applies Appropriate Relational algebraic symbols for all queries (2)	Applies Appropriate Relational algebraic symbols <50% (1)
Applies Appropriate SQL (3)	Able to apply optimized SQL query (3)	Able to apply appropriate SQL query and getting correct output (2)	Able to solve few queries or queries with partially correct output (1)

Assignments2 (Maps to CSC403.4)

Indicator	Excellent	Good	Average
Timelinesubmitted on time or(2)early (2)		Submitted in same week (1)	Submitted in next week (0)
Understands the Normalization types (4)	Explains why Understands the Normalization types (4)	Understands the all types Normalization (3)	Understands some form of Normalization types < 50% (2)
Applies Appropriate Normalization (4)	Explains why Normalization appropriate for given problem(4)	Applies Normalization appropriate for given problem (3)	Applies some part of Normalization appropriate for given problem (2)

FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Computer Engineering (2020-2021) Lesson Plan

CLASS-SEM: S.E.- COMP (B-DIV) SUBJECT: Database Management Systems (DBMS)

Credits-4 SUBJECT CODE- CSC403

Professor : Dipali Koshti

Modes of Content Delivery:

i	Online	v	Self Learning Online	Ix	Industry Visit/Technical
	Teaching		Resources		Paper presentation in
					class
ii	Tutorial	vi	Slides, PPT	Χ	Group Discussion
iii	Remedial	vii	Simulations/Demonstrations	xi	Seminar
	Coaching				
iv	Lab	viii	Expert Lecture	xii	Case Study
	Experiment				

Lect.	Chap.	Portion to be covered	Planned date	Actual date	Content Delivery
No.	no				Method/Learnin
					g Activities
Modu	le 1 : Int	roduction Database Concepts			
1	1.1	Introduction, File system V/s	25-01-2021		Online Teaching,
		Database system, adv and disadv.			PPT
2	1.2	Characteristics of databases, Users of	27-01-2021		Online Teaching,
		Database system, Roles of Database			PPT
		Administrator			
3	1.3	Data Independence and data	28-01-2021		Online Teaching,
		abstraction , DBMS Architecture ,			PPT
		Schema, Instance.			
Modu	le 2 :Ent	ity–Relationship Data Model			
4	1.4	ER Diagrams basics: Entity,	29-01-2021		Online Teaching,
		Attribute, Relationship etc.			PPT
5	2.1	Entity types: Weak and strong	01-02-2021		Online Teaching,
		entity sets, Entity sets, Types of			Lab Experiment
		Attributes, Keys. Examples of each.			
6	2.2	Relationship constraints:	03-02-2021		Online Teaching,
		Cardinality and Participation,			Lab Experiment
		Problem statement for ER diagram.			
7	2.3	ER Diagrams, Explanation plus	04-02-2021		Online Teaching,
		problem statement			Lab Experiment/
					Video1

8	2.4	EER : Specialization &	05-02-2021	Online Teaching,
		Generalization Convert Problem		Lab Experiment
		statements into ER Diagram		-
Modu	le 3 : Re	ational Model and relational Algebr	ra	
9	3.1	Introduction to the Relational Model,	08-02-2021	Online Teaching,
		relational schema and		PPT
		concept of keys		
10	3.2	Mapping the ER and EER Model to	10-02-2021	Online Teaching
		the Relational Model		
11	3.3	Relational Algebra – unary and set	11-02-2021	Online Teaching
		operations, Relational		_
		Algebra Queries.		
12	3.4	Problems based on Relational	12-02-2021	Online Teaching
		Algebra		
Modu	le 4: Stru	ctured Query Language (SQL)		
13	4.1	Overview of SQL, DDL commands:	15-02-2021	Online Teaching,
		CREATE, DROP, ALTER ,		PPT, Lab
		TRUNCATE, RENAME		Experiment,
				Demonstration
14	4.2	DML commands – SELECT,	17-02-2021	Online Teaching,
		UPDATE, INSERT, DELETE		Lab Experiment,
				PPT
				Demonstration
15	4.3	Integrity constraints: key	18-02-2021	Online Teaching,
		constraints, Domain Constraints,		Lab Experiment,
		Referential integrity, check	(22 nd to 27 th PR)	PPT,
		constraints,		Demonstration
16	4.4	DML- Aggregate Functions, Simple	1-3-2021	Online Teaching,
		Sub queries, GroupBy , order by		Lab Experiment,
		Having		Demonstration
17	4.5	String operations, Sql SET	3-3-2021	Online Teaching,
		Operations . Sql Queries with		Lab Experiment
		IN,ANY,ALL,BETWEEN, NOT		
		BETWEEN,IS NULL, IS NOT		
		NULL.		
10	1.6	SOL JOINS (4.2.2024	Online Teaching
10	4.0	INNED OUTED/I EET DICUT	4-3-2021	Lab Experiment
		$\begin{bmatrix} INNER, OUTER(LEFT RIGHT \\ EULL) NATURAL CROSS) \\ \end{bmatrix}$		Lab Experiment,
		TULL), NATURAL, CROSS)		Video?
19	47	Simple Nested and complex queries	5-3-2021	Online Teaching
	- .,	Nested sub queries with SOMF		Lab Experiment
		ANY ALL FXISTS NOT FXISTS	(8th TO 10 th UT)	PPT
20	4.8	Nested and complex queries	12-3-2021	Online Teaching,
		examples, Views in SQL,		self learning
				online resources,
				Demonstration

