FR. Conceicao Rodrigues College Of Engineering Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering (2022-2023) <u>Course Outcomes & Assessment Plan</u>

CLASS-SEM: T.E.- V

COURSE NAME: *Data warehouse and mining* (DWM) 3+1=4

TOTAL CREDITS:

Course Code	Course Name	Credits
CSC504	Data Warehousing and Mining	3

Lab Code	Lab Name	Credits
CSL503	Data Warehousing and Mining	1
	Lab	

Professor : Prof.Kranti Wagle

PAC Members:	Head Of Department:
Dr.Daga	Dr.Sujata Deshmukh

Department of Computer Engineering Academic Term: Jul-Dec (2022-2023) T.E. (Computer) (semester V)

Course Outcomes & Assessment Plan

Syllabus:

Module	Content	Hrs
1	Data Warehousing Fundamentals	8
	Introduction to Data Warehouse, Data warehouse architecture, Data warehouse versus Data Marts, E-R Modeling versus Dimensional Modeling, Information Package Diagram, Data Warehouse Schemas; Star Schema, Snowflake Schema, Factless Fact Table, Fact Constellation Schema. Update to the dimension tables. Major steps in ETL process, OLTP versus OLAP, OLAP operations: Slice, Dice, Rollup, Drilldown and Pivot.	
2	Introduction to Data Mining, Data Exploration and Data Pre-processing	8
	Data Mining Task Primitives, Architecture, KDD process, Issues in Data Mining, Applications of Data Mining, Data Exploration: Types of Attributes, Statistical Description of Data, Data Visualization, Data Preprocessing: Descriptive data summarization, Cleaning, Integration & transformation, Data reduction, Data Discretization and Concept hierarchy generation.	
3	Classification	6
	Basic Concepts, Decision Tree Induction, Naïve Bayesian Classification, Accuracy and Error measures, Evaluating the Accuracy of a Classifier: Holdout & Random Subsampling, Cross Validation, Bootstrap.	
4	Clustering	6
	Types of data in Cluster analysis, Partitioning Methods (k-Means, k-Medoids), Hierarchical Methods (Agglomerative, Divisive).	
5	Mining frequent patterns and associations	6
	Market Basket Analysis, Frequent Item sets, Closed Item sets, and Association Rule, Frequent Pattern Mining, Apriori Algorithm, Association Rule Generation, Improving the Efficiency of Apriori, Mining Frequent Itemsets without candidate generation, Introduction to Mining Multilevel Association Rules and Mining Multidimensional Association Rules.	

0	Web Mining	5	
	Introduction, Web Content Mining: Crawlers, Harvest System, Virtual Web View,		
	Personalization, Web Structure Mining: Page Rank, Clever, Web Usage Mining.		
Textboo	Textbooks:		

1	 Paulraj Ponniah, "Data Warehousing: Fundamentals for IT Professionals", Wiley India. 	
2	Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 2nd edition.	
3	3 M.H. Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education.	
References:		
1	Reema Theraja, "Data warehousing", Oxford University Press 2009.	
2	Pang-Ning Tan, Michael Steinbach and Vipin Kumar, "Introduction to Data Mining",	
	Pearson Publisher 2 nd edition.	
3	Ian H. Witten, Eibe Frank and Mark A. Hall, "Data Mining", Morgan Kaufmann 3rd edition.	

Text Books:

- 1. PaulrajPonniah, —Data Warehousing: Fundamentals for IT Professionals, Wiley India.
- 2. Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3rd edition.
- 3. ReemaTheraja Data warehousing I, Oxford University Press.
- 4. M.H. Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education.

Reference Books:

1. Ian H. Witten, Eibe Frank and Mark A. Hall " Data Mining ", 3rd Edition Morgan kaufmann publisher.

2. Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Introduction to Data Mining", Person Publisher.

3. R. Chattamvelli, "Data Mining Methods" 2nd Edition NarosaPublishing House.

Lab Code	Lab Name	Credit
CSL503	Data Warehousing and Mining Lab	1

Prerequisite: Database Concepts

Lab Ob	jectives:
--------	-----------

Learn how to build a data warehouse and query it.

Learn about the data sets and data preprocessing.

