Lesson Plan

Branch: Computer Engineering Semester: 4 – Div A & B

Course Title: Operating System	SEE: 3 Hours – Theory
	& Oral Examination
Total Contact Hours: 36 Hours	Duration of SEE: 3 Hrs
SEE Marks: 80 (Theory) + 20 (IA)	
Lesson Plan Author: Prachi Patil	Date: 21-1-23
Checked By: Dr. Sujata Deshmukh	Date: 27-1-23

Prerequisites: Any programming language **Syllabus**:

Module	Detailed Content					
1	Operating system Overview					
	1.1 Introduction, Objectives, Functions and Evolution of Operating System					
	1.2 Operating system structures: Layered, Monolithic and Microkernel					
	1.3 Linux Kernel, Shell and System Calls	10.21				
2	Process and Process Scheduling	9				
	2.1 Concept of a Process, Process States, Process Description, Process Control Block.					
	2.2 Uniprocessor Scheduling-Types: Preemptive and Non-preemptive scheduling algorithms (FCFS, SJF, SRTN, Priority, RR)					
	2.3 Threads: Definition and Types, Concept of Multithreading					
3	Process Synchronization and Deadlocks					
	3.1 Concurrency: Principles of Concurrency, Inter-Process Communication, Process Synchronization.					
	3.2 Mutual Exclusion: Requirements, Hardware Support (TSL), Operating System Support (Semaphores), Producer and Consumer problem.					
	3.3 Principles of Deadlock: Conditions and Resource, Allocation Graphs, Deadlock Prevention, Deadlock Avoidance: Banker's Algorithm, Deadlock Detection and Recovery, Dining Philosophers Problem.					
4	Memory Management					
	4.1 Memory Management Requirements, Memory Partitioning: Fixed, Partitioning, Dynamic Partitioning, Memory Allocation Strategies: Best-Fit, First Fit, Worst Fit, Paging and Segmentation, TLB					
	4.2 Virtual Memory: Demand Paging, Page Replacement Strategies: FIFO, Optimal, LRU, Thrashing					
5	File Management	4				
	5.1 Overview, File Organization and Access, File Directories, File Sharing					
6	I/O management	4				
	6.1 I/O devices, Organization of the I/O Function, Disk Organization, I/O Management and Disk Scheduling: FCFS, SSTF, SCAN, CSCAN, LOOK, C-LOOK.					

Course Outcomes (CO):

On successful completion of course learner will be able to:

CSC404.1 Describe the objectives, functions and structure of OS

CSC404.2 Analyze the concept of process management and evaluate performance of process Scheduling algorithms.

CSC404.3 Apply the concepts of synchronization and deadlocks

CSC404.4 Evaluate performance of Memory allocation and replacement policies

CSC404.5 Describe the concepts of file management.

CSC404.6 Apply concepts of I/O management and analyze techniques of disk scheduling.

СО	BL	С	PI	PO	Mapping
CSC404.1 Describe the objectives, functions	1	1.3	1.3.1	1	2
and structure of OS		1.4	1.4.1		
CSC404.2 Analyze the concept of process	4	1.4	1.4.1	1,2,	1
management and evaluate performance of process		2.2.	2.2.4,	9,	1
Scheduling algorithms.		2.3	2.3.2,	10,	
		2.4	2.4.1,	12	
		9.2,	9.2.1,		3
		9.3	9.2.2,		
			9.2.3,		
		10.1	9.2.4	-	
		10.1,	10.1.1,		3
		10.2	10.2.1,		
			10.2.2,		
		10.0	10.0.1		2
		12.2,	12.2.1,		3
		12.3	12.2.2,		
			12.3.1,		
CSC404.2 Angle the second of	3	1.4	12.3.2	1	1
CSC404.3 Apply the concepts of	3	1.4	1.4.1	1	1
synchronization and deadlocks		2.2	2.2.3	2	2
		9.2,	9.2.1,	9	3
		9.3	9.2.2,		
			9.2.3,		
		10.1	9.2.4	10	2
		10.1,	10.1.1,	10	3
		10.2	10.2.1,		
			10.2.2,		
		12.2,	12.2.1,	12	3
		12.2,	12.2.1, 12.2.2,	12	5
		12.5	12.2.2, 12.3.1,		
			12.3.1,		
CSC404.4 Evaluate performance of Memory	3	1.4	1.4.1	1	1
allocation and replacement policies		2.2	2.2.3,	2	2
uncention and replacement policies		2.2	2.2.3, 2.2.4,		<i>–</i>
		2.3	2.2.4, 2.3.2,		
		2.T	2.3.2, 2.4.1,		
		9.2,	9.2.1,	9	3
		9.2, 9.3	9.2.1, 9.2.2,	`	5
		1.5	9.2.2, 9.2.3,		
			9.2.3,		
		10.1		10	3
		10.1,	10.1.1,	10	3

