Lesson Plan

B.E. (CE-A) (Semester VII)

Subject: Big Data Analytics (BDA-CSC702)

Subject code: BDA-CSC702

Teacher-in-charge: Prof. Ankita Amburle

Academic Term: July – October 2022

Module		Content	Hrs
1		Introduction to Big Data and Hadoop	2
	1.1	Introduction to Big Data - Big Data characteristics and Types of Big Data Traditional vs. Big Data business approach	
	1.2	Case Study of Big Data Solutions Concept of Hadoop, Core Hadoop Components; Hadoop Ecosystem.	
2		Hadoop HDFS and MapReduce	8
	2.1	Distributed File Systems: Physical Organization of Compute Nodes, Large-Scale File-SystemOrganization. MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details ofMapReduce Execution, Coping With Node Failures.	
	2.2	Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational- Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce Hadoop Limitations	
3		NOSQL	10
	3.1	Introduction to NoSQL, NoSQL Business Drivers, NoSQL Data Architecture Patterns: Key-value stores, Graph stores, Column family (Bigtable) stores, Document stores, Variations of NoSQL architectural patterns, NoSQL Case Study	
	3.2	NoSQL solution for big data, Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer- to-peer; NoSQL systems to handle big data problems.	

4		Mining Data Streams:	11
	4.1	The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Queries, Issues in Stream Processing. Sampling Data techniques in a Stream Filtering Streams: Bloom Filter with Analysis.	
	4.2	Counting Distinct Elements in a Stream, Count-Distinct Problem, Flajolet-Martin Algorithm, Combining Estimates, Space Requirements Counting Frequent Items in a Stream, Sampling Methods for Streams, Frequent Itemsets inDecaying Windows. Counting Ones in a Window: The Cost of Exact Counts, The Datar-Gionis-Indyk-Motwani Algorithm, Query Answering in the DGIM Algorithm, Decaying Windows.	
5		Finding Similar Items and Clustering	4
	5.1	A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering Case Study: Product Recommendation	
	5.2	Social Networks as Graphs, Clustering of Social- Network Graphs, Direct Discovery of Communities in a social graph	
6		Real-Time Big Data Models	4
	6.1	Exploring Basic features of R, Exploring RGUI, Exploring RStudio, Handling Basic Expressions in R, Variables in R, working with Vectors, Storing and Calculating Values in R, Creating and using Objects, interacting with users, Handling data in R workspace, Executing Scripts, Creating Plots, Accessing help and documentation in R.	
	6.2	Reading datasets and Exporting data from R, Manipulating and Processing Data in R, Using functions instead of script, built-in functions in R.Data Visualization: Types, Applications.	

Course Objectives:

- 1. To provide an overview of the big data platforms, its use cases and Hadoop ecosystem.
- 2. To introduce programming skills to build simple solutions using big data technologies such asMapReduce, Scripting for No SQL and R.
- 3. To learn the fundamental techniques and principles in achieving big data analytics withscalability and streaming capability.
- 4. To enable students to have skills that will help them to solve complex real-world problems for decisionsupport.

Course Outcomes:

Upon completion of this course students will be able to:

- CSC702.1: Understand the building blocks of Big Data Analytics.
- CSC702.2: Apply fundamental enabling techniques like Hadoop and MapReduce insolving real world problems
- CSC702.3: Understand different NoSQL systems and how it handles big data.
- CSC702.4: Apply advanced techniques for emerging applications like stream analytics.
- CSC702.5: Achieve adequate perspectives of big data analytics in various applications likerecommender systems, social media applications, etc.
- CSC702.6: Apply statistical computing techniques and graphics for analyzing big data.

CO-PO-PSO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CSC702.1	3												3	
CSC702.2	3	3	3	1	3				2				3	3
CSC702.3	3	3	3	2	3				2				3	3
CSC702.4	3	3	3	2	3				2				3	3
CSC702.5	3	3	3	2	3	3			2			2	3	3
CSC702.6	3	3	3	2	3	3			3	3	2	3	3	3

CO Assessment Tools:

Course	Indirect Method (20%)						0%)	
Outcomes	Unit Tests		Assignments		Quizzes		End Sem Exam	Course exit survey
	1	2	1	2	1	2		
CSDC7022.1	20%		20%		10%		50%	100%
CSDC7022.2	20%		20%		10%		50%	100%
CSDC7022.3		25%		25%	10%		50%	100%
CSDC7022.4		20%		20%		10%	50%	100%
CSDC7022.5		20%		20%		10%	50%	100%
CSDC7022.6		20%		20%		10%	50%	100%

CO calculation= (0.8 *Direct method +

0.2*Indirect method) Rubrics for

assessing Course Outcome with each

assessment tool:

Assignment:

Indicator					
Timeline (2)	More than two dayslate (0)	Two days late (1)	One day late (2)	On time (3)	
Correctness (4)	All questions correct (4)	One point deducted for each incorrect answer			
Completion (4)	All questions answered (4)	One point will be oun-attempted quest	leducted for each inc ion	omplete or	

Curriculum Gap identified: (with action plan)

1. Nil

Content beyond syllabus:

1. Link Analysis (Extra Session)

Sr.No.	Content Beyond Syllabus	Action Plan	PO Mapping
1	Link analysis	Planned one lecture.	PO2, PSO2

Modes of content delivery

Modes of Delivery	Brief description of content delivered
	Introduction to Big Data and Hadoop
	2. Hadoop HDFS and MapReduce
Class room lecture	3. NOSQL
	4. Mining Data Streams
	5. Finding Similar Items and Clustering
	6. Real-Time Big Data Models
	1. Assignment 1: based on 1. Introduction to Big Data and
Assignments	Hadoop 2. NOSQL Assignment
	2. based on remaining modules
	Quiz 1: on 1. Introduction to Big Data and Hadoop
	2. Hadoop HDFS and MapReduce
Quizzes	3. NOSQL
Quilles	Quiz 2: on 4. Mining Data Streams:
	5. Finding Similar Items and Clustering
	6.Real-Time Big Data Models

Text Books:

- 1. Cre Anand Rajaraman and Jeff Ullman —Mining of Massive Datasets, Cambridge UniversityPress
- 2. Alex Holmes Hadoop in Practicell, Manning Press, Dreamtech Press.
- 3. Dan Mcary and Ann Kelly Making Sense of NoSQL \parallel A guide for managers and the rest of us, Manning Press.
- 4. DT Editorial Services, —Big Data Black Bookl, Dreamtech Press
- 5. EMC Education Services, || Data Science and Big Data Analytics||, Wiley

References books:

- Bill Franks , —Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data StreamsWith Advanced Analytics, Wiley
- 2. Chuck Lam, —Hadoop in Action, Dreamtech Press
- 3. Jared Dean, —Big Data, Data Mining, and Machine Learning: Value Creation for

- Business Leadersand Practitioners, Wiley India Private Limited, 2014.
- 4. Jiawei Han and Micheline Kamber, —Data Mining: Concepts and Techniques, Morgan KaufmannPublishers, 3rd ed, 2010.
- 5. Lior Rokach and Oded Maimon, —Data Mining and Knowledge Discovery Handbook, Springer,2nd edition, 2010.
- 6. Ronen Feldman and James Sanger, —The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data, Cambridge University Press, 2006.
- 7. Vojislav Kecman, —Learning and Soft Computing, MIT Press, 2010.

CLAS	S			BE Computer Engineeri	ng (A), Seme	ster VII
	mic Term	1		July- October 2022		
Subjec	:t			Big Data Analytics (H	BDA-CSC70	02)
Periods (Hours) per week				Lecture	3	
				Practical		
Evaluation System				Tutorial	**	
E	Evaluatio	n System		Trib	Hour	
				Theory examination Internal Assessment	3	80
				Practical Examination		
				Oral Examination		
				Term work		
				Total		100
	Time T	<i>Table</i>		Day		Time
			Tuesday			45-10:45 AM
			Wednes	day		12-1 PM :45-10:45
			Friday		AM	:45-10:45
Cour	se Con	tent and L	esson pla			
Week	Lecture	Da	ate	Topic		
	No.	Planned	Actual			Rem
			λ/		Doto	arks
		T		9	<u> </u>	T
1	1	19-07-22	19-07-22	Introduction to Big Data,		
	2	21-07-22	21-07-22	Big Data characteristics, types Data.	s of Big	
	3	22-07-22	22-07-22	Types of Big Data.		
	4	27-07-22	27-07-22	Traditional vs. Big Data busin approach, Case Study of Big E Solutions.		
	5	28-07-22	28-07-22	Big Data Case Study		
	6	19-07-22	19-07-22	What is Hadoop? Core Hadoop Components;		
7 21-07-22 21-07-22		21-07-22	Hadoop Ecosystem; Physical Architecture;.			
	8	22-07-22	22-07-22	Hadoop EcoSystem; Hadoop limitations.		
		I	Module 2:	Hadoop HDFS and MapRed	ice:	