3. Demonstrate the working of algorithms for data mining tasks such Classification,

clustering, Association rule mining & Web mining

4. Apply the data mining techniques with varied input values for different parameters.

5. Explore open source software (like WEKA) to perform data mining tasks.

Lab Outcomes: At the end of the course, the student will be able to

Design data warehouse and perform various OLAP operations.

Implement data mining algorithms like classification.

3. Implement clustering algorithms on a given set of data sample.

4. Implement Association rule mining & web mining algorithm.

Suggested List of Experiments

	uggested LEt of Experiments		
Sr. No.	Title of Experiment		
1	 One case study on building Data warehouse/Data Mart Write Detailed Problem statement and design dimensional modelling (creation of star and snowflake schema) 		
2	Implementation of all dimension table and fact table based on experiment 1 case study		
3	Implementation of OLAP operations: Slice, Dice, Rollup, Drilldown and Pivot based on experiment 1 case study		
4	Implementation of Bayesian algorithm		
5	Implementation of Data Discretization (any one) & Visualization (any one)		
6	Perform data Pre-processing task and demonstrate Classification, Clustering, Association algorithm on data sets using data mining tool (WEKA/R tool)		
7	Implementation of Clustering algorithm (K-means/K-medoids)		
8	Implementation of any one Hierarchical Clustering method		
9	Implementation of Association Rule Mining algorithm (Apriori)		
10	Implementation of Page rank/HITS algorithm		

Term Work:

	Based on the entire syllabus of CSC504 : Data Warehousing and Mining	
Oral	Oral & Practical exam	
4	Total 25 Marks (Experiments: 15-marks, Attendance (Theory & Practical): 05-marks, Assignments: 05-marks)	
	The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.	
	Journal must include at least 1 assignment on content of theory and practical of "Data Warehousing and Mining"	
	Term work should consist of 10 experiments.	

Course Objectives (optional):

Course Code:	Course Title	Credit
CSC504	Data Warehousing and Mining	3

D	erequisite: Database Concepts		
	Course Objectives:		
1.	To identify the significance of Data Warehousing and Mining.		
2.	To analyze data, choose relevant models and algorithms for respective applications.		
3.	To study web data mining.		
4.	To develop research interest towards advances in data mining.		
Co	Course Outcomes: At the end of the course, the student will be able to		
1.	Understand data warehouse fundamentals and design data warehouse with dimensional modelling and apply OLAP operations.		
2.	Understand data mining principles and perform Data preprocessing and Visualization.		
з.	Identify appropriate data mining algorithms to solve real world problems.		
4.	Compare and evaluate different data mining techniques like classification, prediction, clustering and association rule mining		
5.	Describe complex information and social networks with respect to web mining.		

Course Outcomes: At the end of this course students should be able to

Co-code	СО	Blooms Taxonomy	Explanation
CSC504.1	Understand Data Warehouse and Data Mining principles	Comprehension (explains, examples, relationship of)	Understand the architecture of variant Warehouse systems.
CSC504.2	Design data warehouse with dimensional modeling and apply OLAP operations	Application (applies, solves , uses, demonstrates)	Facilitating representations for data models for data warehouse
CSC504.3	Demonstrate data mining principles and perform Data preprocessing and Visualization	Knowledge (defines, describes, recalls, labels, lists, matches, names)	Describe & Inference based on Classification process
CSC504.4	Compare and evaluate different data mining techniques like classification, prediction, clustering and association rule mining	Application (applies, solves, uses, demonstrates) Synthesis(combines, compiles, composes, creates, devises, designs, diverse elements)	Analyzing Clustering as problem solving methods Application by integrating principles of Association Rules& implementation
CSC504.5	Describe complex data types wrt to special and web mining	Comprehension (explains, gives examples, shows relationship of)	Understanding architecture of variant DM systems
CSC504.6	Benefit the user experiences towards research and innovation.	Create(Adapt, Build, Change, Choose)	Apply DM algorithms and concepts to solve real world problems to find pattern/knowledge or proposing alternative solutions.

