FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Computer Engineering
(2020-2021)

Course Outcomes & Assessment Plan

CLASS-SEM: T.E.- VI

COURSE NAME: Data warehouse and mining (DWM) TOTAL CREDITS: 4+1=5

Course Code	Course Name	Credits
CSC603	Data Warehousing and Mining	4

Lab Code	Lab Name	Credits
CSL603	Data Warehousing and Mining Lab	1

Professor: Dr. Sujata P. Deshmukh

PAC Members:	Head Of Department:

Department of Computer Engineering Academic Term: Jan-May 2021(2020-2021) T.E. (Computer) (semester VI)

Course Outcomes & Assessment Plan

Syllabus:

Module No.	Topics	Hrs
1.0	Introduction to Data Warehouse and Dimensional modelling: Introduction to Strategic Information, Need for Strategic Information, Features of Data Warehouse, Data warehouses versus Data Marts, Top-down versus Bottom-up approach. Data warehouse architecture, metadata, E-R modelling versus Dimensional Modelling, Information Package Diagram, STAR schema, STAR schema keys, Snowflake Schema, Fact Constellation Schema, Factless Fact tables, Update to the dimension tables, Aggregate fact tables.	8
2.0	ETL Process and OLAP: Major steps in ETL process, Data extraction: Techniques, Data transformation: Basic tasks, Major transformation types, Data Loading: Applying Data, OLTP Vs OLAP, OLAP definition, Dimensional Analysis, Hypercubes, OLAP operations: Drill down, Roll up, Slice, Dice and Rotation, OLAP models: MOLAP, ROLAP.	8
3.0	Introduction to Data Mining, Data Exploration and Preprocessing: Data Mining Task Primitives, Architecture, Techniques, KDD process, Issues in Data Mining, Applications of Data Mining, Data Exploration: Types of Attributes, Statistical Description of Data, Data Visualization, Data Preprocessing: Cleaning, Integration, Reduction: Attribute subset selection, Histograms, Clustering and Sampling, Data Transformation & Data Discretization: Normalization, Binning, Concept hierarchy generation, Concept Description: Attribute oriented Induction for Data Characterization.	10

6.0	
5.0	
4.0	

Text Books:

- 1. PaulrajPonniah, —Data Warehousing: Fundamentals for IT Professionals II, Wiley India.
- 2. Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3rd edition.
- 3. ReemaTheraja —Data warehousing, Oxford University Press.
- 4. M.H. Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education.

Reference Books:

- 1. Ian H. Witten, Eibe Frank and Mark A. Hall "Data Mining", 3rd Edition Morgan kaufmann publisher.
- 2. Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Introduction to Data Mining", Person Publisher.
- 3. R. Chattamvelli, "Data Mining Methods" 2nd Edition NarosaPublishing House.

Lab Code	Lab Code Lab Name	
CSL603	Data Warehousing and Mining Lab	1

Suggested List of Experiments:

Sr. No.	Title of Experiments
1	Build Data Warehouse/Data Mart for a given problem statement i) Identifying the source tables and populating sample data ii) Design dimensional data model i.e. Star schema, Snowflake schema and Fact Constellation schema (if applicable)
2	To perform various OLAP operations such as slice, dice, drilldown, rollup, pivot
3	Implementation of Classification algorithm(Decision Tree/ Bayesian)
4	Implementation of Linear Regression.
5	Implementation of Clustering algorithm (K-means/Agglomerative).
6	Implementation of Association Rule Mining algorithm(Apriori).

7	Perform data Pre-processing task and Demonstrate performing Classification, Clustering, Association algorithm on data sets using data mining tool (WEKA,R tool, XL Miner, etc.)
8	Implementation of page rank algorithm.
9	Implementation of HITS algorithm.
10	Implementation of Spatial Clustering Algorithm- CLARANS Extensions

Term Work:

Laboratory work will be based on above syllabus with minimum 08 experiments to be incorporated.

Experiments	(15) Marks
Assignment	(05) Marks
Attendance (Theory + Practical)	(05) Marks
Total	(25) Marks

Course Objectives (optional):

- 1. To identify the scope and essentiality of Data Warehousing and Mining.
- 2. To analyze data, choose relevant models and algorithms for respective applications.
- 3. To study spatial and web data mining.
- 4. To develop research interest towards advances in data mining.

