FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Information Technology

T.E. (IT) (semester V) (2020-2021)

Lesson Plan

Subject: Advanced Database Management Technologies (TE ITC503)

Credits-4

SYLLABUS

Sr.			CO
No.			Mapping
00	Prerequisite	Reviewing basic concepts of a	
		Relational database, SQL concepts	
01	Query Processing	Overview, Measures of Query Cost	CO1
	and Optimization:	Selection Operation, Sorting, Join	
		Operation, Other Operations	
		Evaluation of Expressions.	
		Query Optimization Overview,	
		Transformation of Relational	
		Expressions Estimating Statistics of	
		Expression Results Choice of	
		Evaluation Plans	
02	Transactions	Transaction concept, Transaction	CO2
	Management and	states, ACID properties,	
	Concurrency:	Implementation of atomicity and	
		durability, Concurrent Executions,	
		Serializability, Recoverability,	
		Implementation of isolation,	
		Concurrency Control: Lock-based,	
		Time-stamp based Deadlock	
		handling, Recovery System: Failure	
		Classification, Storage structure,	
		Recovery & atomicity, Log based	
		recovery, Checkpoints, Shadow	
		Paging, ARIES Algorithm.	
03	Advanced Data	Advanced Database Access protocols:	CO3
	Management	Discretionary Access Control Based	CO4
	techniques	on Granting and Revoking Privileges;	
	_	Mandatory Access Control and Role-	
		Based Access Control.	
		Overview of Advanced Database	
		models like Mobile databases,	
		Temporal databases, Spatial databases.	
04	Distributed	Introduction : Distributed Data	CO4
	Databases	Processing, What is a Distributed	
		Database System? Design Issues .	

	1	1	
		Distributed DBMS Architecture.	
		Distributed Database Design: Top-Down	
		Design Process, Distribution Design	
		Issues, Fragmentation, Allocation.	
		Overview of Query Processing : Query	
		Processing Problem, Objectives of Query	
		Processing, Complexity of Relational	
		Algebra Operations, Characterization of	
		Query Processors, Layers of Query	
		Processing, Query Optimization in	
		Distributed Databases; Overview of	
		Transaction Management in	
		DDB;	
		Overview of Concurrency Control in	
		DDB;	
		Overview of Recovery in DDB	
05	Data Warehousing,	The Need for Data Warehousing; Data	CO5
	Dimensional	Warehouse Defined; Benefits of Data	
	Modeling and	Warehousing; Features of a Data	
	OLAP	Warehouse; Data Warehouse	
		Architecture; Data Warehouse and	
		Data Marts; Data Warehousing Design	
		Strategies.	
		Dimensional Model Vs ER Model;	
		The Star Schema; How Does a Query	
		Execute? The Snowflake Schema;	
		Fact Tables and Dimension Tables;	
		,	
		Factless Fact Table; Updates To	
		Dimension Tables, Primary Keys,	
		Surrogate Keys & Foreign Keys;	
		Aggregate Tables; Fact Constellation	
		Schema or Families of Star	
		Need for Online Analytical	
		Processing; OLTP vs OLAP; OLAP	
		Operations in a cube: Roll-up,	
		Drilldown,	
		Slice, Dice, Pivot; OLAP	
		Models: MOLAP, ROLAP, HOLAP.	
06	ETL Process	Challenges in ETL Functions; Data	CO6
		Extraction; Identification of Data	
		Sources; Immediate Data Extraction,	
		Deferred Data Extraction; Data	
		Transformation: Tasks Involved in	
		Data Transformation, Techniques of	
		-	
		Data Loading, Loading the Fact	
Tort Dooly		Tables and Dimension Tables	

Text Books:

- 1. Korth, Slberchatz, Sudarshan, :"Database System Concepts", 6th Edition, McGraw Hill 2. Elmasri and Navathe, "Fundamentals of Database Systems", 6th Edition, PEARSON Education.
- 3. Theraja Reema, "Data Warehousing", Oxford University Press, 2009.

4. Raghu Ramakrishnan and Johannes Gehrke, "Database Management Systems" 3rd Edition - McGraw Hill

References:

- 1. Paulraj Ponniah, "Data Warehousing: Fundamentals for IT Professionals", Wiley India.
- 2. Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom "Database System Implementation", Pearson Ltd. 1/e
- 3. Thomas M. Connolly Carolyn Begg, Database Systems : A Practical Approach to Design, Implementation and Management, 4/e, Pearson Ltd.
- 4. Ralph Kimball, Margy Ross, "The Data Warehouse Toolkit: The Definitive Guide To Dimensional Modeling", 3rd Edition. Wiley India.
- 5. Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3nd Edition.

