Fr. Conceicao Rodrigues College of Engineering

Father Agnel Ashram, Bandstand, Bandra-West, Mumbai-50

Department of Computer Engineering

S.E. (Computer) (semester IV)

(2020-2021)

Course Outcomes & Assessment Plan

Subject: Skill Base Lab Course: Python Programming (CSL 405)

Credits-2

Syllabus:

Module 1 : Python Basics

Data types in python, Operators in python, Input and Output, Control statement, Arrays in python, String and Character in python, Functions, List and Tuples, Dictionaries Exception, Introduction to OOP, Classes, Objects, Interfaces, Inheritance

Module 2: Advanced Python

Files in Python, Directories, Building Modules, Packages, Text Processing, Regular expression in python.

Module 3 : Data structure in Python

Link List, Stack, Queues, Dequeues

Module 4: Python Integration Primer

Graphical User interface, Networking in Python, Python database connectivity, Introduction to Django

Module 5 : MultiThreading

Thread and Process, Starting a thread, Threading module, Synchronizing threads, Multithreaded Priority Queue

Module 6: Numpy and Pandas

Creating NumPy arrays, Indexing and slicing in NumPy, creating multidimensional arrays, NumPy Data types, Array Attribute, Indexing and Slicing, Creating array views copies, Manipulating array shapes I/O. Basics of Pandas, Using multilevel series, Series and Data Frames, Grouping, aggregating, Merge DataFrames.

Textbooks:

- 1 Dr. R. Nageswara Rao, "Core Python Programming", DreamtechPress
- 2 Beginning Python: Using Python 2.6 and Python 3.1. James Payne, Wrox Publication
- 3 Anurag Gupta, G. P. Biswas, "Python Programming", McGraw-Hill
- 4 E Balagurusamy, "Introduction to computing and problem-solving using python", McGrawHill Education

References:

- 1 Learn Python the Hard Way, 3rd Edition, Zed Shaw's Hard WaySeries
- 2 Laura Cassell, Alan Gauld, "Python Projects", Wrox Publication

Course Objectives:

- 1 Basics of Python programming
- 2 Decision Making, Data structure and Functions in Python
- 3 Object Oriented Programming using Python
- 4 Web framework for developing

Course Outcomes:

Upon completion of this course students will be able to:

Upon completion of this course students will be able to:

- **CSL405.1:** Demonstrate basic concepts of python such as control statements, basic data structures, functions and oops in python. (Comprehension)
- **CSL405.2:** Explore file handling and text processing in python. (Comprehension)
- CSL405.3: Develop program for data structure using built in functions in python. (Apply)
- **CSL405.4:** Develop python based web application using Django framework and networking concepts. (Apply)
- **CSL405.5:** Perform data analysis using Numpy and Pandas libraries. (Apply, Analyze)
- CSL 405.6: Develop real world application using frameworks/libraries in python. (B3: Apply,Analyze)

Course outcomes Target:

CSL405.1 : 2.5 CSL405.2 : 2.5 CSL405.3 : 2.5 CSL405.4 : 2.5 CSL405.5 : 2.5 CSL405.6 : 2.5

Mapping of CO and PO/PSO:

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	(Eng	(Ana	(Des	(inv	(tool	(eng	(Env	(Eth)	(ind/T	(comm.	(PM)	(life		
	g)	ign)	estig	s)	gsoc)		eam))		long)		
	kno			atio		i)								
	w)			n)										
CSL405.1	3	1	1		2								3	3
CSL405.2	3	1	1		2								3	3
CSL405.3	3	2	1		2								3	3
CSL405.4	3	2	3		2								3	3
CSL405.5	3	3	3		2								3	3
CSL405.6	3	3	3		3				3	2	2	2	3	3
TOTAL	18	12	12		13				3	2	2	2	18	18
Course TO PO	3	2	2		2.16				3	2	2	2	3	3

CO- Assessment Tools:

	Direct Methods				Indirect Methods
	Laboratory	Quiz	Assignment	Mini Project	Course Exit Survey
CSL405.1	40% (Lab 1,2)	20% Quiz(1)	20% Assignment1	20%	100%
CSL405.2	40% (Lab 3,5)	20% Quiz(2)	20% Assignment1	20%	100%
CSL405.3	40% (Lab 4)	20% Quiz(3)	20% Assignment1	20%	100%
CSL405.4	40% Lab(6,7,8,9)	20% Quiz(4)	20% Assignment2	20%	100%
CSL405.5	40% (Lab 10,11)	20% Quiz(5)	20% Assignment2	20%	100%
CSL405.6	30% (All labs)			70%	100%

Content beyond Syllabus:

Implementation Machine Learning Algorithms using Python. Data visualization suing Python.

