Fr. Conceicao Rodrigues College of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Computer Engineering

S.E. (Computer) (semester III)

(2022-2023)

Course Outcomes & Assessment Plan

Subject: Discrete Structures and Graph Theory DIV B

Subject code: (CSC 302)

Teacher-in-charge: Prof. Supriya Kamoji

Academic Term: July – October 2022

Syllabus:

Module	Detai	led Contents	Hours				
1	Logic						
	1.1	Propositional Logic, Predicate Logic, Laws of Logic, Quantifiers, Normal Forms, Inference Theory of Predicate Calculus, Mathematical Induction.					
2	Relat	ions and Functions	6				
	2.1	Basic concepts of Set Theory					
	2.2	Relations: Definition, Types of Relations, Representation of Relations, Closures of Relations, Warshall's algorithm, Equivalence relations and Equivalence Classes					
	2.3	Functions: Definition, Types of functions, Composition of functions, Identity and Inverse function					
3	Poset	ts and Lattice	5				
	3.1	Partial Order Relations, Poset, Hasse Diagram, Chain and Anti chains, Lattice, Types of Lattice, Sub lattice					
4	Counting						
	4.1	Basic Counting Principle-Sum Rule, Product Rule, Inclusion- Exclusion Principle, Pigeonhole Principle					
	4.2	Recurrence relations, Solving recurrence relations					
5	Algeb	praic Structures	8				
	5.1	Algebraic structures with one binary operation: Semi group, Monoid, Groups, Subgroups, Abelian Group, Cyclic group, Isomorphism					
	5.2	Algebraic structures with two binary operations: Ring					
	5.3	Coding Theory : Coding, binary information and error detection, decoding and error correction					
6	Grap	h Theory	8				
		Types of graphs, Graph Representation, Sub graphs, Operations on Graphs, Walk, Path, Circuit, Connected Graphs, Disconnected Graph, Components, Homomorphism and Isomorphism of Graphs, Euler and Hamiltonian Graphs, Planar Graph, Cut Set, Cut Vertex, Application					

Textbooks:

	1	Bernad Kolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman, "Discrete Mathematical Structures", Pearson Education.
-	2	C. L. Liu "Elements of Discrete Mathematics", second edition 1985, McGraw-Hill Book
		Company. Reprinted 2000.

3 K. H. Rosen, "Discrete Mathematics and applications", fifth edition 2003, Tata McGraw Hill Publishing Company

References:

1 Y N Singh, "Discrete Mathematical Structures", Wiley-India.

- 2 J. L. Mott, A. Kandel, T. P. Baker, "Discrete Mathematics for Computer Scientists and Mathematicians", Second Edition 1986, Prentice Hall of India.
- 3 J. P. Trembley, R. Manohar "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Publishing Company
- 4 Seymour Lipschutz, Marc Lars Lipson, "Discrete Mathematics" Schaum"s Outline, McGraw Hill Education.
- 5 Narsing Deo, "Graph Theory with applications to engineering and computer science", PHI Publications.
- 6 P. K. Bisht, H. S. Dhami, "Discrete Mathematics", Oxford press.

Online Resources:

https://www.youtube.com/watch?v=p2b2Vb-cYCs&list=PLBInK6fEyqRhqJPDXcvYlLfXPh37L89g3&index=2 https://www.youtube.com/watch?v=I32MYMah0D0

https://www.youtube.com/watch?v=7ifHq5J58cE&list=PLmXKhU9FNesQrSgLxm6zx3XxH_M_8n3LA https://www.youtube.com/watch?v=ebpR0-00aWw

https://www.youtube.com/watch?v=SUvdx0ntJ3I

Pre-re	Pre-requisite: Basic Mathematics								
Cours	Course Objectives: The course aims:								
1	Cul	tivate clear thinking and creative problem solving.							
2		proughly train in the construction and understanding of mathematical proofs. Exercise nmon mathematical arguments and proof strategies.							
3	To	pply graph theory in solving practical problems.							
4	The	proughly prepare for the mathematical aspects of other Computer Engineering courses							
Cours		tcomes: On successful completion, of course, learner/student will be able to: Ability to reason logically. (Apply)							
CSC30)2.2	Ability to explain relations, functions, Diagraph and Lattice. (Apply)							
CSC30	02.3								
CSC30	CSC302.4 Demonstrate use of groups and codes in Encoding-Decoding (Analyze)								
		Analyze a complex computing problem to find solution using principles of discrete mathematics (Analyze)							