Lab Outco	Lab Outcome: At the end of this course students should be able to					
Co-code	СО					
CSL503.1	1. Design data warehouse and perform various OLAP operations.					
CSL503.2	2. Implement data mining algorithms like classification.					
CSL503.3	3. Implement clustering algorithms on a given set of data sample.					
CSL503.4	4. Implement Association rule mining & web mining algorithm					

Lab Outcome: At the end of this course students should be able to

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	PO1 (Eng g Kno w)	PO2 (Ana)	PO 3 (De sign)	PO4 (inv e stiga)	PO5 (tools)	PO6 (eng g Soci)	PO7 (En v)	PO8 (Eth)	PO9 (ind Team)	PO10 (comm.)	PO1 1 (PM)	PO1 2 (life Lon g)
CSC504. 1	3	-										
CSC504. 2	3	3	3		2	1	1					3
CSC504. 3	3	3	3		3	1	1					3
CSC504. 4	3	3	3		3	1	1					3
CSC504. 5	3	3	3		3	1	1					3
CSC504. 6	3	3	3			2	2					3
Course To PO	3	3	3		2.75	1.2	1.2					3

СО	PSO1	PSO2
CSC504.1	3	
CSC504.2	3	
CSC504.3	3	
CSC504.4	3	
CSC504.5	3	
CSC504.6	2	

FR. Conceicao Rodrigues College Of Engineering Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Computer Engineering (2022-2023) Lesson Plan

CLASS-SEM: T.E.- V SUBJECT: Data warehouse and mining (DWM)

Credits-4 **SUBJECT CODE- CSC504**

Professor : Prof.Kranti K.Wagle

Modes of Content Delivery:

i	Blackboard	V	Self Learning Online	Ix	Industry Visit
	Teaching		Resources		
ii	Tutorial	vi	Slides, PPT	X	Group
					Discussion
iii	Remedial Coaching	vii	Simulations/Demonstrations	xi	Seminar
iv	Lab Experiment	viii	Expert Lecture	xii	Case Study

Lect. No.	Chap .no	Portion to be covered	Planned date	Actual date	Content Delivery Method/Learnin g Activities
1	1.1	Prerequisite, CO Discussion Moving Distributed DBMS to DWM-The Need for Data Warehousing; Increasing Demand for Strategic Information; Inability of Past Decision Support System; Operational V/s Decisional Support System;	18/7/2022	19/7/2022 (Exchanged with CN)	Blackboard Teaching,PPT
2	1.2	Introduction to Data Warehouse, Data warehouse architecture, Data warehouse versus Data Marts, Different approaches and layered Architecture	21/07/2022	21/07/2022	Blackboard Teaching,PPT
3	1.3	E-R Modeling versus Dimensional Modeling, Information Package Diagram, Data Warehouse Schemas; Star Schema, Snowflake Schema, Factless Fact Table, Fact Constellation Schema. Update to the dimension tables.	22/07/2022	22/07/2022	Blackboard Teaching,PPT
4	1.4	OLTP versus OLAP, OLAP operations: Slice, Dice, Rollup, Drilldown and Pivot. OLAP Models: MOLAP, ROLAP, HOLAP, DOLAP, Definition of Schema using DMQL, Examples on OLAP	25/07/2022	25/07/2022	Blackboard Teaching,PPT

5	1.5	Data Warehouse Modeling Vs Operational Database Modeling; Dimensional Model Vs ER Model; Features of a Good Dimensional Model; The Star Schema; How Does a Query Execute?	28/7/2022	26/7/2022 (Exchanged)	Blackboard Teaching,PPT
6	1.6	Keys in DW, Snowflake Schema, Fact Constellation Schema or Families of Star.	29/07/2022	28/7/2022	Blackboard Teaching,PPT
7	1.7	The Factless Fact, Table; Aggregate Table, Updates To Dimension Tables: Slowly Changing Dimensions, Type 1 Changes, Type 2 Changes, Type 3 Changes, Large Dimension Tables, Rapidly Changing or Large Slowly Changing Dimensions, Junk Dimensions	1/08/2022	2/08/2022 (IIC 4.0 Regional Meet)	Blackboard Teaching,PPT
8	1.8	Major steps in ETL process, Challenges in ETL Functions; Data Extraction; Identification of Data Sources, Issues in Data Cleansing, Extracting Data: Immediate Data Extraction, Deferred Data Extraction Data Transformation: Tasks Involved in Data Transformation	2/08/2022	5/08/2022	Blackboard Teaching,PPT
9	2.1	What is Data Mining; Knowledge Discovery in Database (KDD), What can be Data to be Mined, Related Concept to Data Mining, Data Mining Task Primitives, Architecture, KDD process, Issues in Data Mining, Applications of Data Mining, Comparison of DM with ML and BDA	5/08/2022	8/08/2022	Blackboard Teaching,PPT
10	2.2	Data Exploration: Types of Attributes, Statistical Description of Data,	8/08/2022	11/08/2022 (exchanged)	Blackboard Teaching,PPT
11	2.3	Data Visualization; Measuring similarity and dissimilarity	12/08/2022 (9 th Holiday)	22/08/2022	Blackboard Teaching,PPT

