Lesson Plan

Branch: COMP Semester IV

Year: 2022-23

Course Title:	SEE: 3 Hours – Theory
CSC401	
Total Contact Hours: 37 Hours	Duration of SEE: 3 Hrs
SEE Marks: 80 (Theory) + 20 (IA)	
Lesson Plan Author: Gauree Jagushte.	Date: 09/01/2023
Checked By:	Date: 22/04/2023

Prerequisites:

Pre-requisite:

Engineering Mathematics - I, Engineering Mathematics - II, Engineering Mathematics - III, Binomial Distribution

Syllabus:

Syllabus:

1. Linear Algebra (Theory of Matrices)

- Characteristic Equation, Eigenvalues and Eigenvectors and properties (without proof)
- Cayley-Hamilton Theorem (without proof), verification and reduction of higher degree polynomials
- Similarity of matrices, diagonalizable and non-diagonalizable matrices

2. Complex Integration

- Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof).
- Taylor's and Laurent's series (without proof)
- Definition of Singularity, Zeroes, poles of f(z), Residues, Cauchy's Residue Theorem (without proof)

3. Linear Programming Problems

- Types of solutions, Standard and Canonical of LPP, Basic and Feasible solutions, slack variables, surplus variables, Simplex method.
- Artificial variables, Big-M method (Method of penalty)
- Duality, Dual of LPP and Dual Simplex Method

4. Nonlinear Programming Problems

- NLPP with one equality constraint (two or three variables) using the method of Lagrange's multipliers
- NLPP with two equality constraints
- NLPP with inequality constraint: Kuhn-Tucker conditions

5. Probability Distribution and Sampling Theory

- Probability Distribution: Poisson and Normal distribution
- Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom
- Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table

6. Z Transform

- Definition and Region of Convergence, Transform of Standard Functions: . $\{k^n a^k\}, \{a^{|k|}\}, \{k+n, C, a^k\}, \{c^k \sin(ak+\beta)\}, \{c^k \sinh ak\}, \{c^k \cosh ak\}.$
- Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by k, Convolution theorem
- Inverse Z transform: Partial Fraction Method, Convolution Method.

Course Outcomes (CO):

On successful completion of course learner will be able to:

CSC401.	Apply the concepts of eigen values and
1	eigen vectors in engineering problems.
CSC401.	Use the concepts of Complex Integration for
2	evaluating integrals, computing residues &
	evaluate various contour integrals.
CSC401.	Apply the concept of Z- transformation and
3	its inverse in engineering problems.
CSC401.	Use the concept of probability distribution
4	and sampling theory to engineering
	problems.
CSC401.	Apply the concept of Linear Programming
5	Problems of optimization
CSC401.	Solve Non-Linear Programming Problems to
6	engineering problems of optimization.

CO-PO Mapping:(BL – Blooms Taxonomy, C – Competency, PI – Performance Indicator)

CO	BL	C	PO	Mapping
CSC401.1	2	1.6	PO	2
		1.7	1	
		2.1	PO	1
		2.5	2	
		2.7		
		2.8		
CSC401.2	4	1.2	PO	1
		1.7	1	
		2.5	PO	1
		2.6	2	
		2.8		
		3.6	PO	1
		3.7	1	
		4.4	PO	1
		4.5	1	
		4.6		
CSC401.3	3	1.2	PO	1
		1.7	1	

			r	,
		2.5	PO	1
		2.6	1	
		2.8		
		3.6	PO	1
		3.7	1	
		4.4	PO	1
		4.5	1	
CSC401.4	3	1.2	PO	2
		1.7	1	
		2.5	PO	2
		2.6	1	
		2.8		
		3.6	PO	2
		3.7	1	
		4.4	PO	2
			1	
CSC401.5	3	1.2	PO	2
		1.7	1	
		2.5	PO	1
		2.6	2	
		2.8		
		3.6	PO	2
		3.7	1	
		4.4	PO	2
			1	
CSC401.6	3	1.2	PO	2
		1.7	1	
		2.5	PO	1
		2.6	2	
		2.8		
		3.6	PO	2
		3.7	1	
		4.4	PO	2
			1	
			-	

Justification:

Above CO's are mapped to the following PO's as explained below:

- PO1: provide the complete basic mathematical knowledge required for
 - diagonalization of a matrix.
 - evaluating complex integral
 - evaluate Z and inverse Z transform.
 - probability theory and testing of hypothesis.
 - solving linear programming problem (LPP).
 - solving non-linear programming problem (NLPP).