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	-	-												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	(Engg	(Ana)	(De	(inve	(tools)	(engg	(Env)	(Eth)	(ind	(comm.)	(PM)	(life		l
	Know)		sign)	stiga)		Soci)			Team)			Long)		1
CSC302.1	1													
CSC302.2	1	1												
CSC302.3	1													
CSC302.4	1	1												
CSC302.5	1	1								1		1	1	
Total	5	3											1	
CO – PO														
Matrix														l

Justification of PO to CO mapping

Course Outcome	Competency	Performance Indicator				
CSC302.1	1.1 Demonstrate competence in mathematical modelling	1.1.1 Apply the knowledge of discrete structures, linear algebra, statistics, and calculus to solve problems				
CSC302.2	1.1 Demonstrate competence in mathematical modelling	1.1.1 Apply the knowledge of discrete structures, linear algebra, statistics, and calculus to solve problems				
	2.1 Demonstrate an ability to identify and formulate complex engineering problem	2.1.3 Identify an algorithm that applies to a given problem				
CSC302.3	1.1 Demonstrate competence in mathematical modelling	1.1.1 Apply the knowledge of discrete structures, linear algebra, statistics, and calculus to solve problems				
CSC302.4	1.1 Demonstrate competence in mathematical modelling	1.1.1 Apply the knowledge of discrete structures, linear algebra, statistics, and calculus to solve problems				
	2.2 Demonstrate an ability to formulate a solution plan and methodology for an engineering problem	2.2.3 Identify existing solution/methods to solve the problem, including forming justified approximations and assumptions.				
CSC302.5	1.1 Demonstrate competence in mathematical modelling	1.1.1 Apply the knowledge of discrete structures, linear algebra, statistics, and calculus to solve problems				
	2.1 Demonstrate an ability to identify and formulate complex engineering problem	2.1.2 Identify processes/modules of a computer-based system and parameters to solve a problem				
	10.2 Demonstrate competence in listening, speaking, and presentation	10.2.2 Deliver effective oral presentations to technical and non-technical audiences				
	12.2 Demonstrate an ability to identify changing trends in engineering knowledge and practice	12.2.1 Identify historic points of technological advance in engineerin that required practitioners to see education in order to stay current				

Justification of CO to PSO mapping:

CSC302.5	1	1.1.1 Develop mathematical concepts required for ML and AI algorithms.
		required for will and Al argorithms.

	tical modelling, and ng fundamentals.		
--	---------------------------------------	--	--

CO Assessment Tools:

Course Outcomes			Indirect Method (20%)						
Ouicomes	Unit Tests		Assignments			Presentati on	End Sem Exam	Course exit survey	
	1	2	1	2	3	4			
CSDC7022.1	30%		30%				-	40%	100%
CSDC7022.2	30%			30%			-	40%	100%
CSDC7022.3		30%			30%		-	40%	100%
CSDC7022.4		30%				30%	-	40%	100%
CSDC7022.5							60%	40%	100%

Curriculum Gap:

No Gap

Rubrics for Assignment Grading:

Indicator	Very Poor	Poor	Average	Good	Excellent
Timeline (2)			Two sessions late (1)	One session late (1.5)	Early or on time (2)
Organization (2)	N/A	Very poor readability and not structured (0.5)	Poor readability and somewhat structured (1)	Readable with one or two mistakes and structured (1.5)	Very well written and structured without any mistakes (2)
Level of content (4)	N/A	Major points are omitted or addressed minimally (1)	omitted orare covered, theaddressedinformation is		All major and minor criteria are covered and are accurate. (4)
Depth and breadth discussion (2)	N/A	None in evidence; superficial at most (0.5)	Minor points/information may be missing and discussion is minimal (1)	Discussion centers on some of the points and covers them adequately (1.5)	Information is presented in depth and is accurate (2)

FR. Conceicao Rodrigues College Of Engineering Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering S.E. (Computer) (semester III)

(2022-2023)

Lesson Plan: Discrete Structures and Graph Theory

Modes of Content Delivery:

1	Class Room Teaching	V	Self-Learning Online Resources	lx	Industry Visit
li	Tutorial	Vi	Slides	Х	Group Discussion
lii	Remedial Coaching	vii	Simulations/Demonstrations	Xi	Seminar
lv	Lab Experiment	viii	Expert Lecture	Xii	Case Study

Name of subject Techer: Supriya Kamoji Class: SE COMP – A (Sem- III)

