Course Outcomes, Assessment Plan & Lesson Plan

B.E. (CE-A) (Semester VIII)

Subject: Distributed Computing

Subject code: CSC801

Teacher-in-charge: Dr. Vijay Shelake

Academic Term: January – May 2023

Module		Content	Hrs
1		Introduction to Distributed Systems	4
	1.1	Characterization of Distributed Systems: Issues, Goals, Types of distributed systems, Grid and Cluster computing Models, Hardware and Software Concepts: NOS, DOS	
	1.2	Middleware: Models of middleware, Services offered by middleware	
2		Communication	4
	2.1	Interprocess communication (IPC): Remote Procedure Call (RPC), Remote Method Invocation (RMI)	
	2.2	Message-Oriented Communication, Stream Oriented Communication, Group Communication	
3		Synchronization	10
	3.1	Clock Synchronization: Physical clock, Logical Clocks, Election Algorithms	
	3.2	Distributed Mutual Exclusion, Requirements of Mutual Exclusion Algorithms and Performance measures. Non- token Based Algorithms: Lamport, Ricart–Agrawala's and Maekawa's Algorithms; Token-based Algorithms: Suzuki-Kasami's Broadcast Algorithms and Raymond's Tree- based Algorithm; and Comparative Performance Analysis	
	3.3	Deadlock: Introduction, Deadlock Detection: Centralized approach, Chandy - Misra_Hass Algorithm	

4		Resource and Process Management	7					
	4.1	Desirable Features of Global Scheduling algorithm, Task assignment approach, Load balancing approach and load sharing approach						
	4.2 Introduction to Process Management, Process Migration, Code Migration							
5		Replication, Consistency and Fault Tolerance	8					
	5.1	Distributed Shared Memory: Architecture, design issues						
	5.2	Introduction to replication and consistency, Data-Centric and Client-Centric Consistency Models, Replica Management						
	5.3	Fault Tolerance: Introduction, Process resilience, Recovery						
6		Distributed File Systems	6					
	6.1	Introduction and features of DFS, File models, File Accessing models, File Caching Schemes, File Replication, Case Study: Network File System (NFS)						
	6.2	Designing Distributed Systems: Google Case Study.						

Text books:

- 1. Andrew S. Tanenbaum and Maarten Van Steen, Distributed Systems: Principles and Paradigms, 2nd edition, Pearson Education.
- 2. Mukesh Singhal, Niranjan G. Shivaratri, "Advanced concepts in operating systems: Distributed, Database and multiprocessor operating systems", MC Graw Hill education.
- 3. Pradeep K.Sinha, "Distributed Operating System-Concepts and design", PHI.

Reference Books:

- 4. M. L. Liu, —Distributed Computing Principles and Applications, Pearson Addison Wesley, 2004
- 5. George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems: Concepts and Design", 4th Edition, Pearson Education, 2005.

Useful Links

- 6. https://nptel.ac.in/courses/106106107
- 7. https://nptel.ac.in/courses/106106168
- 8. http://csis.pace.edu/~marchese/CS865/Lectures/Chap7/Chapter7fin.htm
- 9. https://nptel.ac.in/courses/106104182

Course Objectives:

1 To provide students with contemporary knowledge in distributed systems.

2 To explore the various methods used for communication in distributed systems.

3 To provide skills to measure the performance of distributed synchronization algorithms.

4 To provide knowledge of resource management, and process management including process migration.

5 To learn issues involved in replication, consistency, and file management.

6 To equip students with skills to analyze and design distributed applications.

Course Outcomes:

Upon completion of this course students will be able to:

CSC801 .1: Demonstrate the knowledge of basic elements and concepts related to distributed system technologies

CSC801 .2: Illustrate the middleware technologies that support distributed applications such as RPC, RMI and Object-based middleware.

CSC801 .3: Analyze the various techniques used for clock synchronization, mutual exclusion and deadlock.

CSC801 .4: Demonstrate the concepts of Resource and Process management.

CSC801 .5: Demonstrate the concepts of Consistency, Replication Management and fault Tolerance.

CSC801 .6: Apply the knowledge of Distributed File systems in building large-scale distributed applications.

CO-PO-PSO Mapping:

Course Learning Objectives:

The price/performance ratios offered by distribution in computing, and the concept of sharing resources globally, along with the steady improvements in networking technologies have made Distributed systems very attractive and highly popular. The fundamental concepts and design principles discussed in the course are applicable to a variety of systems especially WWW.