		T	th th	1	
			15 th ,16 th 19 th		
			(Holiday)		
12	2.4	Data Preprocessing: Descriptive data summarization, Cleaning, Integration & transformation, Data reduction,	22/08/2022	23/08/2022	Blackboard Teaching,PPT
13	2.5	Data exploration: Types of Attributes; Statistical Description of Data;	23/08/2022	26/08/2022	Blackboard Teaching,PPT
14	2.6	Why Preprocessing? Data Cleaning; Data Integration; Data Reduction: Attribute subset selection, Histograms, Clustering and Sampling	26/08/2022	26/08/2022	Blackboard Teaching,PPT
15	2.7	Data Transformation & Data Discretization: Normalization	29/08/2022	29/08/2022	Blackboard Teaching,PPT
16	2.8	Data Discretization and Concept hierarchy generation Binning, Histogram Analysis and Concept hierarchy generation and description	30/08/2022 Absent	12/09/2022	Blackboard Teaching,PPT
17	3.1	Basic Concepts, Decision Tree Induction: Attribute Selection Measures, Tree pruning.	12/09/2022	13/09/2022	Blackboard Teaching,PPT
18	3.2	Decision Tree Induction and problems	13/09/2022	16/09/2022	Blackboard Teaching,PPT
20	3.3	Naïve Bayesian Classification and problems	16/09/2022	19/9/2022	Blackboard Teaching,PPT
20	3.4	Naïve Bayesian Classification, Accuracy and Error measures,	19/9/2022	20/9/2022	Blackboard Teaching,PPT
21	3.5	Model Evaluation & Selection: Accuracy and Error measures, Holdout, Random Sampling, Cross Validation, Bootstrap.	20/9/2022	22/9/2022	Blackboard Teaching,PPT
22	3.6	Problems based on classification	23/9/2022	26/9/2022	Blackboard Teaching,PPT
23	4.1	What is clustering? Types of data, Partitioning Methods (K-Means)	26/9/2022	29/09/2022	Blackboard Teaching,PPT
24	4.2	Partitioning Methods (KMedoids)	27/09/2022	29/09/2022	Blackboard Teaching,PPT

	1		1		
25	4.3	Hierarchical Methods(Agglomerative , Divisive, BRICH),	30/09/2022	30/09/2022	Blackboard Teaching,PPT
26	4.4	Hierarchical Methods(Agglomerative , Divisive, BRICH),	3/10/2022	3/10/2022	Blackboard Teaching,PPT
27	4.5	Problems based on clustering	4/10/2022	4/10/2022	Blackboard Teaching,PPT
28	4.6	Comparison of clustering with classification and more problems	7/10/2022	7/10/2022	Blackboard Teaching,PPT
29	5.1	Market Basket Analysis, Frequent Item sets, Closed Item sets, and Association Rule, Frequent Pattern Mining,	10/10/2022	10/10/2022	Blackboard Teaching,PPT
30	5.2	The Apriori Algorithm for finding Frequent Itemsets Using Candidate Generation	11/10/2022	11/10/2022	Blackboard Teaching,PPT
31	5.3	Generating Association Rules from Frequent Itemsets, Improving the Efficiency of Apriori,	14/10/2022	14/10/2022	Blackboard Teaching,PPT
32	5.4	A pattern growth approach for mining Frequent Itemsets; Mining Frequent itemsets using vertical data formats; Mining closed and maximal patterns;	21/10/2022	21/10/2022	Blackboard Teaching,PPT
33	5.5	From Association Mining to Correlation Analysis, Pattern Evaluation Measures;	21/10/2022	21/10/2022	Blackboard Teaching,PPT
34	5.6	Introduction to Mining Multilevel Association Rules and Multidimensional Association Rules;	27/10/2022	27/10/2022	Blackboard Teaching,PPT
35	6.1	Introduction, Web Content Mining: Crawlers, Harvest System, Virtual Web View, Personalization,	27/10/2022	27/10/2022	Blackboard Teaching,PPT
36	6.2	Web Structure Mining: Page Rank and its Problems, Clever,	28/10/2022	28/10/2022	Blackboard Teaching,PPT