Course Outcomes: At the end of this course students should be able to

Co-code	СО	Blooms Taxonomy	Explanation		
CSC603.1	Understand Data Warehouse fundamentals, Data Mining Principles	Comprehension (explains, gives examples, shows relationship of)	Understand the architecture of variant Warehouse systems.		
CSC603.2	Design data warehouse with dimensional modeling and apply OLAP operations	Application (applies, solves , uses, demonstrates)	Facilitating representations for data models for data warehouse		
CSC603.3	Identify appropriate techniques / algorithms to solve real world problems of data mining and data exploration.	Knowledge (defines, describes, recalls, labels, lists, matches, names)	Describe & Inference based on Classification process		
CSC603.4	Compare and evaluate different data mining techniques like classification, prediction, clustering and association rule mining	Application (applies, solves , uses, demonstrates) Synthesis(combines, compiles,composes, creates, devises, designs,diverse elements)	Analyzing Clustering as problem solving methods Application by integrating principles of Association Rules& implementation		
CSC603.5	Describe complex data types wrt to special and web mining	Comprehension (explains, gives examples, shows relationship of)	Understanding architecture of variant DM systems		
CSC603.6	Benefit the user experiences towards research and innovation.	Create(Adapt, Build, Change, Choose)	Apply DM algorithms and concepts to solve real world problems to find pattern/knowledge or proposing alternative solutions.		

Lab Outcome: At the end of this course students should be able to

Co-code	CO
CSL603.1	1. Design data warehouse and perform various OLAP operations.
CSL603.2	2. Implement classification, prediction, clustering and association rule mining
	algorithms.
CSL603.3	3. Demonstrate classifications, prediction, clustering and association rule mining
	algorithms on a given set of data sample using data mining tools.
CSL603.4	4. Implement spatial and web mining algorithms.

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	(Eng	(Ana)	(De	(inve	(tools)	(engg	(Env)	(Eth)	(ind	(comm.)	(PM)	(life
	g Kno		sign)	stiga)		Soci)			Team)			Long)
	w)											
CSC603.	3	_										
1												
CSC603.	3	3	3		2				3	3	3	3
2												
CSC603.	3	3	3		3				3	3		3
3												
CSC603.	3	3	3		3				3	3		3
4												
CSC603.	3	3	3		3				3	3		3
5												
CSC603.	3	3	3						3	3		3
6												
Course	3	2.5	2.5		1.33				2.8	2.8		2.8
To PO												

СО	PSO1	PSO2
CSC603.1	3	
CSC603.2	3	3
CSC603.3	3	3
CSC603.4	3	3
CSC603.5	3	3
CSC603.6	3	3
Course to PSO	3	2.8

Justification:

CO1: Understand Data Warehouse fundamentals, Data Mining Principles

PO1: Students use fundamental knowledge of data processing and DBMS to learn DWM concepts

CO2: Design data warehouse with dimensional modeling and apply OLAP operations

PO1: Students should have knowledge to use symbols of to draw Schema diagrams and to choose appropriate dimension to design the schema for chosen mini project

PO2: Students analyze the Schema diagrams and choose appropriate dimension and facts to design the dimension modeling for chosen mini projector given problem. Also verifies its correctness.

PO3: Students design DWH using dimension modeling schemas.

PO5: Students use DBMS tool (pgadmin-postgresql) or languages to design and implement a dimensional modeling given to them individually and in group.

PO9: Students analyze and design dimension modeling by discussing in group

PO10: Students communicate effectively on MINI project aspects by writing reports, and giving PPT

PO11: Students demonstrate the knowledge and concept applied to MINI project as a team leader or group member.

PO12: Students develop the ability to handle and to think independently using the concepts of dimension modeling diagram to learn futuristic subjects.

CO3: Identify appropriate data mining algorithms to solve real world problems.

PO1: Students use fundamental knowledge of mathematics, science and engineering principles to identify appropriate data mining algorithms.

PO2: Students have to analyze different algorithm for a given query and selected mini projects.

PO3: Students apply different algorithms for a given query and selected mini projects to analyse the knowledge .

PO5: Students use Weka tool or languages Python/Java to implement a data mining algorithms given to them individually and in group.