This course aims to:

Course Objectives.
1 To provide students with contemporary knowledge in distributed systems.
2 To explore the various methods used for communication in distributed systems.
3 To provide skills to measure the performance of distributed synchronization algorithms.
4 To provide knowledge of resource management, and process management including process migration.
5 To learn issues involved in replication, consistency, and file management
6 To equip students with skills to analyze and design distributed applications.

Prerequisites: Operating Systems, Computer Networks

Course Outcomes:

Upon successful completion of this course students will be able to:

CSC802.1	Demonstrate knowledge of the basic elements and concepts related to distributed systems & technologies (B2 – Comprehension)
CSC802.2	Illustrate the middleware technologies that support distributed applications such as RPC, RMI and Object based middleware. (B3 – Application)
CSC802.3	Analyze the various techniques used for clock synchronization and mutual exclusion (B4 – Analysis)
CSC802.4	Demonstrate the concepts of Resource and Process management, and Fault Tolerance techniques (B3 – Application)
CSC802.5	Assess the significance of Consistency and Replication Management models (B4 – Analysis)
CSC802.6	Apply the knowledge of Distributed File System in building large-scale distributed applications. (B4 – Analysis)

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3		2									2
CO2	3		2	2	2							
СО3	3	2	2	2								
CO4	3		2	2								
CO5	3	3	2									
CO6	3	3		2								
Course	3	3	2	3	3							2

Course Outcome	Competency	Performance Indicator		
CSC801 .1	1.3 Demonstrate competence in engineering fundamentals	1.3.1 Apply engineering fundamentals		
CSC801 .2	1.3 Demonstrate competence in engineering fundamentals	1.3.1 Apply engineering fundamentals		
CSC801 .3	2.3 Demonstrate an ability to formulate and interpret a model	2.3.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance.		
	2.4 Demonstrate an ability to execute a solution process and analyze results	2.4.1 Applies engineering mathematics to implement the solution		
	5.2 Demonstrate an ability to select and apply discipline-specific tools, techniques and resources	5.2.2 Demonstrate proficiency in using discipline-specific tools		
CSC801 .4	1.3 Demonstrate competence in engineering fundamentals	1.3.1 Apply engineering fundamentals		
CSC801 .5	1.3 Demonstrate competence in engineering fundamentals	1.3.1 Apply engineering fundamentals		
	1.4 Demonstrate competence in specialized engineering knowledge to the program	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem		
CSC801 .6	1.4 Demonstrate competence in specialized engineering knowledge to the program	1.4.1 Apply theory and principles of Computer Science and engineering to solve an engineering problem		

Justification of CO to PO mapping

CSC802.1		rate knowledge of the basic elements and concepts related to d systems & technologies					
	PO1	As an Engineering solution to some complex computational problems which is efficient and cost effective					
	PO3 Design of System components to meet the specific needs						

	PO12	Gain ability to be prepared for life-long learning in the broadest context of technological change			
	Tools	Lectures, Presentations, Practical Sessions, Assignment I & IV			
	Target	2.5			
CSC802.2		the middleware technologies that support distributed applications PC, RMI and Object based middleware.			
	PO1	Specialized solutions to some complex computational problems			
	PO3	Design of System components or mini models to meet the specific needs			
	PO4	Implementation of RPC, RMI and MPI			
	PO5	Apply appropriate techniques and tools			
	Tools	Lectures, Presentations, Practical Sessions			
	Target	2.5			
CSC802.3	Analyze t exclusion	he various techniques used for clock synchronization and mutual			
	PO1	An Engineering solution to some complex computational problems			
	PO2	Formulate solutions considering the several design issues			
	PO3	Design solutions by developing components and processes			
	PO4	Experimental approach to design solutions and valid conclusions			
	Tools	Lectures, Presentations, Practical Sessions, Seminars			
	Target	2.5			
CSC802.4	Demonstrate the concepts of Resource and Process management and Fault tolerant solutions				
	PO1	Specialized solutions to some complex computational problems			
	PO3	Design of System components or mini models to meet the specific needs			
	PO4	Apply appropriate techniques and tools for solutions			
	Tools	Lectures, Presentations, Practical Sessions, Seminars			

