FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50
Department of Humanities \& Sciences

F.E. (Batch A) (semester I) (2020-2021)

Lesson Plan

Subject: Applied Mathematics I (FEC101)

Credits-4

Syllabus:

Module No	Topic	Hours Planned
$\mathbf{0 1}$	Complex Numbers Pre-requisite: Review of Complex Numbers-Algebra of Complex Number, Cartesian, polar and exponential form of complex number 1.2. Expansion of sinn θ, cosn θ in terms of sines and cosines of multiples of θ and Expansion of sinn θ, cosn θ in powers of sin θ, cos θ	$\mathbf{2}$
1.3. Powers and Roots of complex number.	$\mathbf{2}$	
02	Hyperbolic function and Logarithm of Complex Numbers 2.1. Circular functions of complex number and Hyperbolic functions. Inverse Circular and Inverse Hyperbolic functions. Separation of real and imaginary parts of all types of Functions. 2.2 Logarithmic functions, Separation of real and Imaginary parts of Logarithmic Functions. \# Self learning topics: Applications of complex number in Signal processing, Electrical circuits	$\mathbf{2}$

\begin{tabular}{|c|c|c|}
\hline \& \& \\
\hline 03 \& \begin{tabular}{l}
Partial Differentiation \\
3.1 Partial Differentiation: Function of several variables, Partial derivatives of first and higher order. Differentiation of composite function. \\
3.2.Euler's Theorem on Homogeneous functions with two independent variables (with proof). Deductions from Euler's Theorem. \\
\# Self learning topics: Total differentials, implicit functions, Euler's Theorem on Homogeneous functions with three independent variables.
\end{tabular} \& 3

3

\hline 04 \& | Applications of Partial Differentiation and Successive differentiation. |
| :--- |
| 4.1 Maxima and Minima of a function of two independent variables, |
| Lagrange's method of undetermined multipliers with one constraint. |
| 4.2 Successive differentiation: nth derivative of standard functions. Leibnitz's Theorem (without proof) and problems |
| \# Self learning topics: Jacobian's of two and three independent variables (simple problems) | \& 3

3

\hline 05 \& | Matrices Pre-requisite: Inverse of a matrix, addition, multiplication and transpose of a |
| :--- |
| matrix 5.1.Types of Matrices (symmetric, skew- symmetric, Hermitian, Skew Hermitian, |
| Unitary, Orthogonal Matrices and properties of Matrices). Rank of a Matrix using Echelon forms, reduction to normal form and PAQ form. 5.2.System of homogeneous and non -homogeneous equations, their consistency and solutions. \# Self learning topics: Application of inverse of a matrix to coding theory. | \& 4

2

\hline 06 \& | Numerical Solutions of Transcendental Equations and System of Linear Equations and Expansion of Function. |
| :--- |
| . 6.1 Solution of Transcendental Equations: Solution by Newton Raphson | \& 2

\hline
\end{tabular}

| method and Regula -Falsi. | 2 |
| :--- | :---: | :---: |
| .6.2 Solution of system of linear algebraic equations, by (1) Gauss Jacobi
 Iteration Method, (2) Gauss Seidal Iteration Method.
 6.3 Taylor's Theorem (Statement only) and Taylor's series, Maclaurin's
 series (Statement only).Expansion of $e \quad \sin (x), \cos (x), \tan (x), \sinh (x)$,
 $\cosh (x)$,
 $\tanh (x), \log (1+x),(x),(x),(x)$.
 \# Self learning topics: Indeterminate forms, L- Hospital Rule, Gauss
 Elimination Method, Gauss Jordan Method. | 2 |

Course Outcomes:

Upon completion of this course students will be able to:
FEC101.1 Use the concept of rank of matrix to solve the given system of homogeneous and non-homogeneous linear equations.

FEC101.2 Understand the basics of Complex numbers, obtain roots of complex numbers using De Moivre's theorem and also real and imaginary parts of a given complex number.

FEC101.3 Use partial differentiation to obtain the extremum value of the given function of two or three variables

FEC101.4 Find the nth derivative of a given function using Leibnitz's theorem [Successive differen.]

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P01 0	P01 1	P01 2
FEC101.1	3											
FEC101.2	2											
FEC101.3	3											
FEC101.4	2											
TOTAL												
CO-PO MATRIX												

Justification

P01: C0s are mapped to this P01 because the students gain basic knowledge on mathematical concepts required for higher semesters (mathematics and technical application)

CO Assessment Tools:

	Indirect Methods																		
	T-1	T-2	T-3	T-4	T-5	T-6	TEST $\mathbf{1}$	TEST $\mathbf{2}$	Uni. Exam	Course Exit Survey									
CO1	20%	20%					30%		30%	100%									
CO2			20%	20%				30%	30%	100%									
CO3					70%				30%	100%									
CO4						70%			30%	100%									

Upon completion of this course students will be able to:

CO	CO Statement	CO Target	Target Range
CO1	Use the concept of rank of matrix to solve the given system of homogeneous and non- homogeneous linear equations	60\% Students Scoring 60\% of Marks	2.5
$\mathbf{C O 2}$	Understand the basics of Complex numbers, obtain roots of complex numbers using De Moivre's theorem and also real and imaginary parts of a given complex number.	60\% Students Scoring 60\% of Marks	2.5
CO3	Use partial differentiation to obtain the extreme value of the given function of two or three variables	60\% Students Scoring 60\% of Marks	2.5
CO4	Find the nth derivative of a given function using Leibnitz's theorem [Successive differen.]	60\% Students Scoring 60\% of Marks	2.5