CO-PO Mapping: (BL – Blooms Taxonomy, C – Competency, PI – Performance Indicator)

	-	1			
		10.2	10.2.1, 10.2.2,		
		12.2, 12.3	12.2.1, 12.2.2, 12.3.1, 12.3.2	12	3
CSC404.5 Describe the concepts of file	4	1.4	1.4.1	1	1
management.		2.2 2.3 2.4	2.2.3, 2.2.4, 2.3.2, 2.4.1,	2	2
		9.2, 9.3	9.2.1, 9.2.2, 9.2.3, 9.2.4	9	3
		10.1, 10.2	10.1.1, 10.2.1, 10.2.2,	10	3
		12.2, 12.3	12.2.1, 12.2.2, 12.3.1, 12.3.2	12	3
CSC404.6 Apply concepts of I/O management	3	1.4	1.4.1	1	1
and analyze techniques of disk scheduling.		2.2 2.3 2.4	2.2.3, 2.2.4, 2.3.2, 2.4.1,	2	2
		9.2, 9.3	9.2.1, 9.2.2, 9.2.3, 9.2.4	9	3
		10.1, 10.2	10.1.1, 10.2.1, 10.2.2,	10	3
		12.2, 12.3	12.2.1, 12.2.2, 12.3.1, 12.3.2	12	3

	PO	PO1	PO1	PO1								
	1	2	3	4	5	6	7	8	9	0	1	2
CSC404. 1	2	-	-	-	-	-	-	-	-	-	-	-

CSC404. 2	1	1	-	-	-	-	-	-	3	3	-	3
CSC404. 3	1	2	-	-	-	-	-	-	3	3	-	3
CSC404. 4	1	2	-	-	-	-	-	-	3	3	-	3
CSC404. 5	1	2	-	-	-	-	-	-	3	3	-	3
CSC404. 6	1	2	-	-	-	-	-	-	3	3	-	3

CO-PSO Mapping:

СО	PSO1	PSO2
CSC404.1	-	-
CSC404.2	-	-
CSC404.3	-	-
CSC404.4	-	-
CSC404.5	-	-
CSC404.6	-	-

CO Measurement Weightages for Tools:

	Indirect tool				
Tools	Test1	Test2	Assignment/Q uiz/Gate Questions	SEE	Course Exit Survey
CSC404.1	20%		20%	60%	100%
CSC404.2	20%				
CSC404.3	20%				
CSC404.4		20%			
CSC404.5		20%			
CSC404.6		20%			

Attainment:

CO CSC404.1:

Direct Method = 0.2*test +0.2* Assignment + 0.6* SEE_Theory Final Attainment: 0.8* Direct Attainment +0.2* Indirect Attainment

CO CSC404.2:

Direct Method = 0.2*test +0.2* Assignment + 0.6* SEE_Theory Final Attainment: 0.8* Direct Attainment +0.2* Indirect Attainment

CO CSC404.3:

Direct Method = 0.2*test +0.2* Assignment + 0.6* SEE_Theory Final Attainment: 0.8* Direct Attainment +0.2* Indirect Attainment

CO CSC404.4:

Direct Method = 0.2*test +0.2* Assignment + 0.6* SEE_Theory Final Attainment: 0.8* Direct Attainment +0.2* Indirect Attainment

CO CSC404.5:

Direct Method = 0.2*test +0.2* Assignment + 0.6* SEE_Theory Final Attainment: 0.8* Direct Attainment +0.2* Indirect Attainment

CO CSC404.6:

Direct Method = 0.2*test +0.2* Assignment + 0.6* SEE_Theory Final Attainment: 0.8* Direct Attainment +0.2* Indirect Attainment