PO9: Students discuss in group for getting solution to the selected mini project.

PO10: Students communicate effectively on MINI project aspects by writing reports, and giving PPT

PO11: Students demonstrate the knowledge and concept applied to MINI project as a team leader or group member.

PO12: students develop the ability to handle and to think independently using the concepts of DWM to learn futuristic subjects like BDA.

CO4: Compare and evaluate different data mining techniques like classification, prediction, clustering and association rule mining

PO1: Students use fundamental knowledge of mathematics, science and engineering principles, to understand evaluate different data mining techniques like classification, prediction, clustering and association rule mining.

PO2: students have to analyze different data mining techniques (classification, prediction, clustering and association rule mining) and special mining functions for a given problem and selected mini projects.

PO5: Students use DM tool (Weka) or languages to write, implement, compare algorithm given to them individually and in group.

PO9: students discuss in group for getting solution to the selected mini project.

PO10: Students communicate effectively on MINI project aspects by writing reports, and giving PPT

PO11: students demonstrate the knowledge and concept applied to MINI project as a team leader or group member.

PO12: students develop the ability to handle and to think independently using the concepts of SQL to learn futuristic subjects.

CO5: Describe complex data types wrt to special and web mining

PO1: Students use fundamental knowledge of mathematics, science and engineering principles to describe complex data types wrt to special and web mining.

PO2: Students analyzing the complex data types wrt to special and web mining.

PO5: Students use Weka tool or languages Python/Java to describe complex data types given to them individually and in group.

PO9: Students discuss in group for getting solution to the selected mini project.

PO10: Students communicate effectively on MINI project aspects by writing reports, and giving PPT

PO11: students demonstrate the knowledge and concept applied to MINI project as a team leader or group member.

PO12: students develop the ability to handle and to think independently using the concepts of Normalization to learn futuristic subjects.

CO6: Benefit the user experiences towards research and innovation.

PO1: Students use fundamental knowledge of mathematics, science and engineering principles to design DWH and to mine data using DM principles and algorithms

PO2: Students analyzing the data to to design DWH and to mine data using DM principles and algorithms

PO9: students discuss in group for getting solution to the selected mini project.

PO10: Students communicate effectively on MINI project aspects by writing reports, and giving PPT

PO11: students demonstrate the knowledge and concept applied to MINI project as a team leader or group member.

PO12: students develop the ability to handle and to think independently using the concepts of transaction to learn futuristic subjects.

Justification

PO1: All COs are mapped to PO1 because engineering graduates will be able to apply the knowledge of DWM fundamentals to solve complex engineering problems.

PO2: CSC603.2-CSC603.6, are mapped to PO2 because the students analyze a DW system.

PO3: CSC603.2-CSC603.6, are mapped to PO3 because the students design a DW system using dimensional Modeling.

PO5: CSC603.2-CSC603.6 is mapped to this PO5 because the students use the postgresql database software to design DWH and WEKA/rapid miner/ different languages to mine knowledge from data PO9: CSC603.2-CSC603.6, are mapped to this PO9 because the students work in a team to develop the mini project DWM system.

PO10: CSC603.2-CSC603.6, are mapped to this PO10 because Students communicate effectively on MINI project aspects by writing reports, and giving PPT

PO11: CSC603.2-CSC603.6, are mapped to this PO11 because students demonstrate the knowledge and concept applied to MINI project as a team leader or group member.

PO12: CSC603.2-CSC603.6, are mapped to this PO12 because students develop the ability to handle and to think independently using the concepts of dimension modeling and DM algorithms to learn futuristic subjects.

PSO1: All COs are mapped to PSO1 because the graduates will be able to apply fundamental knowledge of DWM to mine datasets for real world problems.

PSO2: CSC603.2-CSC603.5, are mapped to PSO2 because the students design and implement the mini project using the knowledge of database concepts of dimension modeling, DM algorithms.