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

CO-Statements:

Sr.No.	Course Outcome Statement
TEITC503.1	Explain and understand the concept of a transaction and how ACID properties are maintained when concurrent transactions occur in database.
TEITC503.2	Measure query cost and design alternate efficient paths for query execution.
TEITC503.3	Apply sophisticated access protocols to control access to the database
TEITC503.4	Implement alternate models like distributed databases and design applications using advanced models like mobile, spatial databases.
TEITC503.5	Organize strategic data in an enterprise and build a data Warehouse.
TEITC503.6	Analyze data using OLAP operations so as to take strategic decisions.

CO-PO-PSO Mapping

Course Name	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12	PSO1	PSO2
CO1	2	1												2
CO2	2	1			1								1	2
CO3	2				1								1	1
CO4	2				1									2
CO5	1	1	2		1								1	2
CO6	1	1	2		1								1	2

CO Assessment Tools

		Direct M	Direct Methods						Indirect Methods
	Test1	Assig1	Quiz	Lab Work	Test2	Assig2	University Theory Exam	University Oral Exam	Course Exit Survey
CO1	20%	10%	15%	15%			20%	20%	100%
CO2	20%	20%		15%			20%	25%	100%
CO3			25%		30%		20%	25%	100%
CO4			20%	20%	20%		20%	20%	100%
CO5			20%	10%	25%		20%	25%	100%
CO6			20%	10%	25%		20%	25%	100%

Content beyond syllabus

Information Package diagram

Lecture Plan:

Lecture	Topic	Planned date	Actual Date	Mode of teaching
no				
1	Review of basic concepts of a			Online –Google Meet
	Relational database, SQL			
	concepts,	13-7	13-7	
2.	Indexing	14-7	14-7	Online –Google Meet
3.	Query Processing	15-7	15-7	Online –Google Meet
4	Complex Selection Cost	16-7	16-7	Online –Google Meet
5	Sorting and Internet Issue	20-7	20-7	Online –Google Meet
6	External Merge Sort, Nested			Online –Google Meet
	Loop Join	21-7	21-7	
	Block, Indexed Nested Loop Join,			Online –Google Meet
	Merge Join	22-7	22-7	

7	Hash Index, Hash Join	23-7	23-7	Online –Google Meet
8	Outer Joins, Query Evaluation -			Online –Google Meet
	Materialization, Pipelining	27-7	27-7	
9	Query Optimization	28-7	28-7	Online –Google Meet
10				Online –Google Meet
	Query Optimization, Equivalent expression			
	Estimating statistics of			
	Expression Results	29-7	29-7	
11	Statistics for Cost Estimation	30-7	30-7	Online –Google Meet
12	Cost Based Optimization	3-8	4-8	Online –Google Meet
13	Transaction Management Start	4-8	5-8	Online –Google Meet
14				Online –Google Meet
	Serializability	5-8	6-8	_
15	Conflict and View Serializability	6-8	10-8	Online –Google Meet
16	Recoverable Schedules, Locking			Online –Google Meet
	Protocols	10-8	11-8	
17	Lock Based Protocol - Shared,			Online –Google Meet
	Exclusive, Problems	11-8	13-8	
18	2 phase locking protocol	13-8	17-8	Online –Google Meet
19	2-Phase Locking, Lock			Online –Google Meet
	Conversions, Lock Table,	4= 0	10.0	
20	TimeStamp Based Protocol	17-8	18-8	Outing Constant
20	TimeStamp Based Protocol			Online –Google Meet
	Example, Problems, Thoms's Write Rule	40.0	40.0	
21	Deadlock Recovery, Types of	18-8	19-8	Online Google Most
21	Failures	10.0	20-8	Online –Google Meet
22	Recovery Mechanisms, Log	19-8	20-0	Online –Google Meet
22	Based Recovery	20-8	31-8	Online – doogle Weet
23	Deferred, Immediate Log Based	20-0	31-0	Online –Google Meet
23	Recovery	31-8	1-9	Chimic Google Wicce
24	Checkpoints, ARIES Start	1-9	2-9	Online –Google Meet
25	ARIES Analysis Phase Complete	2-9	3-9	Online –Google Meet
26	Aries Algorithm , Example			Online –Google Meet
	Solved	3-9	7-9	
27	Distributed DataBase Systems	7-9	8-9	Online –Google Meet
28	Distributed Database System			Online –Google Meet
	Issues, types of Data			
	Fragmentation	8-9	9-9	
29	Types of Distributed database			Online –Google Meet
	systems, Query processing in			
	distributed system	9-9	10-9	
30	Revision for Query processing			Online –Google Meet
	and Transaction Management	10-9	22-9	
31	Query processing in distributed			Online –Google Meet
	systems	21-9	23-9	
32	Concurrency control and			Online –Google Meet
	recovery in DDB	22-9	24-9	
33	Concurrency control and			Online –Google Meet
	recovery in DDB, Introduction to			
	Data Warehousing	23-9	28-9	