37	6.3	Web Structure Mining: Page Rank and its Problems, Clever	28/10/2022	28/10/2022	Blackboard Teaching,PPT		
EVAI	EVALUATION PRESENTATION						
41	r.1	BATCH1	27/10/2022	27/10/2022	Presentation		
42	r.2	BATCH2	28/10/2022	28/10/2022	Presentation		
43	r.3	BATCH3	29/10/2022	29/10/2022	Presentation		
44	r.4	BATCH4	31/10/2022	31/10/2022	Presentation		

Online Resources :

1) https://www.tutorialspoint.com/dwh/ (weak students)

2) https://www.coursera.org/learn/dwdesign

3 https://sites.google.com/site/dataminingandbisem6/home/materials/notes

4) https://www.postgresql.org/docs/9.5/cube.html, grouping sets, rollup

5) https://www.postgresql.org/docs/9.5/cube.html (Strong students)

6) https://www.kaggle.com/kernals (Strong students)

<u>NPTEL :: Computer Science and Engineering - NOC:Data Mining</u> Data Mining | Sloan School of Management | MIT OpenCourseWare

Online Resources for datasets:

- 1. https://storm.cis.fordham.edu/~gweiss/data-mining/datasets.html- Sample Weka Data Sets
- 2. https://storm.cis.fordham.edu/~gweiss/data-mining/weka-data/contact-lenses.arff
- 3. http://repository.seasr.org/Datasets/UCI/arff/
- 4. <u>https://www.kaggle.com/datasets</u>
- 5. Stanford Large Network Dataset Collectionhttps://snap.stanford.edu/data/(strong students)

LAB PLAN

Sr.	No. Title of	Batch A	Batch B	Batch C	Batch D
no	Experiments				
•					
1	Build Data	3/08/22	5/8/22	4/8/22	2/8/22
	Warehouse/Data Mart				
	for a given problem statement				
2	To perform various	17/8/22	12/8/22	18/8/22	23/8/22
2	OLAP operations such	17/0/22	12/0/22	10/0/22	23/0/22
	as slice, dice,				
	drilldown, rollup,				
	pivot				
3	To perform data	24/8/22	26/8/22	25/8/22	30/8/22
	exploration and data				
	cleaning in python /R				
4	Implementation of	14/9/22	16/9/22	8/9/22	30/8/22
	Association Rule				
	Mining algorithm (Apriori)				
5	Implementation of	21/9/22	23/9/22	15/9/22	13/9/22
	Clustering algorithm			13/ 1/22	13/ 7/ 22
	(K-means/K-medoids)				
6	Linear Regression	28/9/22	30/9/22	22/9/22	20/9/22
7	Hierarchial Clustering	28/9/22	30/9/22	29/9/22	27/9/22
8	Implementation of	12/10/22	7/10/22	6/10/22	4/10/22
	Bayesian algorithm				
9	Perform data Pre-	12/10/22	7/10/22	13/10/22	4/10/22
	processing task and				
	Demonstrate				
	performing Classification				
	Classification, Clustering,				
	Association algorithm				
	on data sets using data				
	mining tool (WEKA/R				
	tool)				
10	Implementation of	20/10/22	14/10/22	20/10/22	11/10/22
	Page rank/HITS				
	algorithm				
11	Text Summarisation	21/10/22	21/10/22		18/10/22