Lecture No	Topics to be covered	Planned Dates	Actual Dates	Content Delivery Method/Learning Activities
	Ν	Iodule 1: Logic	•	
1	Propositional Logic	25/7/2022	25/7/2022	Class Room Teaching/ slides
2	Predicate Logic	26/7/2022	27/7/2022	Class Room Teaching/ slides
3	Laws of Logic	27/7/2022	28/7/2022	Class Room Teaching/ slides
4	Quantifiers, Normal Forms	1/8/2022	1/8/2022	Class Room Teaching/ slides
5	Inference Theory of Predicate Calculus	2/8/2022	2/8/2022	Class Room Teaching/ slides
6	Mathematical Induction.	3/8/2022	3/8/2022	Class Room Teaching/ slides and Self Learning Resources
	Module 2: R	elations and F	unctions	
7	Basic concepts of Set Theory	8/8/2022	8/8/2022	Self-Learning Resources Class Room Teaching/ slides
8	Relations: Definition, Types of Relations,	10/8/2022	10/8/2022	Class Room Teaching/ slides
9	Representation of Relations, Closures of Relations, Warshall's algorithm	17/8/2022	22/8/2022	Class Room Teaching/ slides
10	Equivalence relationsand Equivalence Classes	22/8/2022	23/8/2022	Class Room Teaching/ slides
11	Function s: Definition, Types of functions	23/8/2022	23/8/2022	Class Room Teaching/ slides
12	Composition of functions, Identity and Inverse function	24/8/2022	29/8/2022	Class Room Teaching/ slides

	Module	3: Posets and	Lattice	
13	Partial Order Relations	29/8/2022	30/8/2022	Class Room Teaching/ slides
14	Poset.	30/8/2022	12/9/2022	Class Room Teaching/ slides
15	Hasse Diagram	12/9/2022	13/9/2022	Class Room Teaching/ slides
16	Chain and Antichains	13/9/2022	14/9/2022	Class Room Teaching/ slides
17	Lattice, Types of Lattice, Sub lattice	14/9/2022	19/9/2022	Class Room Teaching/ slides
	Mo	dule 4: Counti	ng	
18	Basic Counting Principle-Sum Rule	19/9/2022	20/9/2022	Self Learning Resources
18	Product Rule	19/9/2022	20/9/2022	Class Room Teaching/ slides and Self Learning Resources
19	Inclusion-Exclusion Principle	20/9/2022	21/9/2022	Class Room Teaching/ slides
19	Pigeonhole Principle	20/9/2022	21/9/2022	Class Room Teaching/ slides
20	Recurrence relations, Solving recurrence relations	21/9/2022	26/9/2022	Class Room Teaching/ slides
20	Example on the recurrence relations	21/9/2022	26/9/2022	Class Room Teaching/ slides
		: Algebraic St	ructures	
21	Algebraic structures with one binary operation	26/9/2022	27/9/2022	Class Room Teaching/ slides
21	Semi group, Monoid	26/9/2022	27/9/2022	Class Room Teaching/ slides
22	Groups, Subgroups, Abelian Group	27/9/2022	28/9/2022	Class Room Teaching/ slides
23	Cyclic group	28/9/2022	3/10/2022	Class Room Teaching/ slides
23	Isomorphism	28/9/2022	3/10/2022	Class Room Teaching/ slides
24	Algebraic structures with two binary operations: Ring	3/10/2022	8/10/2022	Class Room Teaching/ slides
24	Coding Theory: Coding, binary information	3/10/2022	8/10/2022	Class Room Teaching/ slides
25	Error detection, decoding anderror correction	4/10/2022	8/10/2022	Class Room Teaching/ slides
	Modu	le 6: Graph Th	eory	
26	Types of graphs, Graph Representation	10/10/2022	10/10/2022	Self-Learning resources
27	Sub graphs, Operations on Graphs	11/10/2022	11/10/2022	Class Room Teaching/ slides
28	Walk, Path, Circuit	12/10/2022	11/10/2022	Class Room Teaching/ slides
28	Connected Graphs, Disconnected Graph	12/10/2022	11/10/2022	Class Room Teaching/ slides
29	Homomorphism of Graphs, Isomorphism	20/10/2022	12/10/2022	Class Room Teaching/ slides

30	Euler Graphs	21/10/2022	12/10/2022	Class Room Teaching/ slides
31	Hamiltonian Graphs	27/10/2022	27/10/2022	Class Room Teaching/ slides
31	Planar Graph with example,	27/ 10/2022	27/10/2022	Class Room Teaching/ slides
32	Graph Theory Applications. University Question paper solve	28/10/2022	28/10/2022	Class Room Teaching/ slides

No. of Lecture Conducted = 32

Submitted By	Approved By		
Prof. Supriya Kamoji	ii) Dr. Sujata Deshmukh	Sign:	
Sign:	ii) Dr. B. S. Daga	Sign:	
	iii) Prof. Merly Thomas	Sign:	
	iv) Prof. Roshni Padate	Sign:	
	v) Prof. Kalpana Deorukhkar	Sign:	
Date of Submission:	Date of Approval:		

END