34	Data warehouse features and			Online –Google Meet
	Data warehouse Architecture	24-9	29-9	
35	OLAP Operations in a cube:			Online –Google Meet
	Rollup, Drilldown, Slice,			
	Dice, Pivot	28-9	30-9	
36	OLAP Operations in a cube:			Online –Google Meet
	Rollup, Drilldown, Slice,			
	Dice, Pivot	29-9	1-10	
37	OLAP Models: MOLAP,			Online –Google Meet
	ROLAP, HOLAP.	30-9	5-10	
38	Challenges in ETL Functions;		6-10	Online –Google Meet
	Data Extraction;			
	Identification of Data			
	Sources;			
	Immediate Data Extraction,			
	Deferred Data Extraction;	1-10		
39	Data Transformation: Tasks		7-10	Online –Google Meet
	Involved in Data			
	Transformation, Techniques of			
	Data Loading, Loading the			
	Fact Tables and			
	DimensionTables	5-10		
40	Advanced Database Access		8-10	Online –Google Meet
	protocols: Discretionary			
	Access Control Based on			
	Granting and Revoking			
	Privileges;	6-10		
41	Discretionary Access Control	7-10		Online –Google Meet
	Based on Granting and			
	Revoking Privileges;		12-10	
42	Mandatory Access Control,	8-10	13-10	Online –Google Meet
43	Role based Access control	12-10	14-10	Online –Google Meet
44	Overview of Advanced			Online –Google Meet
	Database models like Mobile			
	databases,	13-10	15-10	
45	Temporal databases, Spatial			Online –Google Meet
	databases	14-10	19-10	
46	Revision	15-10	20-10	Online –Google Meet

Lab Plan for OLAP Lab

Lab Outcomes:

- LO1 -Implement simple query optimizers and design alternate efficient paths for query execution. LO2-Simulate the working of concurrency protocols, recovery mechanisms in a database
- LO3-Design applications using advanced models like mobile, spatial databases.
- LO4-Implement query processing and transaction processing mechanisms.

LO5- Design Star schema, Snowflake schema and Fact constellation Schema. LO6- Analyze data using OLAP operations so as to take strategic decisions

Lab Plan: ADMT

Sr.	Topic	Date	Lab
No	_		outcome
1	To execute complex SQL queries in		
	Posgresql	21-10	
2	To implement cost estimation for		LO1,CO2
	different Join operations	22-10	
3	To implement query cost optimization	22-10	LO1,CO1
4	To implement concurrency control		LO2,CO1
	algorithm	26-10	
5	To implement ARIES recovery		LO2,CO2
	algorithm	27-10	
6	To implement Query Processing for		LO4,CO4
	distributed Databases	28-10	
7	To implement Data Fragmentation	29-10	LO4,CO4
8	Case study on Data warehouse		LO5,CO5
	construction	2-11	
9	Implementation of OLAP queries	3-11	LO6,CO6
10	Case study on Mobile, Temporal and		LO3,CO3
	Spatial databases		

Rubrics for assessment of Lab:

Indicator	Below Expectations	Meet Expectations	Exceeds Expectations
Timeline (2)	More than two session late (0)	one sessions late (1)	Early or on time (2)
Preparedness (2)	Not aware of the theory to the point. (1)	Managed to explain the theory related to the experiment. (1)	Knows the basic theory related to the experiment very well. (2)
Effort (3)	Just managed. (1)	Done expt with help from other. (2)	Done expt on their own. (3)
Documentation (2)	Experiments not written in proper format (0.5)	Documented in proper format but some formatting guidelines are missed. (1)	Lab experiment is documented in proper format and maintained neatly. (2)
Results(1)	Not specific at all. (0)	Partially specific conclusion. (0.5)	Specific conclusion.(1)

Assignment Plan:

Assignment No	Date	Questions	CO/LO
1	8/8/2020		CO1
2	16/9/2020		CO2

Rubrics for assessment of Assignment:

Indicator	Below Expectations	Meet Expectations	Exceeds Expectations
Timeline (2)	More than one session late (0)	One sessions late (1)	On time (2)
Level of content (4)	Major points are addressed minimally (2)	Only major topics are covered(3)	Most major and some minor criteria are included. Information is
Reading and	Superficial at most (2)	Understood concepts but	Understood concepts and
Understanding (4)		no related topics (3)	related topics (4)

Quiz Conducted:

Quiz No.	Date	Topic	CO/LO
1	8/9/2020	Transaction Management	CO1
2	22/11/2020	Distributed Databases	CO4
3	23/11/2020	Data warehouse and OLAP	CO5
4	24/11/2020	ETL Process	CO6
5	24/11/2020	Adv. Database security and	CO3, CO4
		Data Models	

SEPM CO Attainment: 2020-21

СО	Attainment	
CO1	2.6	
CO2	2.84	
CO3	2.84	
CO4	2.84	
CO5	2.76	
CO6	2.84	

ADMT: 2019-20 attainment

СО	Attainment
CO1	2.52
CO2	2.28
CO3	2.76
CO4	2.6
CO5	2.44
CO6	2.12

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus.