Lesson Plan

T.E. (CE- Section A) (Semester V)

Subject: SOFTWARE ENGINEERING

Subject code: CSC502

Teacher-in-charge: Dr. B. S. Daga

Academic Term: July – November 2022

Module		Content	Hrs
1		Introduction To Software Engineering and Process Models	7
	1.1	Nature of Software, Software Engineering, Software Process, Capability	
		Maturity Model (CMM)	
	1.2	Generic Process Model, Prescriptive Process Models: The	
		Waterfall Model, V-model, Incremental Process Models,	
		Evolutionary Process Models, Concurrent Models, Agile process,	
		Agility Principles, Extreme Programming (XP), Scrum, Kanban	
		model	
2		Requirements Analysis and Modelling	4
	2.1	Requirement Elicitation, Software requirement specification (SRS),	
		Developing Use Cases (UML)	
	2.2	Requirement Model – Scenario-based model, Class-based model, Behavioural	
		model.	
3		Project Scheduling and Tracking	7
	3.1	Management Spectrum, 3Ps (people, product and process)	
	3.2	Process and Project metrics	
	3.3	Software Project Estimation:LOC, FP, Empirical Estimation Models -	
	2.4		
	5.4	charts, Tracking the Schedule, Earned Value Analysis	
4		Software Design	7
	4.1	Design Principles, Design Concepts, Effective Modular Design – Cohesion and Coupling	
	4.2	Architectural Design	
	4.3	Component-level design	
	4.4	User Interface Design	
5		Software Risk, Configuration Management & Quality Assurance	7
	5.1	Risk Identification, Risk Assessment, Risk Projection, RMMM	
	5.2	Software Configuration management, SCM repositories, SCM process	

	5.3	Software Quality Assurance Task and Plan, Metrics, Software Reliability,	
		Formal Technical Review (FTR), Walkthrough	
6		Software Testing and Maintenance	7
	6.1	Strategic Approach to Software Testing, Unit testing, Integration testing,	
		Verification, Validation Testing, System Testing	
	6.2	Software Testing Fundamentals, White-Box Testing, Basis Path Testing,	
		Control Structure Testing, Black-Box Testing	
	6.3	Software maintenance and its types, Software Re-engineering, Reverse	
		Engineering	

Course Objectives:

- 1. To provide knowledge of software engineering discipline.
- 2. To analyze risk in software design and quality.
- 3. To introduce the concept of advance software methodology

Course Outcomes:

Upon completion of this course students will be able to:

CSC502.1: Identify requirements & assess the process models.

CSC502.2: Plan, schedule and track the progress of the projects.

CSC502.3: Design the software projects.

CSC502.4: Do testing of software project.

CSC502.5: Identify risks, manage the change to assure quality in software projects

CO-PO-PSO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CSC502.1		1												
CSC502.2										1	1			
CSC502.3			1											
CSC502.4				1										
CSC502.5							1							

Provide justification of PO to CO mapping

Course Outcome	Competency	Performance Indicator
CSC502.1	2.1 Demonstrate an ability to identify and formulate complex engineering problem	2.1.2 Identify processes/modules of a computer-based system and parameters to solve a problem
	2.2 Demonstrate an ability to	2.2.4 Compare and contrast alternative

	formulate a solution plan and methodology for an engineering problem	 solution/methods to select the best methods 2.2.5 Compare and contrast alternative solution processes to select the best process. 2.3.1 Able to apply computer engineering 			
	formulate and interpret a model	principles to formulate modules of a system with required applicability and performance.			
CSC502.2	10.1 Demonstrate an ability to comprehend technical literature and document project work	 10.1.1 Read, understand and interpret technical and non-technical information 10.1.2 Produce clear, well-constructed, and well-supported written engineering documents 10.1.3 Create flow in a document or presentation – a logical progression of ideas so that the main point is clear 			
	11.3 Demonstrate an ability to plan/manage an engineering activity within time and budget constraints	 11.3.1 Identify the tasks required to complete an engineering activity, and the resources required to complete the tasks. 11.3.2 Use project management tools to schedule an engineering project, so it is completed on time and on budget. 			
CSC502.3					