Action Plan: Expert lecture to demonstrate implementation of Machine Learning Algorithms and Data Visualization using advanced Tools such as Google Colab or kaggle.

List of Experiments:

Exp No.	Торіс	Title	со
1	Basics of	Numbers (Any one)	CSL405.1
	Python	 a. To compute prime factors of an integer b. To Find all Numbers in a Range which are Perfect Squares and Sum of all Digits in the Number is Less than 10 	
		Strings (Any one)	
		 a. To Count the Occurrences of Each Word in a Given String Sentence. b. To find duplicate characters in a given string, and remove it. 	
		List (Any one)	
		a. To Remove the Duplicates from a List.b. To Read a List of Words and Return the Length of the Longest One	
		Arrays (Any one)	
		 c. Write a Python program to find a pair with highest product from a given array of integers. d. Perform a right circular shift on elements of an array as per shifts montioned by user 	
		Functions (Any three)	
		Write python scripts using functions (implement any two functions)	
		 a. To generate and print a dictionary that contains a number (between 1 and n) in the form (x, x*x). b. To merge two dict, c. To sort a dictionary by key. 	
		 d. To print all unique values in a dictionary. e. To find the highest 3 values in a dictionary. f. To Count the Frequency of Words Appearing in a 	
	Duthon	String Using a Dictionary.	
2	OOPM	of the two numbers) from a given array whose sum equals a specific target number.	CSL405.1
		Input: numbers = [10,20,10,40,50,60,70], target=50 Output: 3, 4	

2. Write a Python class to get all possible <u>unique</u> subsets	l
from a set of distinct integers.	1
Input : [4, 5, 6]	1
Output : [[], [6], [5], [5, 6], [4], [4, 6], [4, 5], [4, 5, 6]]	
Implement any Two out of the following three	
3. Exception handling: An interactive calculator: Program reads an expression as input and has to calculate the value of expression. The program throws an exception if the given expression is not in expected format.	
Example: Assumption, the expression uses operators that are binary (a+b),	
Valid Input: 3+2, Output: 5	l
Input: 3+2+4, Output: Appropriate message	1
4. Thread: Create two threads to check if a number if prime. First thread starts the check from 2 to mid of search and second thread starts search from mid +1 till number-1.	
5. Inheritance: Using the Account class as a base class, write two derived classes called SavingsAccount and CurrentAccount. A SavingsAccount object, in addition to the attributes of an Account object, should have an <u>interest</u> <u>variable</u> and a method which <u>adds interest</u> to the account. A CurrentAccount object, in addition to the attributes of an Account object, should have an <u>overdraft limit</u> variable. Ensure that you have overridden methods of the Account class as necessary in both derived classes.	
Now create a <u>Bank class</u> , an object of which contains an array of Account objects. Accounts in the array could be instances of the Account class, the SavingsAccount class, or the CurrentAccount class. Create some test accounts (some of each type).	
Write an update method in the bank class. It iterates through each account, updating it in the following ways: Savings accounts get interest added (via the method you	

		already wrote); CurrentAccounts get a letter sent if they	
		are in overdraft.	
3	Python Files and Directories	 Write a python program which will count the spaces, tabs, and lines in any given text file. Check if the file exists. If file does not 	CSL405.2
		 The file cities_and_times.txt contains city names and times. Each line contains the name of the city, followed by the name of the day ("Sun") and the time in the form hh:mm. Read in the file and create an alphabetically ordered list of the form 	
		[('Amsterdam', 'Sun', (8, 52)), ('Anchorage', 'Sat', (23, 52)), ('Ankara', 'Sun', (10, 52)), ('Athens', 'Sun', (9, 52)), ('Atlanta', 'Sun', (2, 52)), ('Auckland', 'Sun', (20, 52)), ('Barcelona', 'Sun', (8, 52)), ('Beirut', 'Sun', (9, 52)),	
4	Python Data structures	 Write a program to sort a queue in python without using extra space Write a python program to Implement shopping cart using linked-list. The user should be able to add item, remove item, display all the items and calculate total amount of the cart. Each Item details contains (Item name, quantity, price) 	CSL405.3
5	Text	Program to demonstrate Text processing concepts using	CSL405.2
	Processing	nltk /re libraries	
6	Networking	(Perform Any 2)	CSL405.4
		1. WAP to copy a file from client to server using tcp	
		socket	
		2. WAP for sending an email	
		3. WAP to develop chat application	
		4. WAP to build Echo Server	
7	GUI	Creating GUI with python containing widgets such as	CSL405.4
		labels, textbox, radio, checkboxes and custom dialog boxes.	
8	Database	Program to demonstrate CRUD (create, read, update and	CSL405.4
	programming	delete) operations on database (SQLite/ MySQL) using	
		python.	