CO Assessment Tools:

CSC603.1 Understand Data Warehouse fundamentals, Data Mining Principles

Direct Method Tools (dm)	Wt=80%		
Lab (lab)	0.1		
Assignment1(assign)	0.2		
Mini project	0.1		
UnitTest1(ut1)	0.2		
End Sem Marks(Theory) (uth)	0.2		
End Sem Marks(practical and oral) (utpra)	0.2		
Indirect Method Tools(idm)	Wt=20%		
Course Exit Survey (C03idm)			
CSC603.1 = 0.8* $CSC603.1dm + 0.2*$ $CSC603.1idm$			

<u>CSC603.2</u> Design data warehouse with dimensional modelling and apply OLAP operations

Direct Method Tools (dm)	Wt=80%
Lab (lab)	0.2
Assignment1(assign)	0.1
Mini project	0.1
UnitTest1(ut1)	0.2
End Sem Marks(Theory) (uth)	0.2
End Sem Marks(practical) (utpra)	0.2
Indirect Method Tools(idm)	Wt=20%
Course Exit Survey (C03idm)	
CSC603.2 = 0.8* $CSC603.2 dm + 0.2*$ $CSC603.2 dm + 0.2*$	C603.2idm

CSC603.3 Identify appropriate data mining algorithms to solve real world problems.

Direct Method Tools (dm)	Wt=80%		
Lab (lab)	0.2		
Assignment2 (assign)	0.1		
Mini project	0.1		
UnitTest1(ut1)	0.2		
End Sem Marks(Theory) (uth)	0.2		
End Sem Marks(practical) (utpra)	0.2		
Indirect Method Tools(idm)	Wt=20%		
Course Exit Survey (C03idm)			
CSC603.3 = 0.8* $CSC603.3$ dm + $0.2*$ $CSC603.3$ idm			

CSC603.4 Compare and evaluate different data mining techniques like classification, prediction, clustering and association rule mining

Direct Method Tools (dm)	Wt=80%		
Lab (lab)	0.4		
Assignment 2	0.1		
Mini project	0.2		
UnitTest1(ut1)	0.1		
End Sem Marks(Theory) (uth)	0.1		
End Sem Marks(practical) (utpra)	0.1		
Indirect Method Tools(idm)	Wt=20%		
Course Exit Survey (C03idm)			
CSC603.4 = 0.8* $CSC603.4dm + 0.2*$ $CSC603.4idm$			

CSC603.5 Describe complex data types wrt to special and web mining.

Direct Method Tools (dm)	Wt=80%		
Assignment3 (ASG3)	0.1		
Lab work	0.2		
Mini project	0.1		
UnitTest2(ut2)	0.2		
End Sem Marks(Theory) (uth)	0.2		
End Sem Marks(practical) (utpra)	0.2		
Indirect Method Tools(idm)	Wt=20%		
Course Exit Survey (C03idm)			
CSC603.5 = 0.8* CSC603.5dm + 0.2* CSC603.5idm			

CSC603.6 Benefit the user experiences towards research and innovation.

Direct Method Tools (dm)	Wt=80%			
Mini project	0.5			
Lab work	0.1			
End Sem Marks(Theory) (uth)	0.2			
End Sem Marks(practical) (utpra)	0.2			
Indirect Method Tools(idm)	Wt=20%			
Course Exit Survey (C03idm)				
CSC603.6 = 0.8* $CSC603.6dm + 0.2*$ $CSC603.6idm$				

Course Outcomes Target:

Upon completion of this course students will be able to:

CO- CODE	Course Outcomes	Blooms T.	Level	Target (18-19)	Achie ved (18- 19)	Target (19-20)	Achi eved (19- 20)	Targ et (20- 21)	Achie ved (20- 21)
CSC603.	Understand Data Warehouse fundamentals, Data Mining Principles	Comprehen sion	L1, L2	2.5	2.52	2.6	2.84	2.9	
CSC603.	Design data warehouse with dimensional modelling and apply OLAP operations	Design	L5	2.5	2.52	2.6	2.84	2.9	
CSC603.	Identify appropriate data mining algorithms to solve real world problems	Apply and Design	L4,L5	2.5	2.68	2.7	3	3	
CSC603.	Compare and evaluate different data mining techniques like classification, prediction, clustering and association rule mining	Analyze, Apply	L4, L3	2.5	2.84	2.85	3	3	
CSC603.	Describe complex data types wrt to special and web mining	Analyze, Apply	L4, L3	2.4	2.68	2.7	3	3	
CSC603.	Benefit the user experiences towards research and innovation.	Comprehen sion, apply	L1, L2, L4	2.4	2.68	2.7	3	3	

Content Beyond Syllabus:

1. Moving from data mining to Big data analytics- Limitations of data mining and characteristics of big data

Curriculum Gap:

Moving Distributed DBMS to DWM

Rubrics for the Lab Experiments:

Rubrics for Experiment Grading of Expt.