Course Level Gap (if any): NO

Content beyond Syllabus: NO

Lec ture No	Planned Topics and Links	Planned Date	Actual Date	Mode of Delivery
1.	Topic: Intro to OS, Computer ArchitectureVideo	9-1		Online Sources
2.	Introduction, Objectives, Functions and Evolution of Operating System	11-1		Online Sources
3.	Operating system structures: Layered, Monolithic and Microkernel	13-1		Online Sources
4.	Linux Kernel, Shell and System Calls	16-1		Online Sources , Quiz1
5.	Priviledged Instructions, 32-64 bit processor,System calls, Process and Process in memory			Self Study, Video Links
6.	Process and Process Control Block (PCB)Process state transition	18-1		Online Sources
7.	Process State transition (5 state and 7 State)	20-1		Online Sources
8.	Scheduler and types, Threads and types, Multithreading	23-1		Online Sources
9.	Process Scheduling, need, objectives, terminologies wrt comparing scheduling algorithms	25-1		Online Sources
10	FCFS and SJF Algorithms	30-1		Online Sources ,Role play, chalk and Board
11	SRTF and RR Algorithm	1-2		Online Sources , Role play, chalk and Board
12	Priority Scheduling and multi queue scheduling algorithm	2-2		Online Sources , Role play, chalk and Board

Lecture Plan: SE Comps Div A

13	Multi level feedback queue scheduling algorithm	6-2	Online Sources ,Quiz 2,
	Intro to process sync, race condition, critical section problem, petersons solution	8-2	Online Sources
15	Lock variable, TSL, turn variable, interested variable mechanism	9-2	Online Sources
16	Synchronization without busy waiting, sleep and wake up call solution	13-2	Online Sources
17	Process Synchronization using semaphore, types of semaphore	15-2	Online Sources
18	Producer consumer problem and solution, OS thread models	16-2	Online Sources
19	Deadlock and conditions for deadlock, strategies-for-handling-deadlock ,deadlock-prevention	20-2	Online Sources
20	Deadlock avaoidance strategy	22-2	Online Sources, chalk and Board
21	Deadlock detection and recovery strategies.	23-2	Online Sources, Quiz 3
22	Dinning philosophers problem.		Self Study, video links
23	Memory management requirements, memory partitioning techniques	6-3	Online Sources
24	Memory allocation strategies.	8-3	Online Sources, chalk and Board
25	Paging – Logical to physical address translation	13-3	Online Sources
20	Page allocation techniques, page hit and miss, page thrashing	15-3	Online Sources
21	Page allocation techniques	16-3	Online Sources, chalk and Board
28	Translation lookaside buffer, Virtual memory , Demand Paging		Self Study, video links
29	Segmentation- address translation from logical to physical address	20-3	Online Sources , Quiz4
30	File organization- attributes-of-the-file, operations-on-the-file ,os-file-access- methods		Online Sources . Self Study, Video links
31	OS Directory structure, Directory implementation	23-3	Online Sources
32	File Allocation techniques	27-3	Online Sources
	Disk scheduling algorithms: FCFS and SSTF	29-3	Online Sources, chalk and Board
34	Scan and C-Scan algorithms	3-4	Online Sources, chalk and Board
3:	Look and C-Look Algorithms	5-4	Online Sources, chalk and Board

30	Comparison of different disk scheduling algorithms.		Self Study, Video Links
37	Device Management is OS	6-4	Quiz5
38	Disk controller in OS		Self Study, Video
			links

Lecture Plan: SE Comps B

Lec ture No	Plan: SE Comps B Planned Topics and Links	Planned Date	Actual Date	Mode of Delivery
1.	Topic: Intro to OS, Computer ArchitectureVideo	9-1		Online Sources
2.	Introduction, Objectives, Functions and Evolution of Operating System	11-1		Online Sources
3.	Operating system structures: Layered, Monolithic and Microkernel	12-1		Online Sources
4.	Linux Kernel, Shell and System Calls	16-1		Online Sources
5.	Priviledged Instructions, 32-64 bit processor,System calls, Process and Process in memory			Self Study, Video Links
6.	Process and Process Control Block (PCB)Process state transition	18-1		Online Sources
7.	Process State transition (5 state and 7 State)	19-1		Online Sources
8.	Scheduler and types, Threads and types, Multithreading	23-1		Online Sources
9.	Process Scheduling, need, objectives, terminologies wrt comparing scheduling algorithms	25-1		Online Sources
10	FCFS and SJF Algorithms	30-1		Online Sources, Chalk and Board
11	SRTF and RR Algorithm	31-1		Online Sources, Chalk and Board
12	Priority Scheduling and multi queue scheduling algorithm	2-2		Online Sources, Chalk and Board
13	Multi level feedback queue scheduling algorithm	6-2		Online Sources
14	Intro to process sync, race condition, critical section problem, petersons solution	7-2		Online Sources
15	Lock variable, TSL, turn variable, interested variable mechanism	9-2		Online Sources
16	Synchronization without busy waiting, sleep and wake up call solution	13-2		Online Sources
11		14-2		Online Sources