9	Web	Design the sample web page using Django framework for	CSL405.4
	application	the web site.	
	using Django		
10	Numpy	Program to demonstrate use of NumPy: Array objects	CSL405.5
11	Pandas	Program to demonstrate Data Series and Data Frames	CSL405.5
		using Pandas.	
12	Mini Project	Select a problem statement addressing the real – world	Maps to all
		problem, analyze the problem and develop solution for the	Cos
		same using Python framework/Libraries.	

Tools used for Experiments: Python IDLE, any python editor like Spyder, Jupyter or Picharm, Kaggle.

Rubrics for Experiments and Programming Assignment Grading:

Sr.	Performance	Below	Average	Good	Excellent	Marks
No	Indicator	average				
1	On time	-	Submitted after	Early or on time		
	Submission		deadline (1)	submission(2)		
	(2)					
2	Test cases	Incorrect	Expected output	Expected output	Expected output is	
	and output	output	is verified only for	is Verified for all	obtained for all test	
	(4)	(1)	few test cases (2)	test cases but is	cases. Presentable	
				not presentable	and easy to follow	
				(3)	(4)	
3	Coding	The code is	The code is	The code is	-	
	efficiency (2)	not	structured but	structured and		
		structured at	not efficient (1)	efficient. (2)		
		all.(0)				
4	Knowledge(2)	Basic	Understood the	Could explain	Could relate the	
		concepts not	basic concepts (1)	the concept with	theory with real	
		clear		suitable example	world	
		(0)		(1.5)	application(2)	
Tota	l Marks					

Mini Project Assessment:

Students to work in a group minimum two and maximum three students for a Mini project. Students have to select the problem statement addressing the real-world problems preferably keeping in mind **societal, health an environmental** issue. Analyze the problem and develop solution for the same by applying the concept learnt in theory and laboratory. The students' progress on their project will be discussed in the practical session. Finally, at the time of submission the students will present the demonstration of their project. At the end, well documented Project report is to be submitted to department.

Mini-Project Schedule:

Sr. No	Торіс	submission
1	Abstract Submission	3rd week of Feb 2021
2	Project Approval	4 th week of Feb 2021
3	First Review	10 th – 12 th April 2021
4	Final Demonstration	2 nd week of May
5	Report Submission	2 nd week of May

Rubrics for assessment of Mini project

Indicator	Very Poor	Poor	Average	Good	Excellent
Timeline - Maintains project deadline (2)	Project not done (0)	More than two session late (0.5)	Two sessions late (1)	One session late (1.5)	Early or on time (2)
Complexity of the chosen problem (4)	N/A	Simple (1)	Moderate (2)	Complex(3)	Too Complex(4)
Completeness (6)	N/A	< 40% complete (1)	~ 60% complete (2)	~ 80% complete (3-4)	100% complete (5-6)
Project specific Technical Features (4)	N/A	60-65% of features (1)	65-70%of features (2)	70-80% of features(3)	Most of the features taught(4)
Project Report (4)	N/A	Poor organization, Major content missing, Not as per guidelines.	Good organization , Few of the project aspects missing (2)	Well organized, Major aspects of the project covered, as per guide lines (3)	Very well organized , covering major and minute details of the project , as per guidelines (4)

FR. Conceicao Rodrigues College Of Engineering Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering S.E. (Computer) (semester IV)

(2020-2021)

Lesson Plan: PYTHON PROGRAMMING

Semester IV

Year: 2020-21

Modes of Content Delivery:

I	Class Room Teaching	V	Self Learning Online Resources	lx	Industry Visit
li	Tutorial	Vi	Slides	Х	Group Discussion
lii	Remedial Coaching	vii	Simulations/Demonstrations	Xi	Seminar
lv	Lab Experiment	viii	Expert Lecture	Xii	Case Study