Course	PO1	PO 2
CSC401.1	2	1

CSC401.2	1	1
CSC401.3	1	1
CSC401.4	2	1
CSC401.5	2	1
CSC401.6	2	1
TOTAL	10	6
Direct	1.67	1
Attainment	(M)	

CO-PSO Mapping:

СО	BL	С	PI	РО	Mapping
CSC401.1	2	1.6	1.5.1	PSO	2
		1.7	1.7.1	1	
		2.1	2.5.2	PSO	3
		2.5	2.5.3	2	

	PSO	PSO
	1	2
CSC401.1	3	
CSC401.2	3	
CSC401.3	3	
CSC401.4	3	2
CSC401.5	3	3
CSC401.6	3	

CO Measurement Weightages for Tools:

	Test	Lab	Assignment	SEE (O)	SEE (T)	Course Exit
						Survey
CSC401.1	20%		20%		60%	100%
CSC401.2	20%		20%		60%	100%
CSC401.3	20%		20%		60%	100%
CSC401.4	20%		20%		60%	100%
CSC401.5	20%		20%		60%	100%
CSC401.6	20%		20%		60%	100%

Attainment: CO CSC401.1: Direct Method

 $A_{\text{ECC401.1D}} = 0.2 * Test + 0.2 * Assignment + 0.6 * SEE _ Theory$ Final Attainment:

 $A_{\text{ECC401.1}} = 0.8 * A_{\text{ECC401.1D}} + 0.2 * A_{\text{ECC401.1I}}$

CO CSC401.2:

Direct Method

 $A_{\text{ECC401}D} = 0.2 * Test + 0.2 * Assignment + 0.6 * SEE _ Theory$ Final Attainment:

 $A_{\text{ECC401.2}} = 0.8 * A_{\text{ECC401.2D}} + 0.2 * A_{\text{ECC401.2I}}$

CO CSC401.3:

Direct Method $A_{\text{ECC401.3}} = 0.2 * Test + 0.2 * Assignment + 0.6 * SEE _ Theory$ Final Attainment: $A_{\text{ECC401.4}} = 0.8 * A_{\text{CSC703.2D}} + 0.2 * A_{\text{CSC703.2I}}$ **CO CSC401.4: Direct Method** $A_{\text{CSC704.2D}} = 0.2 * Test + 0.2 * Assignment + 0.6 * SEE _Theory$ Final Attainment: $A_{\rm CSC704.2} = 0.8 * A_{\rm CSC704.2D} + 0.2 * A_{\rm CSC704.2I}$ **CO CSC401.5**: **Direct Method** $A_{\text{ECC401.3}} = 0.2 * Test + 0.2 * Assignment + 0.6 * SEE _ Theory$ Final Attainment: $A_{\text{ECC401.4}} = 0.8 * A_{\text{CSC703.2D}} + 0.2 * A_{\text{CSC703.2I}}$ **CO CSC401.6:** Direct Method $A_{\rm ECC401.3} = 0.2 * Test + 0.2 * Assignment + 0.6 * SEE_Theory$ Final Attainment: $A_{\text{ECC401.4}} = 0.8 * A_{\text{CSC703.2D}} + 0.2 * A_{\text{CSC703.2I}}$

Course Level Gap (if any): Content beyond Syllabus:

Lecture	Plan:	(Theory)

Sr. no	Modul e	Contents	Hou rs	Planne d date	Actual date	Content Delivery Method	Remark
1	1	Linear Algebra (Theory of Matrices): Characteristic Equation,		09/01/2 023	09/01/2 023	Traditional	
2		Eigenvalues and Eigenvectors		11/01/2 023	11/01/2 023	Traditional	
3		Properties of Eigenvalues and Eigenvectors (without proof)		13/01/2 023	13/01/2 023	Traditional	
4		Cayley-Hamilton Theorem (without proof), verification		16/01/2 023	16/01/2 023	Traditional	
5		Reduction of higher degree polynomials	7	18/01/2 023	18/01/2 023	Traditional	
6		Similarity of matrices		20/01/2 023	20/01/2 023	Traditional	Lecture exchange with Jagruti Nagoankar
7		diagonalizable and non- diagonalizable matrices		23/01/2 023	23/01/2 023	Traditional	~~~~