2	9	5-08-22	5-08-22	Physical Organization of Compute Nodes,	
2	9	3-06-22	3-00-22	Large-Scale File-System Organization.	
	10	10-08-22	10-08-22	MapReduce: The Map Tasks,	
		10 00 22	12-08-22	Grouping byKey, The Reduce	
			**	Tasks,	
	11	12-08-22	18-08-22	<u>'</u>	Assignment 1 on Module
	11	12-08-22	18-08-22	Combiners, Details of MapReduce	1&2
				Execution, Coping With Node Failures. Algorithms using	
				MapReduce: Word Count Problem	
	12	18-08-22	23-8-22	Matrix Vector Multiplication by	
				MapReduce,	
	13	23-08-22(2)	23-8-	Relational Algebra Operations.	
			22(Extra	Computing Selections by MapReduce	
			Lec)	MapReduce, Computing Natural join by	
				MapReduce, Grouping and Aggregation	
				by MapReduce	
	14	24-08-22	24-08-22	Matrix Multiplication (One-step)Hadoop	
				limitations.	
				Module 3: NoSQL	
	15	6-09-22	6-9-22	What is NoSQL? NoSQL business	Assignment on module 2
3				drivers; NoSQL case studies.	
	16	7-09-22	7-09-22	Variations of NoSQL architectural	Holidays from 31/08 to 04/09due to Ganesh Festival
		12.00.22	12.00.22	patterns: Key-value stores, Graph stores	04/07ddc to Gallesii i estivai
	17	13-09-22	13-09-22	Column family (Bigtable) stores,	
	18	20.00.22	20.00.22	Document stores	
	18	20-09-22	20-09-22	HBase NoSQL, BigTable NoSQL	
	19	21-09-22	21-09-22	MongoDB NoSQL, Neo4j NoSQL	
	20	25-09-22	25-09-22	Haina Na COL da mara al 11 da William	
	20	23-09-22	ZJ-UY-ZZ	Using NoSQL to manage big data: What	
				is abig data NoSQL solution?	
				Understanding the types of big data	
				problems; Analyzing big data with a	
				shared-nothing architecture; Choosing	
				distribution models: master-slave versus	
				peer-to-peer;Four ways that NoSQL	
				systems handle big data Problem	
			<u> </u>	Module 4: Mining Data Streams	1

	21	26-09-22	26-09-22	A D-4- C4 M
	21	20-09-22	20-09-22	A Data-Stream- Management System,
4				Stream Queries, Issuesin Stream
				Processing. Examples of Stream
				Sources
	22	27-09-22	27-09-22	Sampling Data in a Stream: Obtaining a Discussion on module 3
				Representative Sample, The General
				Sampling Problem, Varying
				the Sample Size.
	23	28-09-22	28-09-22	Filtering Streams: The Bloom Filter,
				Analysis, Counting Distinct Elements in a
				Stream The Count-Distinct Problem, The
				Flajolet- Martin Algorithm Counting
				Frequent items in a Stream, Sampling
				Methods for Streams, Frequentitemsets in
				a decaying Windows.
			Module	5: Finding Similar Items and Clustering
	24	8-10-22	8-10-22	Applications of Near-Neighbor
5				Search Distance Measures:
				Definition of a Distance Measure,
				Euclidean Distances, Cosine
				Distance,
	25	09-10-22	09-10-22	Edit Distance, Hamming Distance,
	23	07-10-22	07 10 22	
				Jaccard Distance, Jaccard Similarity of
				Sets, Similarity of Documents,
				Collaborative Filtering as a Similar-Sets
				Problem
	26	10-10-22	10-10-22	Clustering - CURE Algorithm,
				Stream-Computing, A Stream-Clustering
				Algorithm, Initializing & Merging
				Buckets, Answering Queries
		1	N.	Module 6: Real-Time Big Data Models
6	27	12-10-22	12-10-22	PageRank Definition, Structure of the
6				web,dead ends, Using Page rank in a
				search engine
	28	21-10-22	21-10-22	Efficient computation of Page Rank,
	20	21 10 22	21 10-22	
				PageRank Iteration Using MapReduce,
				Useof Combiners to Consolidate the
				Result Vector.
	29	21-10-22	21-10-22	Topic sensitive Page Rank, link Spam
				Hubs and Authorities.
				·

30	21-10-22	21-10-22	A Model for Recommendation Systems,	
			Content-Based Recommendations,	
31	22-10-22	21-10-22	Collaborative Filtering. Social	
			Networks as Graphs, Clustering of	
			Social-Network Graphs	
32	23-10-22	22-10-22	Direct Discovery of Communities,	
			SimRank,Counting triangles using	
			Map-Reduce	

Submitted By	Approved By	
Prof. Ankita Amburle	ii) Dr. Sujata Deshmukh	Sign:
Sign:	ii) Dr. B. S. Daga	Sign:
	iii) Prof. Merly Thomas	Sign:
	iv) Prof. Roshni Padate	Sign:
	v) Prof. Kalpana Deorukhkar	Sign:
Date of Submission:	Date of Approval:	
Remarks by DQAC (if any)		