Practical Plan

B.E. (CE- Section A) (Semester VI)

Subject: Artificial Intelligence(Practical)

Teacher-in-charge: Dr. B. S. Daga

Subject code: CSL604

Academic Term: January– April 2023

Course Outcomes:

Upon completion of this course students will be able to:

CSL604.1 Identify languages and technologies for Artificial Intelligence CSL604.2 Understand and implement uninformed and informed searching techniques for real world problems CSL 604.3 Create a knowledge base using any AL language

CSL604.3 Create a knowledge base using any AI language

CSL604.4 Design and implement expert systems for real world problems

Relationship of course outcomes with program outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CSL604.1		1			1								1	
CSL604.2			1										1	
CSL604.3													1	
CSL604.4			1										1	

Justification of PO to CO mapping

СО	Competency	Performance Index
CSL604.1	2.1 Demonstrate an ability to identify and formulate complex engineering problem	 2.1.1 Articulate problem statements and identify objectives 2.1.2 Identify processes/modules of a computer-based system and parameters to solve a problem 2.1.3 Identify an algorithm that applies to a given problem

2.2 Demonstrate an ability to formulate a	2.2.1 Reframe the computer-based
solution plan and methodology for an	subsystems
engineering problem	2.2.2 Identify functionalities and computing resources.
	2.2.3 Identify existing solution/methods to solve the problem, including forming justified approximations and assumptions.
	2.2.4 Compare and contrast alternative solution/methods to select the best methods
	2.2.5 Compare and contrast alternative
	solution processes to select the best
	process.
2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.
	2.3.2 Identify design constraints for
	required performance criteria.
2.4 Demonstrate an ability to execute a solution process and analyze results	 2.4.1 Applies engineering mathematics to implement the solution. 2.4.2 Analyze and interpret the results using contemporary tools. 2.4.3 Identify the limitations of the solution and sources/causes. 2.4.4 Arrive at conclusions with respect to the objectives.
5.1 Demonstrate an ability to	5.1.1 Identify modern engineering tools,
identify/create modern engineering tools, techniques and resources	techniques and resources for engineering activities 5.1.2 Create/adapt/modify/extend tools and techniques to solve engineering problems
	configues to solve engineering problems
5.2 Demonstrate an ability to select and apply discipline-specific tools, techniques and resources	5.2.1 Identify the strengths and limitations of tools for (i) acquiring information, (ii) modelling and simulating, (iii) monitoring system performance, and (iv) creating engineering designs.
	5.2.2 Demonstrate proficiency in using discipline-specific tools

	5.3 Demonstrate an ability to evaluate the suitability and limitations of tools used to solve an engineering problem	 5.3.1 Discuss limitations and validate tools, techniques and resources 5.3.2 Verify the credibility of results from tool use with reference to the accuracy and limitations, and the assumptions inherent in their use.
	1.1 Demonstrate competence in mathematical modelling, and engineering fundamentals.	 1.1.1 Develop mathematical concepts required for ML and AI algorithms. 1.1.2 Devise the concepts of modelling for the said systems. 1.1.3 Apply theory and principles of Computer Science and engineering.
	1.2Demonstrate an ability to identify the applicability of AI and ML solutions to a problem.	 1.2.1 Articulate problem statements and identify objectives 1.2.2 Analyze the problem for applicability of AI and ML solutions. Identify an algorithm that applies to a given problem
	1.3 Demonstrate an ability to identify solutions/methods to solve the problem.	 1.3.1 Identify processes/modules of anArtificial Intelligence and Machine Learning system and parameters to solve a problem 1.3.2 Apply various methods and evaluate their performance. 1.3.3 Choose an appropriate method for the given problem
	1.4 Demonstrate an ability to execute the solution.	 1.4.1 Use the chosen method to implement the solution. 1.4.2 Analyse and interpret the results using contemporary tools. 1.4.3 Identify the limitations of the solution and sources/causes.
CSL604.2	3.1 Demonstrate an ability to define a complex/ open-ended problem in engineering terms	 3.1.1 Able to define a precise problem statement with objectives and scope. 3.1.2 Able to identify and document system requirements from stakeholders. 3.1.3 Able to review state-of-the-art literature to synthesize system