0	2		7	25/01/2	25/01/2	
8	2	Complex Integration:	7	25/01/2	25/01/2	
0		Line Integral		023	023	
9		Cauchy's Integral theorem for		07/01/0	27/01/2	
		simple connected and multiply		27/01/2	27/01/2	
		connected regions (without		023	023	
10		proof)		01/02/2	01/02/2	
10		Cauchy's Integral formula		01/02/2	01/02/2	
		(without proof).		023	023	
11		Taylor's and Laurent's series		02/02/2	02/02/2	
		(without proof)		023	023	
12		Definition of Singularity,		03/02/2	03/02/2	
		Zeroes, poles of $f(z)$		023	023	
13		Residues		06/02/2	06/02/2	
				023	023	
14		Cauchy's Residue Theorem		08/02/2	08/02/2	
		(without proof)		023	023	
15	5	Types of solutions, Standard	6			
		and Canonical of LPP, Basic		09/02/2	09/02/2	
		and Feasible solutions, slack		023	023	
		variables, surplus variables				
16		Simplex method		10/02/2	10/02/2	
		<u>r</u>		023	023	
17		Artificial variables, Big-M				Tutorial
- /		method (Method of penalty)		15/02/2	13/02/2	conducted as
		meanou (meanou or penancy)		023	023	lecture
18		Duality		16/02/2	15/02/2	locture
10		Duality		023	023	
19		Dual of LPP		023	025	17/2/23
17						Lecture
				17/02/2	16/02/2	cancelled due
				023	023	to Python
						workshop
20		Dual Simplex Method		22/02/2	22/02/2	workshop
20				023	023	
21	6	NLPP with one equality	7	025	025	
<i>∠</i> 1	U	constraint (two or three	/	23/02/2	23/02/2	
				023	023	
		variables) using the method of		023	025	
22		Lagrange's multipliers-I				
22		NLPP with one equality		24/02/2	24/02/2	
		constraint (two or three		24/02/2	24/02/2	
		variables) using the method of		023	023	
		Lagrange's multipliers-II				
23		NLPP with two equality		15/03/2	13/03/2	
		constraints-I		023	023	
24		NLPP with two equality		16/03/2	15/03/2	
		constraints-II		023	023	
25					0_0	
23		NLPP with inequality constraint: Kuhn-Tucker		17/03/2	16/03/2	
		constraint: Kunn-Tucker conditions-I		023	023	
		conditions-1				

26		NLPP with inequality constraint: Kuhn-Tucker conditions-II		23/03/2 023	17/03/2 023	
27		NLPP with inequality constraint: Kuhn-Tucker conditions-III		24/03/2 023	23/03/2 023	
28	4	Probability Distribution: Poisson distribution	5	29/03/2 023	24/03/2 023	PARIDHAN
29		Probability Distribution: Normal distribution		30/03/2 023	03/04/2 023	RAMNAVM I
30		Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom.		31/03/2 023	05/04/2 023	ANNUAL DAY
31		Students' t-distribution (Small sample). Test the significance of mean		05/04/2 023	06/04/2 023	
32		Students' t-distribution (Small sample). Test the Difference between the means of two samples.		06/04/2 023	10/04/2 023	
33		Chi-Square Test: Test of goodness of fit		07/04/2 023	13/04/2 023	
34		Chi-Square Test: Independence of attributes, Contingency table-II		06/04/2 023	15/04/2 023	EXTRA SESSION
35	3	Definition and Region of Convergence, Transform of Standard Functions: $\{k^n a^k\}, \{a^{ k }\}, \{k^{+n}, a^k\}, \{c^k \sin(ak + \beta)\}, \{c^k \sinh ak\}, \{c^k \cosh ak\},$	5	10/04/2 023	20/04/2 023	EXTRA SESSION
36		Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by k, Convolution theorem.		12/04/2 023	21/04/2 023	EXTRA SESSION
37		. Inverse Z transform: Partial Fraction Method, Inverse Z transform: Convolution Method.		13/04/2 023	22/4/20 23	EXTRA SESSION

Tutorial Plan: (Theory)

Tutorial No.	Contents	Hours	Planned date	Actual date	Remark
1	Linear Algebra	1	30/01/2023	30/01/2023	

2	Complex Integration	1	16/02/2023	20/02/2023	
3	LPP	1	20/03/2023	20/03/2023	
4	NLPP	1	15/04/2023	15/04/2023	Home Assignment
5	Probability	1	17/04/2023	17/04/2023	Home Assignment
6	Z transform	1	20/04/2023	20/04/2023	Home Assignment

Text Books:

1. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons.

2. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa **Reference Books:**

1. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons.

2. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa **Web References:**

1. 2.

Evaluation Scheme

CIE Scheme

Internal Assessment: 20 (Average of two tests)

Internal Assessment Scheme

Module		Lectur	No. of questions in			No. of
		e	Test 1	Test 2	Test 3*	questions in
		Hours				SEE
1	Linear Algebra	7	01 (5	-		
			marks)			
2	Comp;ex Integration	7	02 (10	-		
			Marks)			
3	Z Transform:	5		01 (5		
				marks)		
4	Probability	7		02 (10		
	Distribution			Marks)		
5	Linear Programming	6	01 (5	01 (5		
	Problems		marks)	marks)		
6	Nonlinear	7	-			
	Programming					
	Problems:					

Note: Four questions will be set in the Test paper

Verified by:

Gagushte.

Subject Expert: Gauree Jagushte.

Programme Coordinator