	Target	2.5					
CSC802.5	Assess the	e significance of Consistency and Replication Management					
	PO1	An Engineering solution to some complex computational problems					
	PO2	Formulate solutions considering the several design issues					
	PO3	Design solutions by developing components and processes					
	Tools	Lectures, Presentations, Practical Sessions, Seminars					
	Target	2.5					
CSC802.6		e knowledge of Distributed File System to analyze various file ike NFS, AFS and the experience in building large-scale distributed ons					
	PO1	An Engineering solution to some complex computational problems					
	PO2	Formulate solutions considering the several design issues					
	PO3	Design solutions by developing components and processes					
	Tools	Lectures, Presentations, Practical Sessions, Seminars					
	Target	2.5					

Program Specific Outcomes (PSOs)

Student will have an ability to

- 1. Apply fundamental computer science knowledge to address real world challenges/opportunities.
- **2.** Design and implement computing systems of varying complexity in multidisciplinary scenarios that meet specified requirements with appropriate consideration to architectural, algorithmic and security aspects.

Modes of delivery

Most of the time is spent on teaching the principles of Distributed Computations.

Modes of Delive	ry	Brief description of content delivered	Attained COs	Attained POs
Class room lectur	es			PO1, PO2, PO3,
and Presentation	S	All modules	ALL	PO4, PO5, PO12

Lab Experiments	Modules 2-6		PO1, PO2, PO3,
Lab Experiments	Nodules 2-6	CO2, CO3, CO6	PO4, PO5
Students presentations	Module 3,6	CO5	PO1, PO10
Case Study	DCE, CORBA, HADOOP, NFS	CO6	

CO Assessment Tools:

Course Outcome	Course Outcome Assessment Method									
	Direo	t Me	Indirect Method (20%)							
	Unit ⁻	Tests	Assig	Assignments			SEE	Laboratory Practical	Course exit survey	
	1	2	1	2	3	4		Practical		
CO1	30%		30%				40%		100%	
CO2	20%	20%		20%			40%		100%	
CO3								100%	100%	
CO4		30%			30%		40%		100%	
CO5		30%				30%	40%		100%	

Assignments:

Five assignments will be given on completion the modules as follows:

Assignment No.1	On completion of the 1 st module
Assignment No.2	On completion of 2 nd and 3 rd module
Assignment No.3	On completion of the 4 th module
Assignment No.4	On completion of 2 nd and 3 rd module
Assignment No.5	On completion of the 1 st module

Rubrics for Assignment Grading:

Indicator				
Timeline (2)		More than one session late (0)	One sessions late (1)	On time (2)
Level of content (4)	Just Managed (1)	Major points are addressed minimally (2)	Only major topics are covered(3)	Most major and some minor criteria are included. Information is Adequate (4)
Reading and Understanding (4)	Just Managed (1)	Superficial at most (2)	Understood concepts but no related topics (3)	Understood concepts and related topics (4)

Laboratory Experiment

Total ten number of laboratory experiments will be performed in the practical session as per the time schedule in the time table.

Rubrics for Laboratory Experiment Grading:

Indicator				
Timeline (3)	More than two sessions late (0)	Two sessions late (1)	One sessions late (2)	On time (3)
Knowledge (4)	Not adequate (1)	Superficial at most (2)	Understood concepts but no related topics (3)	Understood concepts and working (4)
skill (3)	Just Managed (1)	Just Managed (1)	Few steps are not appropriate (2)	Structured and optimum performance (3)

Teaching schema Program Structure for Fourth Year Computer Engineering

UNIVERSITY OF MUMBAI (With Effect from 2022-2023)

Semester VIII

Course			Scheme Hours)	Cro	edits Assign	ed
Code		Theory	Pract. Tut.	Theory	Pract.	Tota
CSC801	Distributed Computing	3	5 85	3		3
CSDC 801X	Department Level Optional Course -5	3		3		3
CSDC 802X	Department Level Optional Course -6	3	is es	3		3
ILO 801X	Institute Level Optional Course -2	3	-	3		3
CSL801	Distributed Computing Lab		2		1	1
CSDL 801X	Department Level Optional Course -5 Lab	1970	2	 8	1	1
CSDL 802X	Department Level Optional Course -6 Lab		2		1	1
CSP801	Major Project 2	1773	12#		6	6
	Total	12	18	12	9	21

