Lesson Plan

B.E. (CE-B) (Semester VII)

Subject: Big Data Analytics (BDA-CSC702)

Subject code: BDA-CSC702

Teacher-in-charge: Prof. Ankita Amburle

Academic Term: July – October 2022

Module		Content						
1		Introduction to Big Data and Hadoop	2					
	1.1	Introduction to Big Data - Big Data characteristics and Types of Big Data Traditional vs. Big Data business approach						
	1.2	Case Study of Big Data Solutions Concept of Hadoop, Core Hadoop Components; Hadoop Ecosystem.						
2		Hadoop HDFS and MapReduce	8					
	2.1	Distributed File Systems: Physical Organization of Compute Nodes, Large-Scale File-SystemOrganization. MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures.						
	2.2	Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational- Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce Hadoop Limitations						
3		NOSQL	10					
	3.1	Introduction to NoSQL, NoSQL Business Drivers, NoSQL Data Architecture Patterns: Key-value stores, Graph stores, Column family (Bigtable) stores, Document stores, Variations of NoSQL architectural patterns, NoSQL Case Study						
	3.2	NoSQL solution for big data, Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer- to-peer; NoSQL systems to handle big data problems.						

4		Mining Data Streams:	11
	4.1	The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Queries, Issues in Stream Processing. Sampling Data techniques in a Stream Filtering Streams: Bloom Filter with Analysis.	
	4.2	Counting Distinct Elements in a Stream, Count-Distinct Problem, Flajolet-Martin Algorithm,Combining Estimates, Space Requirements Counting Frequent Items in a Stream, Sampling Methods for Streams, Frequent Itemsets inDecaying Windows. Counting Ones in a Window: The Cost of Exact Counts, The Datar- Gionis-Indyk-Motwani Algorithm, Query Answering in the DGIM Algorithm, Decaying Windows.	
5		Finding Similar Items and Clustering	4
	5.1	A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering Case Study: Product Recommendation	
	5.2	Social Networks as Graphs, Clustering of Social- Network Graphs, Direct Discovery ofCommunities in a social graph	
6		Real-Time Big Data Models	4
	6.1	Exploring Basic features of R, Exploring RGUI, Exploring RStudio, Handling Basic Expressions in R, Variables in R, working with Vectors, Storing and Calculating Values in R, Creating and using Objects, interacting with users, Handling data in R workspace, Executing Scripts, Creating Plots, Accessing help and documentation in R.	
	6.2	Reading datasets and Exporting data from R, Manipulating and Processing Data in R, Using functions instead of script, built-in functions in R.Data Visualization: Types, Applications.	

Course Objectives:

- 1. To provide an overview of the big data platforms, its use cases and Hadoop ecosystem.
- 2. To introduce programming skills to build simple solutions using big data technologies such asMapReduce, Scripting for No SQL and R.
- 3. To learn the fundamental techniques and principles in achieving big data analytics withscalability and streaming capability.
- 4. To enable students to have skills that will help them to solve complex real-world problems for decisionsupport.

Course Outcomes:

Upon completion of this course students will be able to:

 CSC702.1: Understand the building blocks of Big Data Analytics.
CSC702.2: Apply fundamental enabling techniques like Hadoop and MapReduce insolving real world problems
CSC702.3: Understand different NoSQL systems and how it handles big data.
CSC702.4: Apply advanced techniques for emerging applications like stream analytics.
CSC702.5: Achieve adequate perspectives of big data analytics in various applications likerecommender systems, social media applications, etc.
CSC702.6: Apply statistical computing techniques and graphics for

analyzing big data.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CSC702.1	3												3	
CSC702.2	3	3	3	1	3				2				3	3
CSC702.3	3	3	3	2	3				2				3	3
CSC702.4	3	3	3	2	3				2				3	3
CSC702.5	3	3	3	2	3	3			2			2	3	3
CSC702.6	3	3	3	2	3	3			3	3	2	3	3	3

CO-PO-PSO Mapping:

CO Assessment Tools:

Course	Indirect Method (20%)									
Outcomes	Unit Tests		Assignments		Quizzes		End Sem Exam	Course exit survey		
	1	2	1	2	1	2				
CSDC7022.1	20%		20%		10%		50%	100%		
CSDC7022.2	20%		20%		10%		50%	100%		
CSDC7022.3		25%		25%	10%		50%	100%		
CSDC7022.4		20%		20%		10%	50%	100%		
CSDC7022.5		20%		20%		10%	50%	100%		
CSDC7022.6		20%		20%		10%	50%	100%		

CO calculation= (0.8 *Direct method +

0.2*Indirect method) Rubrics for

assessing Course Outcome with each

assessment tool:

Assignment:

Indicator					
Timeline (2)	More than two days late (0)	Two days late (1)	One day late (2)	On time (3)	
Correctness (4)	All questions correct (4)	One point deducted for each incorrect answer			
Completion (4)	All questions answered (4)	One point will be c un-attempted quest	leducted for each inco ion	mplete or	

Curriculum Gap identified: (with action plan)

1. Nil

Content beyond syllabus:

1. Link Analysis (Extra Session)

Sr.No.	Content Beyond Syllabus	Action Plan	PO Mapping
1	Link analysis	Planned one lecture.	PO2, PSO2

Modes of content delivery

Modes of Delivery	Brief description of content delivered
	1. Introduction to Big Data and Hadoop
	2. Hadoop HDFS and MapReduce
Class room lecture	3. NOSQL
	4. Mining Data Streams
	5. Finding Similar Items and Clustering
	6. Real-Time Big Data Models
	1. Assignment 1: based on 1. Introduction to Big Data and
Assignments	Hadoop 2. NOSQL Assignment
	2. based on remaining modules
	Quiz 1: on 1. Introduction to Big Data and Hadoop
	2. Hadoop HDFS and MapReduce
Ouizzes	3. NOSQL
C	Quiz 2: on 4. Mining Data Streams:
	5. Finding Similar Items and Clustering
	6.Real-Time Big Data Models

Text Books:

- 1. Cre Anand Rajaraman and Jeff Ullman —Mining of Massive Datasets^{II}, Cambridge UniversityPress
- 2. Alex Holmes Hadoop in Practicel, Manning Press, Dreamtech Press.
- 3. Dan Mcary and Ann Kelly Making Sense of NoSQLI A guide for managers and the rest of us, Manning Press.
- 4. DT Editorial Services, —Big Data Black Bookl, Dreamtech Press
- 5. EMC Education Services, IData Science and Big Data Analytics I, Wiley

References books:

- 1. Bill Franks , —Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data StreamsWith Advanced Analytics, Wiley
- 2. Chuck Lam, —Hadoop in Action^{II}, Dreamtech Press
- 3. Jared Dean, -Big Data, Data Mining, and Machine Learning: Value Creation for

Business Leadersand Practitioners, Wiley India Private Limited, 2014.

- 4. Jiawei Han and Micheline Kamber, —Data Mining: Concepts and Techniques, Morgan KaufmannPublishers, 3rd ed, 2010.
- 5. Lior Rokach and Oded Maimon, —Data Mining and Knowledge Discovery Handbook, Springer, 2nd edition, 2010.
- 6. Ronen Feldman and James Sanger, —The Text Mining Handbook: Advanced Approaches inAnalyzing Unstructured Data, Cambridge University Press, 2006.
- 7. Vojislav Kecman, —Learning and Soft Computing, MIT Press, 2010.

CLAS	S			BE Computer Engineerin	ng (A), Seme	ster VII		
Acade	mic Term	ı		July- October 2022	July-October 2022			
Subjec	ct			Big Data Analytics (B	BDA-CSC7)2)		
Periods (Hours) per week				Lecture	3			
				Practical				
				Tutorial				
1	Evaluatio	n System			Hour	s Marks		
				Theory examination	3	80		
				Internal Assessment		20		
				Practical Examination				
				Oral Examination				
				Term work				
				Total		100		
	Time	Table		Day		Time		
			Monday	-	11AM	I-12 PM		
			Thursday	у	11AM	-12 PM		
			Friday		11AM	I-12 PM		
Course Content and Lesson				n				
Week	Lecture	D	ate	Торіс				
	No.	Planned	Actual			Remarks		
			M	<i>Jodule 1:</i> Introduction to Big I	Data			
1	1	19-07-22	19-07-22	Introduction to Big Data.				
1	-							
	2	21-07-22	21-07-22	Big Data characteristics, types Data.	s of Big			
	3	22-07-22	22-07-22	Types of Big Data.				
		05.05.00	05.00					
	4	27-07-22	27-07-22	Traditional vs. Big Data busin	less			
				approach,Case Study of Big Data,				
				Solutions.				
	5	28-07-22	28-07-22	Big Data Case Study				
	6	19-07-22	19-07-22	What is Hadoop? Core Hadoo Components;				
7 21-07-22 21-07-22			21-07-22	Hadoop Ecosystem; Physical				
				Architecture;.				
8 22-07-22 22-07-22 H			22-07-22	Hadoop EcoSystem; Hadoop				
				limitations.				
	<u> </u>	1	Module 2.	Hadoon HDFS and ManRedu	100:			
			moune 2.	indoop intro and mapfield	****			