	3.2 Demonstrate an ability to generate a diverse set of alternative design solutions	 3.2.1 Able to explore design alternatives. 3.2.2 Able to produce a variety of potential design solutions suited to meet functional requirements. 3.2.3 Identify suitable criteria for evaluation of alternate design solutions.
	3.3 Demonstrate an ability to select optimal design scheme for further development	 3.3.1 Able to perform systematic evaluation of the degree to which several design concepts meet the criteria. 3.3.2 Consult with domain experts and stakeholders to select candidate engineering design solution for further development
	3.4 Demonstrate an ability to advance an engineering design to defined end state	 3.4.1 Able to refine architecture design into a detailed design within the existing constraints. 3.4.2 Able to implement and integrate the modules. 3.4.3 Able to verify the functionalities and validate the design.
	1.1 Demonstrate competence in mathematical modelling, and engineering fundamentals.	 1.1.1 Develop mathematical concepts required for ML and AI algorithms. 1.1.2 Devise the concepts of modelling for the said systems. 1.1.3 Apply theory and principles of Computer Science and engineering.
	1.2Demonstrate an ability to identify the applicability of AI and ML solutions to a problem.	 1.2.1 Articulate problem statements and identify objectives 1.2.2 Analyze the problem for applicability of AI and ML solutions. Identify an algorithm that applies to a given problem

	1.3 Demonstrate an ability to identify	1.3.1 Identify processes/modules of
	solutions/methods to solve the problem.	 anArtificial Intelligence and Machine Learning system and parameters to solve a problem 1.3.2 Apply various methods and evaluate their performance. 1.3.3 Choose an appropriate method for the given problem
	1.4 Demonstrate an ability to execute the solution.	 1.4.1 Use the chosen method to implement the solution. 1.4.2 Analyse and interpret the results using contemporary tools. 1.4.3 Identify the limitations of the solution and sources/causes.
CSL604.3	1.1 Demonstrate competence in mathematical modelling, and engineering fundamentals.	 1.1.1 Develop mathematical concepts required for ML and AI algorithms. 1.1.2 Devise the concepts of modelling for the said systems. 1.1.3 Apply theory and principles of Computer Science and engineering.
	1.2Demonstrate an ability to identify the applicability of AI and ML solutions to a problem.	 1.2.1 Articulate problem statements and identify objectives 1.2.2 Analyze the problem for applicability of AI and ML solutions. Identify an algorithm that applies to a given problem.
	1.3 Demonstrate an ability to identify solutions/methods to solve the problem.	 1.3.1 Identify processes/modules of anArtificial Intelligence and Machine Learning system and parameters to solve a problem 1.3.2 Apply various methods and evaluate their performance. 1.3.3 Choose an appropriate method for the given problem
	1.4 Demonstrate an ability to execute the solution.	 1.4.1 Use the chosen method to implement the solution. 1.4.2 Analyse and interpret the results using contemporary tools. 1.4.3 Identify the limitations of the solution and sources/causes.

CSL604.4	3.1 Demonstrate an ability to define a complex/ open-ended problem in engineering terms	 3.1.1 Able to define a precise problem statement with objectives and scope. 3.1.2 Able to identify and document system requirements from stakeholders. 3.1.3 Able to review state-of-the-art literature to synthesize system requirements. 3.1.4 Able to choose appropriate quality attributes as defined by ISO/IEC/IEEE standard. 3.1.5 Explore and synthesize system requirements from larger social and
		professional concerns. 3.1.6 Able to develop software
	3.2 Demonstrate an ability to generate a diverse set of alternative design solutions	 3.2.1 Able to explore design alternatives. 3.2.2 Able to produce a variety of potential design solutions suited to meet functional requirements. 3.2.3 Identify suitable criteria for evaluation of alternate design solutions.
	3.3 Demonstrate an ability to select optimal design scheme for further development	 3.3.1 Able to perform systematic evaluation of the degree to which several design concepts meet the criteria. 3.3.2 Consult with domain experts and stakeholders to select candidate engineering design solution for further development
	3.4 Demonstrate an ability to advance an engineering design to defined end state	3.4.1 Able to refine architecture design into a detailed design within the existing constraints.3.4.2 Able to implement and integrate the modules.3.4.3 Able to verify the functionalities and validate the design.
	1.1 Demonstrate competence in mathematical modelling, and engineering fundamentals.	 1.1.1 Develop mathematical concepts required for ML and AI algorithms. 1.1.2 Devise the concepts of modelling for the said systems. 1.1.3 Apply theory and principles of Computer Science and engineering.

1.2Demonstrate an ability to identify the applicability of AI and ML solutions to a	1.2.1 Articulate problem statements and identify objectives		
problem.	1.2.2 Analyze the problem for applicability of AI and ML solutions.		
	Identify an algorithm that applies to a		
1.3 Demonstrate an ability to identify solutions/methods to solve the problem.	 1.3.1 Identify processes/modules of anArtificial Intelligence and Machine Learning system and parameters to solve a problem 1.3.2 Apply various methods and evaluate their performance. 1.3.3 Choose an appropriate method for the given problem 		
1.4 Demonstrate an ability to execute the solution.	 1.4.1 Use the chosen method to implement the solution. 1.4.2 Analyse and interpret the results using contemporary tools. 1.4.3 Identify the limitations of the solution and sources/causes. 		