Examination schema

Course		Examination Scheme							
		Theory					Term Work	Pract & oral	Total
Course Code	Course Name	Inter	na <mark>l</mark> Asse	ssment	End Sem Exam	Exam Duration (in Hrs)			
		Test 1	Test 2	Avg					100
CSC801	Distributed Computing	20	20	20	80	3	440		100
CSDC 801X	Department Level Optional Course -5	20	20	20	80	3	0 550	e TTS	100
CSDC 802X	Department Level Optional Course -6	20	20	20	80	3	223		100
ILO 801X	Institute Level Optional Course -2	20	20	20	80	3		-	100
CSL801	Distributed Computing Lab			22			25	25	50
CSDL 801X	Department Level Optional Course -5 Lab			-			25	25	50
CSDL 802X	Department Level Optional Course -6 Lab						25	25	50
CSP801	Major Project- 2	-		1.77	-		100	50	150
	Total			80	320		175	125	700

Textbooks and References

T1	Andrew S. Tanenbaum and Maarten Van Steen, "Distributed Systems:
	Principles and Paradigms", 2nd edition, Pearson Education.
T2	Mulash Singhal Nigerian C. Shiyanatri "Advanced concepts in anomating
12	Mukesh Singhal, Niranjan G. Shivaratri, "Advanced concepts in operating
	systems: Distributed, Database and multiprocessor operating systems", MC
	Graw Hill education.
T3	Pradeep K. Sinha, "Distributed Operating System-Concepts and design", PHI.
10	Tradeep K. Shina, Distributed operating System concepts and design , Thi.
R1	M. L. Liu, —Distributed Computing Principles and Applications, Pearson
	Addison Wesley, 2004
R2	George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems:
	Concepts and Design", 4th Edition, Pearson Education, 2005
D1	· · · · · · · · · · · · · · · · · · ·
R3	Andrew S. Tanunbaum "Distributed Operating system" Low price edition,
	Pearson Education.
	Useful Links
L1	https://nptel.ac.in/courses/106106107
L2	https://nptel.ac.in/courses/106106168
L3	http://csis.pace.edu/~marchese/CS865/Lectures/Chap7/Chapter7fin.htm
L4	https://nptel.ac.in/courses/106104182

Module No	Unit No	Topics	Books	Portion (From Book)
1	Introdu	ction to Distributed Systems CO1	4 Hrs	
	1.1	Characterization of Distributed Systems: Issues, Goals, Types of distributed systems,	T1	1.1, 1.2, 1.3.1
		Grid and Cluster computing Models, Hardware and Software Concepts: NOS, DOS	R3	1.3,1.4

	1.2	Middleware: Models of middleware, Services offered by middleware	R2	1.1-1.5
2	Comm	unication CO2	4 Hrs	
	2.1	Interprocess communication (IPC): Remote Procedure Call (RPC), Remote Method Invocation (RMI)	T1 R2	4 (2.1-,2.3)
	2.2	Message Oriented Communication, Stream Oriented Communication, Group Communication. (ordering)	T1 T3	4 3.10
3	Synch	ronization CO3	10 Hrs	
	3.1	Clock Synchronization: physical clock, Logical Clocks, Election Algorithms, Distributed Mutual Exclusion algorithms, Requirements of Mutual Exclusion Algorithms, Performance measure, Non- token Based (Lamport Algorithm, Ricart–Agrawala's Algorithm, Maekawa's Algorithm), Token based (Suzuki- Kasami's Broadcast Algorithms ,Raymond's Tree based Algorithm) and Comparative Performance Analysis.	T1 T2	6.1, 6.2, 6.5 6.3 to 6.14
	3.2	Deadlock: Introduction, Centralized, Chandy - Misra_Hass Algorithm.	R3	3.5
4	Resour	ce and Process Management CO4	10 Hrs	
	4.1	Desirable Features of global Scheduling algorithm, Task assignment approach, Load balancing approach, load sharing approach	T3	7
	4.2	Introduction to process management, process	T3	8.2
		migration, Code Migration	<u>T1</u>	3.5
5	-	ation, Consistency and Fault Tolerance	8 Hrs	CO5
	5.1	Distributed Shared Memory: Architecture, design issues.	T3	5.2,5.3
	5.2	Introduction to replication and consistency, Data-Centric and Client-Centric Consistency Models, Replica Management.	T1 / L3	7
	5.3	Fault Tolerance: Introduction, Process resilience, Recovery.	T1	8.1, 8.2, 8.6
6	Distrib	outed File Systems CO6	8 Hrs	
	6.1	Introduction and features of DFS, File models, File Accessing models, File-Caching Schemes,	T1	9.1 to 9.7
		File Replication, Case Study: Network File System (NFS).	R2	8
	6.2	Designing Distributed Systems: Google Case Study.	R2	9