2	9	5-08-22	5-08-22	Physical Organization of Compute Nodes,	
				Large-Scale File-System Organization.	
	10	10-08-22	10-08-22	MapReduce: The Map Tasks,	
			12-08-22	Grouping byKey, The Reduce	
				Tasks,	
	11	12-08-22	18-08-22	Combiners, Details of MapReduce	Assignment 1 on Module
				Execution, Coping With Node	1&2
				Failures. Algorithms using	
	12	10 00 22	22 0 22	MapReduce: Word Count Problem	
	12	18-08-22	23-8-22	Matrix Vector Multiplication by	
	13	$23_{-}08_{-}22(2)$	23-8-	MapReduce, Polational Algobra Operations	
	15	25-00-22(2)	22(Extra	Computing Selections by ManReduce	
			Lec)	MapReduce, Computing Natural join by	
				MapReduce, Grouping and Aggregation	
				by MapReduce	
	14	24-08-22	24-08-22	Matrix Multiplication (One-step)Hadoop	
				limitations.	
				Module 3: NoSQL	
З	15	6-09-22	6-9-22	What is NoSQL? NoSQL business	Assignment on module 2
5	16	7.00.22	7 00 22	drivers; NoSQL case studies.	Halidaya from 21/08 to
	16	7-09-22	7-09-22	Variations of NoSQL architectural	04/09due to Ganesh Festival
	17	12 00 22	12 00 22	patterns: Key-value stores, Graph stores	
	17	13-09-22	13-09-22	Column family (Bigtable) stores,	
	18	20-09-22	20-09-22	UPasa NoSOL BigTable NoSOL	
	10	20-09-22	20-07-22	HBase NOSQL, BIgTable NOSQL	
	19	21-09-22	21-09-22	MongoDB NoSOL Neo4i NoSOL	
				11011go222 1105 Q2, 1100 IJ 1105 Q2	
	20	25-09-22	25-09-22	Using NoSQL to manage big data: What	
				is abig data NoSQL solution?	
				Understanding the types of big data	
				problems: Analyzing big data with a	
				shared-nothing architecture: Choosing	
				distribution models: master-slave versus	
				peer to peer Four ways that NoSOI	
				eveteme handle big date Droblem	
				systems handle big data Floblem	
			М	Iodule 4: Mining Data Streams	

	21	26-09-22	26-09-22	A Data-Stream- Management System,	
4				Stream Queries, Issuesin Stream	
				Processing. Examples of Stream	
				Sources	
	22	27-09-22	27-09-22	Sampling Data in a Stream: Obtaining a	Discussion on module 3
				Representative Sample, The General	
				Sampling Problem, Varying	
				the Sample Size.	
	23	28-09-22	28-09-22	Filtering Streams: The Bloom Filter,	
				Analysis, CountingDistinct Elements in a	
				Stream The Count-Distinct Problem, The	
				Flajolet- Martin Algorithm Counting	
				Frequent items in a Stream, Sampling	
				a decaying Windows	
			Module	5. Finding Similar Items and Clustering	
			mount	. I mang simular reems and crustering	
_	24	8-10-22	8-10-22	Applications of Near-Neighbor	
5				Search Distance Measures:	
				Definition of a Distance Measure,	
				Euclidean Distances, Cosine	
				Distance,	
	25	09-10-22	09-10-22	Edit Distance, Hamming Distance,	
				Jaccard Distance, Jaccard Similarity of	
				Sets, Similarity of Documents,	
				Collaborative Filtering as a Similar-Sets	
				Problem	
	26	10-10-22	10-10-22	Clustering - CURE Algorithm,	
				Stream-Computing, A Stream-Clustering	
				Algorithm, Initializing & Merging	
				Buckets, Answering Queries	
			M	Iodule 6: Real-Time Big Data Models	
6	27	12-10-22	12-10-22	PageRank Definition, Structure of the	
Ŭ				web, dead ends, Using Page rank in a	
				search engine	
	28	21-10-22	21-10-22	Efficient computation of Page Rank,	
				PageRank Iteration Using MapReduce,	
				Useof Combiners to Consolidate the	
				Result Vector.	
	29	21-10-22	21-10-22	Topic sensitive Page Rank, link Spam	
				Hubs and Authorities.	

30	21-10-22	21-10-22	A Model for Recommendation Systems,	
			Content-Based Recommendations,	
31	22-10-22	21-10-22	Collaborative Filtering. Social	
			Networks as Graphs, Clustering of	
			Social-Network Graphs	
32	23-10-22	22-10-22	Direct Discovery of Communities,	
			SimRank,Counting triangles using	
			Map-Reduce	

Submitted By	Approved By	
Prof. Ankita Amburle	ii) Dr. Sujata Deshmukh	Sign:
Sign:	ii) Dr. B. S. Daga	Sign:
	iii) Prof. Merly Thomas	Sign:
	iv) Prof. Roshni Padate	Sign:
	v) Prof. Kalpana Deorukhkar	Sign:
Date of Submission:	Date of Approval:	
Remarks by DQAC (if any)		