Lecture Plan : SEMI- FEC101

Lect No	Topic Planned	Planned Date	Actual Date	Mapped with CO	Content Delivery Method
1	Introduction to the matrices	$20 / 1 / 21$	$20 / 1 / 21$	CO1	Black board teaching
2	Types of Matrices	$21 / 1 / 21$	$21 / 1 / 21$	CO 1	
3	Properties of Matrices	$22 / 1 / 21$	$22 / 1 / 21$	CO 1	
4	Rank of the Matrix	$25 / 1 / 21$	$25 / 1 / 21$	CO 1	
5	find Rank of the Matrix \& examples on that	$27 / 1 / 21$	$27 / 1 / 21$	CO 1	
6	solving system of equations homogeneous equ	$28 / 1 / 21$	$28 / 1 / 21$	CO 1	
7	System of non homogeneous Equation	$29 / 1 / 21$	$29 / 1 / 21$	CO 1	
8	Examples on above	$1 / 2 / 21$	$1 / 2 / 21$	CO 1	
9	Normal form of the Matrix	$3 / 2 / 21$	$3 / 2 / 21$	CO 1	
10	Introduction to complex numbers	$4 / 2 / 21$	$4 / 2 / 21$	CO 2	
11	examples on initial concept	$5 / 2 / 21$	$5 / 2 / 21$	CO 2	
12	Revise De Movire's theorem	$8 / 2 / 21$	$8 / 2 / 21$	CO 2	
13	Find nth roots of a number	$9 / 2 / 21$	$9 / 2 / 21$	CO 2	
14	Find roots of the equation	$10 / 2 / 21$	$10 / 2 / 21$	CO 2	
15	Expres powers into multiples	$12 / 2 / 21$	$12 / 2 / 21$	CO 2	
16	Express multiples into powers	$15 / 2 / 21$	$15 / 2 / 21$	CO 2	
17	Hyperbolic functions	$17 / 2 / 21$	$17 / 2 / 21$	CO 2	
18	Inverse Hyperbolic Functions	$18 / 2 / 21$	$18 / 2 / 21$	CO 2	
19	Find real and imaginary parts	$22 / 2 / 21$	$22 / 2 / 21$	CO 2	
20	Logarithm of complex	$24 / 2 / 21$	$24 / 2 / 21$	CO 2	
21	Introduction to partial Differentiation	$25 / 2 / 21$	$25 / 2 / 21$	CO 3	
22	examples on initial concept of partial	$26 / 2 / 21$	$26 / 2 / 21$	CO 3	
23	examples on chain rule	$1 / 3 / 21$	$1 / 3 / 21$	CO 3	
24	examples on chain rule	$3 / 3 / 21$	$3 / 3 / 21$	CO 3	
25	Euler's theorem	$4 / 3 / 21$	$4 / 3 / 21$	CO 3	
		$5 / 3 / 21$	$5 / 3 / 21$		
26	Euler's theorem	$15 / 3 / 21$	$15 / 3 / 21$		
27	Practice on partial differentiation	$17 / 3 / 21$	$16 / 3 / 21$	CO 3	
28	Maxima and Minima	$18 / 3 / 21$	$17 / 3 / 21$	CO 3	
29	examples on above	$19 / 3 / 21$	$18 / 3 / 21$		
30	Lagranges's multiplier method	$22 / 3 / 21$	$22 / 3 / 21$	CO 4	
31	Succesive Differentiation	$24 / 3 / 21$	$23 / 3 / 21$	CO 4	
32	Problems on above $($ initial rules and formulae)	$25 / 3 / 21$	$24 / 3 / 21$	CO 4	
33	Examples on above	$26 / 3 / 21$	$25 / 3 / 21$	CO 4	
34	Leibnitz's Rule	$31 / 3 / 21$	$31 / 3 / 21$	CO 4	
35	Mock test on complex numbers				

	AppliedMathematics 1
Sr. No	
1.	Types and Properties of Matrices Tutorials
2.	Solving system of Equations
3.	De Movire's theorem \& hyperbolic functions
4.	Inverse, logarithmic functions , separation
5.	Partial Differentiation
6.	Successive Differentiation

TUTORIAL PLAN

	DIVISION -A			
	SEMESTER- I			
Tut. No	Topic Planned	Planned Date	Actual Date	Mapped with CO
	BATCH-A, B, C			
	Types and Properties of Matrices			
1		$16 / 2 / 21$	$16 / 2 / 21$	CO 1
2	Solving system of Equations			
	De Movire's theorem \& hyperbolic functions	$23 / 2 / 21$	$23 / 2 / 21$	CO 1
3	Inverse, logarithmic functions, separation	$2 / 3 / 21$		
4		$16 / 3 / 21$		
	Partial Differentiation		CO 2	
5		$23 / 3 / 21$	$26 / 3 / 21$	CO
6	Successive Differentiation	$30 / 3 / 21$	$30 / 3 / 21$	CO 4