Lesson Plan

CLAS				· · ·	BE Computer Engineering (A), Semester VIII				
	mic Term	l		January- May 2023					
Subjec	et			Distributed Computing	Distributed Computing				
Subjec	ct Code			CSC 801					
				CSL 802	CSL 802				
Peri	ods (Hou	rs) per week		Lecture	3				
				Practical	2				
				Tutorial					
1	Evaluation	n System			Hours	Marks			
				Theory examination	3	80			
				Internal Assessment		20			
				Practical Examination		25			
				Oral Examination		25			
				Term work					
				Total		150			
Time 2	Table (w.	e.f 23/01/20.	23 to 21/04/.	2023)					
				Day		Time			
			Wednese		11:15AM-12:15 AM				
	The	ory	Thursday	У	12:15AM-1:15 AM				
			Friday		10:00AM-11:00 AM				
			Tuesday		1.45-3.45 pm (A Batch)				
	Practic	eal's	Wednese		1.45-3.45 pm (D Batch)				
			Thursday	у		45 pm (C Batch)			
			Friday		1.45-3.45 pm (B Batch)				
Cour	rse Con	tent and L	esson pla	n					
Week	Lecture	D	ate	Торіс					
	No.	Planned	Actual			Remarks			
	-	-	Modu	<i>le 1:</i> Introduction to Distribut	ted Systems				
1	1	10-01-23		Characterization of Distributed					
				Issues, Goals					
	2	12-01-23		Types of distributed systems, G	rid and				
				Cluster computing Models					
	3	13-01-23		Hardware and Software Concept	ts: NOS,				
				DOS.					
	4	17-01-23		Middleware: Models of middlew	vare,				
				Services offered by middleware					

			Module 2: Communication	
2	5	19-01-23	Interprocess communication (IPC): Remote	
2	5		Procedure Call (RPC)	
			Flocedule Call (RFC)	
	6	20-01-23	Remote Method Invocation (RMI),	
			Message-Oriented Communication	
	7	25-01-23	Stream Oriented Communication	
	8	27-01-23	Group Communication.	
			Module 3: Synchronization	
3	9	1-02-23	Clock Synchronization: Physical clock,	
	10	1-02-23	Logical clocks, Election Algorithms	
	11		Distributed Mutual Exclusion,	
		2-02-23	Requirements of Mutual Exclusion	
			-	
	12	3-02-23	Algorithms and Performance measures	
	13		Non- token Based Algorithms: Lamport,	
		8-02-23	Ricart–Agrawala's and Maekawa's	
			Algorithm	
	14	15-02-23	Token-based Algorithms: Suzuki-Kasami's	
	11	15 02 25	Broadcast Algorithms	
	15	15-02-23	Raymond_s Tree-based Algorithm	
	15	15 02 25	Comparative Performance Analysis	
	16	16-02-23	Deadlock: Introduction	
	10	10-02-23	Deadlock: Introduction	
	17	17-02-23	Deadlock Detection: Centralized approach	
	18	22-02-23	Chandy Misra_Hass Algorithm	
		N	Iodule 4: Resource and Process Management	
4	19	23-02-23	Desirable Features of Global Scheduling	
		25 02 25	algorithm	
	20	24-02-23	Task assignment approach	
		24-02-23		
	21	24-02-23	Load balancing approach	
		24-02-25		
	22	2 02 22	and load sharing approach	
		2-03-23		
	23		Introduction to Process Management	
	23	3-03-23	Introduction to 1 rocess Management	
	24		Process Migration	
	24	8-03-23		
	25		Code Migration	
	23	9-03-23		
5			<i>Iodule 5:</i> Replication, Consistency and Fault Tolerance	
5	26	10-03-23	Distributed Shared Memory: Architecture	
	20	10 03 23	Distributed Shared Memory, Architecture	

	27	14-03-23	Design issues	
	28	15-03-23	Introduction to replication and consistency	
	29	16-03-23	Data-Centric	
	30	17-03-23	Client-Centric Consistency Models,	
	31	21-03-23	Replica Management.	
	32	23-03-23	Fault Tolerance: Introduction	
	33	24-03-23	Process resilience, Recovery	
6			Module 6: Distributed File Systems	
	34	05-04-23	Introduction and features of DFS	
	35	06-04-23	File models	
	36	11-04-23	File Accessing models	
	37	5-04-23	File Caching Schemes, File Replication	
	38	6-04-23	Case Study: Network File System (NFS)	
	39	11-04-23	Designing Distributed Systems: Google Case Study.	
Total	39			