Pattern: two week lectures, 1 week Theory

Lecture	Topics to be covered	Planned Dates	Actual Dates	Content Delivery						
No				Method/Learning						
				Activities						
	Module 1: Python Basics									
1	Data types in python,	27-01-2021		Online Teaching,						
	Operators in python, Input and Output			Slides, Live Demo						
2	Control statement, Arrays in	02-02-2021		Online Teaching,						
	python , String and Character			Slides, Live Demo						
	in python									
3	Functions, List and Tuples,	04-02-2021		Online Teaching,						
	Dictionaries			Slides, Live Demo						
4	Exception, introduction to	09-02-2021		Online Teaching,						
	OOP, Classes, Objects			Slides, Live Demo						
5	Interfaces, Inheritance	11-02-2021		Online Teaching,						
				Slides, Live Demo						
		-	-							
6	Files in Python, Directories,	16-02		Online Teaching,						
				Slides, Live Demo						
7	Building Modules, Packages,	18-02		Online Teaching,						
		(22-02 To 26-02 PR)		Slides, Live Demo						
8	Text Processing, Regular	2-03-2021		Online Teaching,						
	expression in python			Slides, Live Demo						
	1	I	1	1						
9	Stack	4-03-2021		Online Teaching,						
				Slides, Live Demo						
10	Queues	9-03-2021		Online Teaching,						
				Slides, Live Demo						

11	Linked list, Dequeue	16-03-2021		Online Teaching,				
				Slides, Live Demo				
Module 4: Python Integration Primer								
12	Graphical User interface	18-03-2021		Online Teaching,				
		(22-02 To 26-03 PR)		Slides, Live Demo				
13	Networking in Python	30-03-2021		Online Teaching,				
				Slides, Live Demo				
14	Python database connectivity	01-04-2021		Online Teaching,				
				Slides, Live Demo				
15	Introduction to Django	06-04-2021		Online Teaching,				
				Slides, Live Demo				
	Module	e 5: MultiThreadin	g					
16	Thread and Process	08-04-2021		Online Teaching,				
				Slides, Live Demo				
17	Synchronizing threads	20-04-2021		Online Teaching,				
				Slides, Live Demo				
18	Starting a thread, Threading	22-04-2021		Online Teaching,				
	module			Slides, Live Demo				
19	Multithreaded Priority Queue	27-04-2021		Online Teaching,				
				Slides, Live Demo				
	Module 6	: Numpy and Par	ndas					
20	Creating NumPy arrays,	29-04-2021		Online Teaching,				
	Indexing and slicing in			Slides, Live Demo				
24	NumPy.	44.05.2024		O d'a s Ta salata s				
21	creating multidimensional	11-05-2021		Online Teaching,				
	Array Attribute			Slides, Live Demo				
22	Indexing and Slicing Creating	12 05 2021		Onling Tooching				
22	array views conies	13-03-2021		Slidos Livo Domo				
	Manipulating array shapes I/O			Silues, Live Dellio				
23	Basics of Pandas.	17-05-2021		Online Teaching.				
	,	1, 00 2021		Slides Live Demo				
24	Using multilevel series. Series	EXTRA		Online Teaching				
- ·	and Data Frames,	Lecture		Slides. Live Demo				
25	Grouping, aggregating, Merge	EXTRA		Online Teaching				
	Data Frames	Lecture		Slides, Live Demo				

Online Resources used:

- 1. Introduction to Python W3 schools : <u>https://www.w3schools.com/python/python_intro.asp</u>
- 2. Python Tutorial Tutorial points : https://www.tutorialspoint.com/python/index.htm
- 3. Learn Python Programming Programmiz : https://www.programiz.com/python-programming
- 4. How to learn Python in 21 days Geeks for Geeks : <u>https://www.geeksforgeeks.org/how-to-learn-python-in-21-days/</u>
- 5. <u>The Python Tutorial :</u> <u>https://docs.python.org/3/tutorial/</u>

Videos:

- 1. Installation of Anaconda: <u>https://www.jcchouinard.com/install-python-with-anaconda-on-windows/</u>
- 2. Joy of Computing Using Python (NPTEL) : https://nptel.ac.in/courses/106/106/106106182/
- 3. TKinter for GUI: <u>https://www.youtube.com/watch?v=VMP1oQOxfM0</u>
- 4. Python Pandas Tutorial: Data Analysis with Python; https://www.youtube.com/watch?v=UB3DE5Bgfx4