CO Assessment Tools:

Course		Indirect Method (20%)			
Outcomes	Attendance	Lab Performance	Journal Assessment	End Sem Exam (PR)	Course exit survey
CSL604.1	10%	20%	20%	50%	100%
CSL604.2	10%	20%	20%	50%	100%
CSL604.3	10%	20%	20%	50%	100%
CSL604.4	10%	20%	20%	50%	100%

CO calculation= (0.8 *Direct method + 0.2*Indirect method)

Rubrics for assessing Course Outcome with each assessment tool:

Laboratory:

Sr. No	Performance Indicator	Exceed Expectation (EE)	Meet Expectation (ME)	Below Expectation (BE)
1	On time Completion & Submission (01)	01 (On Time)	NA	00 (Not on Time)
2	Logic/Algorithm Complexity analysis(03)	03(Correct)	02(Partial)	01 (Tried)
3	Coding Standards (03): Comments/indention/Naming conventions Output/Test Cases	03(All used)	02 (Partial)	01 (rarely followed)
4	Post Lab Assignment (03)	03(done well)	2 (Partially Correct)	1(submitted)

Practical Session Plan

CLASS				BEComputer Engineering, Semester VII				
Academ	nic Term				Jan – April 2023			
Subject	_				Artificial Intelligence (CSL604)			
Ev	valuation	System				Hours	Marks	
				Practica	al Examination			
				Ora	al Examination		25	
					Term work		25	
					Total		50	
	Time To	able	Day		Batch		Time	
			Monday		D	11.1	5am-1.15pm	
			Monday		A	02.	.45- 4.45pm	
			Tuesday		С	11.1	5am-1.15 pm	
			Friday		В	11.1	5am-1.15 pm	
Title o	of Expe	riments					<u> </u>	
Sr.			Т	<i>ïtle</i>			Attained COs	
1	Tic Tac	c Toe implem	entation using AI	approach	1		CSL604.3	
2	Water .	Jug problem ł	based on states spa	ace approa	ach		CSL604.2	
3	Mission	naries and Ca	nnibals on produc	ction syste	m approach		CSL604.1	
4	N Quee	en problem so	lving by using ba	ck trackin	g		CSL604.1	
5	Eight p	uzzle by A* a	algorithm			CSL604.2		
6	Tower	of Hanoi					CSL604.2	
7	ID3 de	cision tree ba	sed classification	method			CSL604.4	
8	Prolog	programs to	understand knowl	ledge repr	esentation		CSL604.2	
9	Expert	System simpl	le prototype				CSL604.4	
10	Travell	ing salesman	problem using				CSL604.2	
Newly a	added exp	periments						
1	Al	l experiment	ts are new					
Practi	ical Ses	sion Plan						
Bate	ch		Dates	1			Remarks	
Planned		A	ctual					
Experim	ment No.	1-	·					
	c Toe imp	lementation u	Ising AI approach	1				
A D	•	25/01/	2023					
B		2/01/2	2023					
		24/01/.	2023					
D	D 23/01/2023							

Experiment N	<i>Io.</i> 2					
Water Jug pro	blem based on states space	approach				
А	30/01/2023					
В	03/02/2023					
С	31/01/2023					
D	30/01/2023					
Experiment N	<i>Io. 3</i>					
Missionaries a	and Cannibals on production	on system approach				
А	06/02/2023					
В	10/02/2023					
С	07/02/2023					
D	06/02/2023					
Experiment N	<i>lo.</i> 4					
N Queen prob	olem solving by using back	tracking				
А	13/02/2023					
В	17/02/2023					
С	14/02/2023					
D	13/02/2023					
Experiment N	lo.5					
Eight puzzle b	y A* algorithm					
А	20/02/2023					
В	17/02/2023					
С	21/02/2023					
D	20/02/2023					
Experiment N	lo. 6					
Tower of Han	oi					
А	27/01/23					
В	03/03					
C	28/02					
D	27/01					
Experiment N	<i>Io.</i> 7					
ID3 decision t	ree based classification me	ethod				
А	06/03/23					
В	10/03					
C	07/03					
D	06/03					
Experiment N	Experiment No. 8					
Prolog progra	ums to understand knowled	ge representation				
A	13/03/23					
В	17/03					
C	14/03					
D	13/03					

Experiment No. 9

Expert System simple prototype				
Lipere System				
А	20/03/23			
В	24/03			
С	21/03			
D	20/03			
Experiment No. 10				
Travelling salesman problem using				
i. Heuristic function				
ii. Bidirectional				
А	27/03			
В	31/03			
С	28/03			
D	27/03			

Submitted By	Approved By			
Dr. B. S. Daga	Dr. Sujata Deshmukh (HOD)			
Date of Submission:	Date of Approval:			
Remarks by DQAC (if any)				