Expt1-2

Indicator	Excellent	Good	Average
Timeline (3)	submitted on time or early (3)	Submitted in same week (2)	Submitted in next week (1)
Understands the Problem(3)	Identifies special factors that influences the approach before starting the problem	Understands the problem	Understands enough to solve part of the problem or to get part of the solution
Applies Appropriate technique (schema Diagram/OLAP/data preprocessing) (4)	Explains how the techniques are appropriate in given problem (4)	Applies completely appropriate techniques in given problem (3)	Applies some appropriate techniques in given problem (2)
Timeline (3)	Understands the Problem(3)	Applies Appropriate Symbols (4)	Total (10)

Expt3-10

Indicator	Average	Good	Excellent
Timeline	Late submission (0)	01 (On Time)	02 (Before deadline)
• On time Completion & Submission (02)			,
 Completeness and neatness Complete all parts of schema diagram / OLAP / Algorithm (2) 	< 60% complete (0)	< 80% complete (1)	100% complete (2)
Implementation • Extent of coding (4)	< 60% complete (2)	< 80% complete (3)	100% complete (4)
KnowledgeIn depth knowledge of the post assignment questions(2)	Unable to answer 2 questions(0)	Unable to answer 1 question (1)	Able to answer 2 questions (2)
Completeness and neatness (2)	Implementation (4)	Timeline (2)	Knowledge (2)

Rubrics for Experiment Grading of Mini Project

Indicator	Poor	Average	Good	Excellent
Timeline(2)	More than two sessions late (0)	Two sessions late (0)	One session late (1)	Early or on time (2)
Identification and implementation of DM algorithms(3)	No (0)	< 60% complete (1)	< 80% complete (2)	100% complete (3)
Selection of problem for Mini Project and data set	Selection of problem for Mini Project and missing data set(0)	Selection of problem for Mini Project and data set (1)	Selection of problem for Mini Project and improper data set(3)	Selection of problem for Mini Project and proper data set(4)

Rubrics for the Assignments:

Assignments1

Indicator	Excellent	Good	Average
Timeline (3)	submitted on time or early (3)	Submitted in same week (2)	Submitted in next week (1)
Understands the Problem(3)	Identifies special factors that influences the approach before starting the problem	Understands the problem	Understands enough to solve part of the problem or to get part of the solution
Applies Appropriate technique (schema Diagram/OLAP/data preprocessing) (4)	Explains how the techniques are appropriate in given problem (4)	Applies completely appropriate techniques in given problem (3)	Applies some appropriate techniques in given problem (2)
Timeline (3)	Understands the Problem(3)	Applies Appropriate Symbols (4)	Total (10)

Assignments2 and 3

Indicator	Excellent	Good	Average
Timeline (2)	submitted on time or early (2)	Submitted in same week (1)	Submitted in next week (0)
Understands the DM algorithm (4)	Explains why procedures are appropriate DM algorithm (4)	Applies Appropriate DM algorithm (3)	Applies Appropriate DM algorithm <50% (2)
Applies Appropriate procedure (4)	Explains why procedures are appropriate for SQL(4)	Applies Appropriate SQL (3)	Applies some appropriate SQL (2)
Timeline (2)	Understands the Problem(4)	Applies Appropriate Procedures(4)	Total (10)

Assignments4

Indicator	Excellent	Good	Average
Timeline (3)	submitted on time or early (3)	Submitted in same week (2)	Submitted in next week (1)
Understands the Problem(3)	Identifies special factors that influences the approach before starting the problem(3)	Understands the problem (2)	Understands enough to solve part of the problem or to get part of the solution (1)
Describe complex data types (4)	Explains how the complex data types are appropriate in given problem (4)	Applies complex data types in given problem (3)	Applies some complex data types given problem (2)
Timeline (3)	Understands the Problem(3)	Applies Appropriate Symbols (4)	Total (10)

FR. Conceicao Rodrigues College Of Engineering Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Computer Engineering (2020-2021) **Lesson Plan**