	3.4 Demonstrate an ability to advance an engineering design to defined end state	 3.4.1 Able to refine architecture design into a detailed design within the existing constraints. 3.4.2 Able to implement and integrate the modules. 3.4.3 Able to verify the functionalities and validate the design.
CSC502.4		
	4.3 Demonstrate an ability to analyze data and reach a valid conclusion	 4.3.1 Use appropriate procedures, tools and techniques to and analyze collect data 4.3.2 Critically analyze data for trends and correlations, stating possible errors and limitations 4.3.3 Represent data (in tabular and/or graphical forms) so as to facilitate analysis and explanation of the data, and drawing of conclusions 4.3.4 Synthesize information and knowledge about the problem from the raw data to reach appropriate conclusions
CSC502.5	7.1 Demonstrate an understanding of the impact of engineering and industrial practices on social, environmental and in economic contexts	7.1.1 Identify risks/impacts in the life-cycle of an engineering product or activity7.1.2 Understand the relationship between the technical, socio-economic and environmental dimensions of sustainability

CO Assessment Tools:

Course	Indirect Method (20%)							
Outcomes	Unit Test	Assignment	Practical	End Sem Exam (T)	End SemCourse exitExam (Oral)survey			
	1	1	1					
CSC502.1	20%	20%	20%	20%	20%	100%		

CSC502.2	20%	20%	20%	20%	20%	100%
CSC502.3	20%	20%	20%	20%	20%	100%
CSC502.4	20%	20%	20%	20%	20%	100%
CSC502.5		30%	30%	20%	20%	100%

CO calculation= (0.8 *Direct method + 0.2*Indirect method)

Rubrics for assessing Course Outcome with each assessment tool:

Assignments:

Indicator	Average	Good	Excellent	Marks
Organization (2)	Readable with some mistakes and structured (1)	Readable with some mistakes and structured (1)	Very well written and structured (2)	
Level of content(4)	Minimal topics are covered with limited information (2)	Limited major topics with minor detailsare presented(3)	All major topics with minor details are covered (4)	
Depth and breadth of discussion(4)	Minimal points with missing information (1)	Relatively more points with information (2)	All points with in depth information(4)	
Total Marks(10)				

Curriculum Gap identified:

Non Algorithmiccost estimation techniques

Content beyond syllabus:

Non Algorithmic cost estimation techniques

Modes of content delivery

Modes of Delivery	Brief description of content delivered					
Class room lecture	1. Introduction To Software Engineering and Process					

	 Models 2. Requirements Analysis and Modeling 3. Software projects Design 4. Software testing 5. Software Quality Assurance
Assignments	Assignment 1 is based on : CO1Introduction To Software Engineering and Process Models CO2 Requirements Analysis and Modeling Assignment 2 is based on : CO 3: Design the software projects. CO 4: Do testing of software project. CO 5: Identify risks, manage the change to assure quality in software projects.
Quizzes	Quiz 1:1. Process Models2. Requirements Analysis and Modeling3. Software Project DesignQuiz 2:1. Software project testing2. Risks, change management3. Software quality assurance.

Text books:

- 1. T1. Roger Pressman, Software Engineering: A Practitioners Approach, (6th Edition),McGraw Hill, 2010
- 2. T2. Ian Somerville, Software Engineering, 9th edition, Addison Wesley, 2011

Reference Books:

- 3. R1. Eric J. Braude and Micheal E. Bernstein, Software Engineering Modern Approach, 2ndedition, Wiley, 2011.
- 4. R2. Ali Behforooz Fredrick Hudson, Software Engineering Fundamentals, Oxford UniversityPress, 2006.
- 5. R3. PankajJalote, "IntegratedSoftware Engineering", Wiley.