18	Producer consumer problem and solution, OS thread models	16-2	Online Sources	
19	Deadlock and conditions for deadlock, strategies-for-handling-deadlock ,deadlock-prevention	20-2	Online Sources	
20	Deadlock avaoidance strategy	21-2	Online Sources, Chalk and Board	
21	Deadlock detection and recovery strategies.	23-2	Online Sources	
22	Dinning philosophers problem.		Self Study, video links	
23	Memory management requirements, memory partitioning techniques	2-3	Online Sources	
24	Memory allocation strategies.	6-3	Online Sources, Chalk and Board	
25	Paging – Logical to physical address translation	7-3	Online Sources	
26	Page allocation techniques, page hit and miss, page thrashing	13-3	Online Sources	
27	Page allocation techniques	14-3	Online Sources, Chalk and Board	
28	Translation lookaside buffer, Virtual memory , Demand Paging		Self Study, video links	
29	Segmentation- address translation from logical to physical address	16-3	Online Sources	
3(File organization- attributes-of-the-file, operations-on-the-file ,os-file-access- methods		Self Study, Video links	
31	OS Directory structure, Directory implementation	20-3	Online Sources	
32	File Allocation techniques	21-3	Online Sources	
	Disk scheduling algorithms: FCFS and SSTF	23-3	Online Sources, Chalk and Board	
34	Scan and C-Scan algorithms	27-3	Online Sources, Chalk and Board	
35	Look and C-Look Algorithms	28-3	Online Sources, Chalk and Board	
36	Comparison of different disk scheduling algorithms.		Self Study, Video Links	
37	Device Management is OS	3-4	Online Sources	
38	Disk controller in OS	6-4	Online Sources	

Tex	tbooks:				
1	William Stallings, Operating System: Internals and Design Principles, Prentice Hall, 8thEdition, 2014, ISBN-10: 0133805913 • ISBN-13: 9780133805918.				
2	Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts, John Wiley & Sons, Inc., 9th Edition, 2016, ISBN 978-81-265-5427-0				
Ref	erences:				
1	Achyut Godbole and Atul Kahate, Operating Systems, McGraw Hill Education, 3rd Edition				
2	Andrew Tannenbaum, Operating System Design and Implementation, Pearson, 3rdEdition.				
3	Maurice J. Bach, "Design of UNIX Operating System", PHI				
4	Sumitabha Das, "UNIX: Concepts and Applications", McGraw Hill, 4th Edition				

Web References:

- 1. www.geeksforgeeks.com
- 2. www.javatpoint.com
- 3. For Slow Learners: Gate Smashers (Youtube Channel): https://www.youtube.com/watch?v=WJ-UaAaumNA
- 4. For Fast Learners: Swayam: https://onlinecourses.nptel.ac.in/noc20_cs04/preview
- 5. Stanford University: <u>http://web.stanford.edu/~ouster/cgi-bin/cs140-</u> spring14/lectures.php

Evaluation Scheme

CIE Scheme Internal Assessment: 20 (Average of two tests)

Internal Assessment Scheme

Module		Lecture Hours	No. of questions in IA			No. of questions in SEE
			Test 1	Test 2	Test 3*	
1	Process Overview	4	01 (5	-		-
			marks)			
2	Process Management	9	01 (7	-		-
			Marks)			
3	Process	9	01 (8	-		-
	Synchronization		Marks)			
4	Memory	9		1 (5		-
	Management			Marks)		
5	File Management	4	-	1 (7		-
				Marks)		
6	I/O Management	4	-	1 (8		-
				Marks)		

Note: Four to six questions will be set in the Test paper

Verified by: Programme Coordinator

Subject Expert :

Monica Khanore

Dr. Sujata Deshmukh