CLASS-SEM: T.E.- VI Credits-4

SUBJECT: Data warehouse and mining (DWM) **SUBJECT CODE- CSC603**

Professor: Dr. Sujata P. Deshmukh

Modes of Content Delivery:

i	Google classroom-online-	v	Self Learning Online	Ix	Industry Visit
	meet Teaching		Resources		
ii	Tutorial	vi	Slides, PPT	X	Group
					Discussion
iii	Remedial Coaching	vii	Simulations/Demonstrations	xi	Seminar
iv	Lab Experiment	viii	Expert Lecture	xii	Case Study

Lect. No.	Chap. no	Portion to be covered	Planned date	Actual date	Content Delivery Method/Learni ng Activities
1	1.1	Prerequisite, CO Discussion Moving Distributed DBMS to DWM-The Need for Data Warehousing; Increasing Demand for Strategic Information; Inability of Past Decision Support System; Operational V/s Decisional Support System;	25/01/2021		Google classroom- online-meet Teaching, PPT
2	1.2	Data Warehouse Definition; Benefits of Data Warehousing; Features of a Data Warehouse; The Information Flow Mechanism; Architecture of DW, Metadata	27/01/2021		Google classroom- online-meet Teaching, PPT
3	1.3	DWH Vs data marts, EDWH	28/01/2021		Google classroom- online-meet Teaching, PPT
4	1.4	Different approaches and layered Architecture	29/01/2021		Google classroom- online-meet Teaching, PPT

5	1.5	Data Warehouse Modeling Vs Operational Database Modeling; Dimensional Model Vs ER Model; Features of a Good Dimensional Model; The Star Schema; How Does a Query Execute?	01/02/21	Google classroom- online-meet Teaching, Lab Experiment
6	1.6	Keys in DW, Snowflake Schema, Fact Constellation Schema or Families of Star.	03/02/21	Google classroom- online-meet Teaching, Lab Experiment
7	1.7	The Factless Fact, Table; Aggregate Table, Information Package Diagram	04/02/21	Google classroom- online-meet Teaching, Lab Experiment
8	1.8	Updates To Dimension Tables: Slowly Changing Dimensions, Type 1 Changes, Type 2 Changes, Type 3 Changes, Large Dimension Tables, Rapidly Changing or Large Slowly Changing Dimensions, Junk Dimensions	05/02/21	Google classroom- online-meet Teaching, Lab Experiment
9	2.1	Challenges in ETL Functions; Data Extraction; Identification of Data Sources, Issues in Data Cleansing.	08/02/21	Google classroom- online-meet Teaching, PPT
10	2.2	Extracting Data: Immediate Data Extraction, Deferred Data Extraction	10/02/21	Google classroom- online-meet Teaching
11	2.3	Data Transformation: Tasks Involved in Data Transformation,	11/02/21	Google classroom- online-meet Teaching
12	2.4	Data Loading: Techniques of Data Loading, Loading the Fact Tables and Dimension Tables Data Quality;	12/02/21	Google classroom- online-meet Teaching

13	2.5	Need for Online Analytical Processing; OLTP V/s OLAP; OLAP and Multidimensional Analysis	15/02/21	Google classroom- online-meet Teaching, PPT, Lab Experiment
14	2.6	Hypercubes; OLAP Operations in Multidimensional Data Model;	17/02/21	Google classroom- online-meet Teaching, Lab Experiment, PPT
15	2.7	OLAP Models: MOLAP, ROLAP, HOLAP, DOLAP, Definition of Schema using DMQL, Examples on OLAP	18/02/21	Google classroom- online-meet Teaching, Lab Experiment, PPT
16	2.8	Problems based on OLAP Operations	01/03/21	Google classroom- online-meet Teaching, Lab Experiment
17	3.1	What is Data Mining; Knowledge Discovery in Database (KDD)	03/03/21	Google classroom- online-meet Teaching, Lab Experiment
18	3.2	What can be Data to be Mined, Related Concept to Data Mining,	04/03/21	Google classroom- online-meet Teaching, Lab Experiment
20	3.3	Data Mining Technique, Application and Issues in Data Mining	05/03/21	Google classroom- online-meet Teaching, Lab Experiment, PPT
20	3.4	Comparison of DM with BDA	05/03/21	Google classroom- online-meet Teaching, self learning online resources
21	3.5	Data exploration: Types of Attributes; Statistical Description of Data;	15/03/21	Google classroom- online-meet Teaching, Lab Experiment