Lesson Plan

<u> </u>	a				(1) ~					
CLAS	S			TE Computer Engineeri	TE Computer Engineering (A), Semester V					
Acade	mic Tern	1		July- October 2022	July- October 2022					
Subjec	ct			Software Enginee	Software Engineering (CSC502)					
Peri	ods (Hou	rs) per week		Lecture	Lecture 3					
				Practical	2					
				Tutorial						
1	Evaluatio	n System			Hours	s Marks				
				Theory examination	3	80				
				Internal Assessment		20				
				Practical/Oral Examination		25				
				Term work		25				
				Total		100				
	Time	Table		Day		Time				
			Tuesda	ay		2.30-3.30 PM				
			Wedne	esday		9.45-10.45 AM				
				ay	1.30-2.30 PM					
Cour	<u>se Con</u>	<u>tent and L</u>	<u>esson pl</u>	an						
Week	Lecture No	Da	ite	Торіс						
	110.	Planned	Actual			Remarks				
		Module	1: Intro	duction To Software Engineering a	and Process M	Aodels				
	1	18-07-22		Nature of Software, Software Er	ngineering,					
	2	20-07-22		Software Process, Capability Ma						
				Model (CMM)						
	3	21-07-22		Generic Process Model,						
	4	25-07-22		Prescriptive Process Models:The	e Waterfall					
				Model,						
	5	27-07-22		V-model, Incremental Process N						
	6	28-07-22		Evolutionary Process Models, C						
				Models,						
	7	02-08-22		Agile process, Agility Principles						
				Programming (XP), Scrum, Kan	ban model					
			M	odule 2: Requirements Analysis and	d Modelling					
	8	03-08-22	26-07-22	Requirement Elicitation, Softwa	re					
				requirement specification (SRS)						
9 04-08-22 27-07-22 Developing Use Cases (UML)										
10 05-08-22 29-07-22 Requirement Model – Scenari				based						
1110-08-22Class-based model, Behavioral model.					nodel.					
	I	I	Mo	lule 3: Project Scheduling and Tra	cking					
	13	11-08-22	19-08-22	Management Spectrum, 3Ps (per	Management Spectrum, 3Ps (people,					
				product and process)						

	14	12-08-22	Process and Project metrics					
	15	17-08-22	Software Project Estimation: LOC, 1	FP,				
			Empirical Estimation Models - COCO	MO				
			II Model,					
	16	18-08-22	Empirical Estimation Models - COCO	MO				
			II Model, Specialized Estimation					
			Techniques					
	17	23-08-22	Project scheduling: Defining a Task	Set				
			for the Software Project, Timeline cha	rts,				
	18	24-08-22	Timeline charts, Tracking the Schedul	2,				
	19	25-08-22	Earned Value Analysis	Assignment 01				
	Module 4: Software Design							
	20	30-08-22	Design Principles, Design Concepts,					
	21	08-09-22	Effective Modular Design – Cohesion	and				
	22	13_00_22	Architectural Design					
	22	13-07-22						
	23	14-09-22	Component-level design					
	24	15-09-22	Component-level design					
	25	20-09-22	User Interface Design					
	26	Module 5	Software Risk, Configuration Management & Qu	ality Assurance				
	26	21-09-22	Risk Identification, Risk Assessment,					
	27	22-09-22	Risk Projection, RMMM					
	28	23-09-22	Software Configuration management,	SCM				
	20	27.00.22	Software Quality Assurance Task and	Dlan				
	30	27-09-22	Metrics Software Reliability	Assignment 02				
	31	29-09-22	Formal Technical Review (FTR)					
	51	25 05 22	Walkthrough.					
Module 6: Software Testing and Maintenance								
	32	4-10-22	Strategic Approach to Software Testin	σ				
			Unit testing,	D'				
	33	6-10-22,	Integration testing, Verification, Valid	ation				
		11-10-22	Testing, System Testing					
	35	12-10-22	Software Testing Fundamentals. White	e-Box				
			Testing,					
	36	13-10-22	Basis Path Testing, Control Structure					
			Testing,					
	37	20-10-22	Black-Box Testing, Software maintena	ince				
		(2)	and its types,					
	39	21-10-22	Software Re-engineering, Reverse	Quiz 2				
			Engineering					
	40	28-10-22	Problem solving and case study					
	70	20 10-22	r robenn sorving and case study					

	42		UT1: 5-09 to 07-09
			UT2 – 17-10 to 19-10
Total	42		

Submitted By	Approved By		
Dr. B. S. Daga	i) Dr. Sujata Deshmukh Sign:		
	ii) Prof. RoshniPadate Sign:		
Date of Submission:	Date of Approval:		
Remarks by DQAC (if any)			