21	4.9	Complete Hands Practice on	15-3-2021	Online Teaching,		
		University Database with all types of		Lab Experiment,		
22	4.10	Triggers	17.2.2021	Demonstration		
22	4.10	Inggers	17-3-2021	Lab Experiment		
				Demonstration		
Modu	le 5 · Rel	ational-Database Design		Demonstration		
Would 5 . Relational-Database Design						
23	5.1	Pitfalls in relational Database designs	18-3-2021	Online Teaching,		
		, Concept of Normalization		PPT		
24	5.0	Provedient descendencies Identifician	10.02.2021			
24	5.2	Function dependencies, identifying	19-03-2021	DDT Video?		
		candidate keys from given FD's	(22 nd To 26 th PR)	FF1, videos		
25	5.3	Need of normalization, Lossless join	31-04-2021	Online Teaching		
		and Functional dependency		, PPT		
		preserving property.				
26	5.4	Normal Forms- 1NF, 2 NF, 3NF	01-04-2021	Online Teaching		
				,PP1		
27	5.5	BCNF. Examples on	5-04-2021	Open Discussion		
	0.0	1NF.2NF.3NF.BCNF and Finding	5 6 . 2022	with Students .		
		Candidate keys.		,PPT		
28	5.6	More problems on Normalization	7-04-2021	Online Teaching,		
		_		Lab Experiment		
Module 6: Transaction Management, Concurrency and Recovery						
29	6.1	Transaction concept, Transaction	8-04-2021	Online		
20		states, ACID properties.		Teaching,PPT		
30	6.2	Transaction Control Commands,	9-04-2021	Online		
		Concurrent Executions,		Teaching, PPT		
			(12 10 18 PR)			
31	6.3	Serializability-Conflict and View	19-04-2021	Online		
		5		Teaching,PPT		
32	6.4	Concurrency Control: Lock based	22-04-2021	Online		
		protocols		Teaching,PPT		
22	65	Concentration 1. The sector	22.04.0001	Ouline		
55	0.3	Concurrency Control: Timestamp-	23-04-2021	Teaching DDT		
		based protocols	(26 th to 28 th UT2)	reaching, ff f		
34	6.6	Recovery System: Failure	29-04-2021	Online		
		Classification		Teaching,PPT		

35	6.7	Log based recovery	30-04-2021 (3 rd To 7 th PR)	Online Teaching, Lab Experiment
36	6.8	ARIES, Shadow paging.	10-05-2021	Online Teaching, Lab Experiment
37	6.9	Deadlock handling	12-05-2021	Online Teaching
38		Solving University Question paper	13-05-2021	Online Teaching
39		Content Beyond syllabus - Advanced SQL , NO SQL	17-05-2021	Online Teaching
40		Content Beyond Syllabus- Distributed databases	19-04-2021	Online Teaching

Text Books/ Reference Books: Te x t B o o k s:

1. Korth, Slberchatz, Sudarshan, :"Database System Concepts", 6th Edition, McGraw – Hill

- 2. Elmasri and Navathe, "Fundamentals of Database Systems", 5thEdition, PEARSON Education.
- 3. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.
- 4. G. K. Gupta :"Database Management Systems", McGraw Hill.

Reference Books:

- 1. Peter Rob and Carlos Coronel, Database Systems Design, Implementation and Management^{II}, Thomson Learning, 5thEdition.
- 2. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.
- 3. G. K. Gupta, Database Management Systems, McGraw Hill, 2012

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105175/
- 2. https://swayam.gov.in/nd1_noc19_cs46/preview
- 3. https://www.classcentral.com/course/swayam-database-management-system-9914
- 4. https://www.mooc-list.com/tags/dbms

Other useful Resources:

- 1) <u>https://www.db-book.com/db6/slide-dir/index.html-</u> Korth, Slberchatz, Sudarshan, 6th Edition
- 2) http://www.tutorialspoint.com/sql/ (Weak students)
- 3) <u>https://www.w3schools.com/sql/default.asp (Average students)</u>
- 4) <u>http://www.mysqltutorial.org/</u> or https://www.tutorialspoint.com/postgresql/MySql
- 5) <u>https://academy.vertabelo.com/course/standard-sql-functions#</u> (Strong students)
- 6) www.postgresqltutorial.com
- 7) <u>https://www.freeprojectz.com/entity-relationship-diagram</u>
- 8) https://www.w3schools.com/sql/sql_any_all.asp
- 9) <u>https://www.geeksforgeeks.org/sql-all-and-any/</u>

Videos

- 1. ER Diagram Mapping- https://www.youtube.com/watch?v=WSNqcYqByFk(NPTEL)
- 2. Functional dependency and Normal Form https://www.youtube.com/watch?v=YD8dhOmuVnY(NPTEL
- 3. SQL Joins Tutorial for Beginners Inner Join, Left Join, Right Join, Full Outer Join: <u>https://www.youtube.com/watch?v=2HVMiPPuPIM</u> (Youtube Video)
- 1. Students should focus on following points to Learn SQL online
- Basic SQL commands to manipulate data stored in relational databases
- The most commonly used SQL commands to query a table in a database
- Using SQL to perform calculations during a query
- Querying multiple tables using joins
- Explore more about Triggers and functions and procedures