22	3.6	Data Visualization; Measuring similarity and dissimilarity	17/03/21	Google classroom- online-meet Teaching, Lab Experiment
23	3.7	Why Preprocessing? Data Cleaning; Data Integration; Data Reduction: Attribute subset selection, Histograms, Clustering and Sampling;	18/03/21	Google classroom- online-meet Teaching, self learning online resources
24	3.8	Data Transformation & Data Discretization: Normalization	19/03/21	Google classroom- online-meet Teaching, self learning online resources
25	3.9	Binning, Histogram Analysis and Concept hierarchy generation and description	31/03/21	Google classroom- online-meet Teaching
26	4.1	Basic Concepts; Decision Tree Induction: Attribute Selection Measures, Tree pruning.	01/04/21	Google classroom- online-meet Teaching
27	4.2	Bayesian Classification: Naïve Bayes' Classifier.	02/04/21	Google classroom- online-meet Teaching
28	4.3	Prediction: Structure of regression models; Simple linear regression, Multiple linear regressions.	05/04/21	Google classroom- online-meet Teaching
29	4.4	Model Evaluation & Selection: Accuracy and Error measures, Holdout, Random Sampling, Cross Validation	07/04/21	Open Discussion with Students
30	4.5	Problems based on classification	08/04/21	Google classroom- online-meet Teaching, Lab Experiment
31	4.6	What is clustering? Types of data, Partitioning Methods (K-Means)	09/04/21	Google classroom- online-meet Teaching
32	4.7	Partitioning Methods (K-Means, KMedoids)	12/04/21	Google classroom- online-meet

				Teaching
33	4.8	Hierarchical Methods(Agglomerative, Divisive, BRICH),	14/04/21	Google classroom- online-meet Teaching
34	4.9	Hierarchical Methods(Agglomerative, Divisive, BRICH),	15/04/21	Google classroom- online-meet Teaching
35	4.10	Problems based on clustering	16/04/21	Google classroom- online-meet Teaching
36	5.1	Market Basket Analysis, Frequent Itemsets, Closed Itemsets, and Association Rules;	19/04/21	Google classroom- online-meet Teaching
37	5.2	Frequent Pattern Mining, Efficient and Scalable Frequent Itemset Mining Methods,	21/04/21	Google classroom- online-meet Teaching, Lab Experiment
39	5.3	The Apriori Algorithm for finding Frequent Itemsets Using Candidate Generation	22/04/21	Google classroom- online-meet Teaching, Lab Experiment
40	5.4	Generating Association Rules from Frequent Itemsets, Improving the Efficiency of Apriori,	23/04/21	Google classroom- online-meet Teaching
41	5.5	A pattern growth approach for mining Frequent Itemsets; Mining Frequent itemsets using vertical data formats; Mining closed and maximal patterns;	26/04/21	Google classroom- online-meet Teaching
42	5.6	Introduction to Mining Multilevel Association Rules and Multidimensional Association Rules;	28/04/21	Google classroom- online-meet Teaching
43	5.7	From Association Mining to Correlation Analysis, Pattern Evaluation Measures;	29/04/21	Google classroom- online-meet Teaching
44	5.8	Introduction to Constraint-Based Association Mining., Examples	30/04/21	Google classroom- online-meet Teaching

45	6.1	Special vs classical data mining, data structures,	03/05/21	Google classroom- online-meet Teaching
46	6.2	Mining co location and special patterns, Special clustering techniques	05/05/21	Google classroom- online-meet Teaching
47	6.3	Web Content Mining, Web structure Mining	06/05/21	PPT
48	6.4	Content beyond syllabus-Moving from data mining to BDA Analytics	07/05/21	Test followed discussion
Rem	edial			
49	r.1	DWH revision and discussion	10/05/21	PPT, discussion
50	r.2	Data mining revision and discussion	11/05/21	PPT, Assignment or UP solution
51	r.3	Different algorithms discussion	12/05/21	PPT, Assignment or UP solution
52	r.4	Special and web mining	13/05/21	PPT

Online Resources:

- 1) https://www.tutorialspoint.com/dwh/ (weak students)
- 2) https://www.coursera.org/learn/dwdesign
- 3 https://sites.google.com/site/dataminingandbisem6/home/materials/notes
- 4) https://www.postgresql.org/docs/9.5/cube.html, grouping sets, rollup
- 5) https://www.postgresql.org/docs/9.5/cube.html (Strong students)
- 6) https://www.kaggle.com/kernals (Strong students)

Online Resources for datasets:

- 1. https://storm.cis.fordham.edu/~gweiss/data-mining/datasets.html- Sample Weka Data Sets
- 2. https://storm.cis.fordham.edu/~gweiss/data-mining/weka-data/contact-lenses.arff
- 3. http://repository.seasr.org/Datasets/UCI/arff/
- 4. https://www.kaggle.com/datasets
- 5. Stanford Large Network Dataset Collection-https://snap.stanford.edu/data/(strong students)

List of Experiments and mapping

Sr.	No. Title of Experiments	Course co mapping	Lab co
no.	-		mapping
1	Build Data Warehouse/Data Mart for a given problem statement	CSC603.1, CSC603.2	CSL603.1
	i) Identifying the source tables and populating sample data		
	ii) Design dimensional data model i.e. Star schema, Snowflake schema and Fact Constellation schema (if applicable)		
	iii) implementation of DWH for a given problem		
2	To perform various OLAP operations such as slice, dice,	CSC603.1,	CSL603.1
	drilldown, rollup, pivot	CSC603.2	
3	To perform data exploration and data cleaning in python /R	CSC603.3,	CSL603.2,
		CSC603.4	CSL603.3.
4	Implementation of Association Rule Mining algorithm (Apriori	CSC603.3,	CSL603.2 ,
	in java/python).	CSC603.4	CSL603.3.
5	Implementation of Clustering algorithm (K-means in	CSC603.3,	CSL603.2,
	java/python).	CSC603.4	CSL603.3.
6	Implementation of Linear Regression.	CSC603.3,	CSL603.2,
		CSC603.4	CSL603.3.
7	Use WEKA to implement classification (Part1, Part2)	CSC603.3,	CSL603.2,
		CSC603.4	CSL603.3
8	Implement spatial and web mining algorithms.	CSC603.5,	CSL603.4,
		CSC603.6	
9	Use WEKA to implement Association Mining and Clustering	CSC603.5,	CSL603.3
	algorithm	CSC603.6	
10	Mini project/Case study	CSC603.6	All
Assi	gnments		
11	Assignment1-Data ware housing	CSC603.1,	
	.	CSC603.2	
12	Assignment2-Data Exploration	CSC603.3,	
	•	CSC603.4	
13	Assignment3-DM Algorithms	CSC603.3,	
		CSC603.4	
14	Assignment4-Social mining	CSC603.5	

<u>Lab Plan</u>

Sr.	No. Title of Experiments	Batch A	Batch B	Batch C	Batch D
1	Build Data Warehouse/Data Mart for a given problem statement	23/02/21	24/02/21	25/02/21	26/02/21
2	To perform various OLAP operations such as slice, dice, drilldown, rollup, pivot	23/02/21	24/02/21	25/02/21	26/02/21
3	To perform data exploration and data cleaning in python /R	23/03/21	24/03/21	25/03/21	26/03/21
4	Implementation of Association Rule Mining algorithm (Apriori in java/python).	04/05/21	05/05/21	06/05/21	07/05/21
5	Implementation of Clustering algorithm (K-means in java/python).	04/05/21	05/05/21	06/05/21	07/05/21
6	Implementation of Linear Regression.	23/03/21	24/03/21	25/03/21	26/03/21
7	Use WEKA to implement classification (Part1, Part2)	04/05/21	05/05/21	06/05/21	07/05/21
8	Implementation of Page Rank	11/05/21	12/05/21	13/05/21	14/05/21
9	WEKA to implement Association Mining and Clustering algorithm	11/05/21	12/05/21	13/05/21	14/05/21
10	Mini project/Case study	11/05/21	12/05/21	13/05/21	14/05/21
11	Innovative experiments	11/05/21	12/05/21	13/05/21	14/05/21