Fr. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Electronics and Computer Engineering

B.E. (ECS) (Semester VII)

(2022-23)

Course outcomes & Assessment Plan

Subject: Deep Learning

Subject code: ECC DO701

Teacher-in-charge: Prof. Dipali Koshti

Academic Term: July – October 2022

Module No.	Unit No.	Contents	Hrs.
		Introduction	
1		Biological neuron, Mc-Culloch Pitts Neuron, Perceptron, Perceptron Learning, Delta learning, Multilayer Perceptron: Linearly separable, linearly non- separable classes.	05
	1.2	Deep Networks: Fundamentals, Brief History, Three Classes of Deep Learning Basic Terminologies of Deep Learning	
		Training, Optimization and regularization of Deep Neural Network	
2		Training Feedforward DNN: Multi Layered Feed Forward Neural Network, Learning Factors, Activation functions: Tanh, Logistic, Linear, Softmax, ReLU, Leaky ReLU, Loss functions: Squared Error loss, Cross Entropy, Choosing output function and loss function	08
	2.2	Optimization: Learning with backpropagation, Learning Parameters: Gradient Descent (GD), Stochastic and Mini Batch GD, Momentum Based GD, Nesterov Accelerated GD, AdaGrad, Adam, RMSProp	
	2.3	Regularization: Overview of Overfitting, Types of biases, Bias Variance Tradeoff Regularization Methods: L1, L2 regularization, Parameter sharing, Dropout, Weight Decay, Batch normalization, Early stopping, Data Augmentation, Adding noise to input and output.	
		Convolutional Neural Networks (CNN): Supervised Learning	
3		Convolution Operation, Motivation, Basic structure of a convolutional neural network: Padding, strides, pooling, fully connected layers, interleaving between layers	08
	J.4	Training a convolutional network: Backpropagation through convolution, Backpropagation as convolution with inverted filter, convolution/ backpropagation as matrix multiplication	

		Modern Deep Learning Architectures: LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet	
		Recurrent Neural Networks (RNN)	
4	4.1	Sequence Learning Problem, Unfolding Computational graphs, Recurrent Neural Network, Bidirectional RNN, Back propagation Through Time (BTT), Vanishing and Exploding Gradients, Truncated BTT	06
	4.2	Long Short Term Memory: Selective Read, Selective write, Selective Forget, Gated Recurrent Unit	
		Autoencoders: Unsupervised Learning	
5	5.1	Introduction, Linear Autoencoder, Undercomplete Autoencoder, Overcomplete Autoencoders, Regularization in Autoencoders	06
	5.2	Denoising Autoencoders, Sparse Autoencoders, Contractive Autoencoders	
		Recent Trends and Applications	
	6.1	Generative Adversarial Network (GAN): Architecture	
6	6.2	Applications: Image Compression, Brain Tumour Detection, Fraud Detection, Expression identification.	06
		Total	39

Text Books:

- 1. Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning. An MIT Press book,2016.
- 2. Li Deng and Dong Yu, "Deep Learning Methods and Applications", now publishers Inc (30 June 2014)
- 3. Satish Kumar "Neural Networks A Classroom Approach" Tata McGraw-Hill.
- 4. J M Zurada "Introduction to Artificial Neural Systems", Jaico Publishing House
- 5. M. J. Kochenderfer, Tim A. Wheeler. "Algorithms for Optimization", MIt Press.

Reference Books:

- 1. Jon Krohn, Grant Beyleveld, Aglae Bassens, "Deep Learning Illustrated: A Visual, Interactive
- 2. Guide to Artificial Intelligence", Pearson Education.
- 3. Buduma, N. and Locascio, N., "Fundamentals of deep learning: Designing next-generation machine intelligence algorithms" 2017. O'Reilly Media, Inc.".
- 4. François Chollet, "Deep Learning with Python", Manning Publications, 2018.
- 5. Douwe Osinga. "Deep Learning Cookbook", O'REILLY, SPD Publishers, Delhi.
- 6. Simon Haykin, Neural Network- A Comprehensive Foundation- Prentice Hall International, Inc.

Course Objectives:

- 1. To develop mathematical concepts required for Deep Learning algorithms
- 2. To gain an in-depth understanding of training Deep Neural Networks.
- 3. To acquire knowledge of advanced concepts of Convolution Neural Networks, Autoencoders and Recurrent Neural Networks
- 4. To get familiarised with the recent trends in Deep Learning.

Course Outcomes:

After successful completion of the course, students will be able to:

DO701.1: Explain the basic knowledge of Neural Networks

DO701.2: Explain the process of training, optimization, and Regularization of Deep Neural Networks

DO701.3: Design supervised models for DNN

DO701.4: Design unsupervised model for DNN

DO701.5: Select and apply a suitable DNN model for a given application

CO-PO-PSO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12	PSO1	PSO2
DO701.1	3													
DO701.2	3													
DO701.3	3	3	3	1	2								3	3
DO701.4	3	3	3	1	2								3	3
DO701.5	3	3	3	3	3				3	3		2	3	3

Provide a justification of PO to CO mapping

СО	PO	PI
DO701.1	PO1	 1.1.1 Apply the knowledge of discrete structures, linear algebra, statistics, and numerical techniques to solve problems. 1.3.1 Apply engineering fundamentals. 1.4.1 Apply theory and principles of Electronics and/or computer science and engineering to solve an engineering problem.
DO701.2	PO1	 1.1.2 Apply the knowledge of discrete structures, linear algebra, statistics, and numerical techniques to solve problems. 1.3.1 Apply engineering fundamentals 1.4.1 Apply theory and principles of Electronics and/or computer science and engineering to solve an engineering problem.
DO701.3	PO1	 1.1.1 Apply the knowledge of discrete structures, linear algebra, statistics and numerical techniques to solve problems 1.1.2 Apply the concepts of probability, statistics and queuing theory in modeling of computer-based system, data and network protocols. 1.4.1 Apply theory and principles of Electronics and/or computer science and engineering
	PO2	 2.1.2 Identify Electronic Systems/components, variables, and parameters to solve the problems 2.1.3 Identify processes/modules/algorithms of a computer-based system and parameters to solve the problems 2.1.4 Identify mathematical algorithmic knowledge that applies to a given problem 2.2.4 Compare and contrast alternative solutions/methods to select the best methods

	PO3	3.1.1 Define a precise problem statement with objectives and scope.
		3.2.1 Explore design alternatives.
		3.2.2 Produce a variety of potential design solutions suited to meet functional requirements.
	PO4	4.1.2 Examine relevant methods, tools and techniques of experiment design, system calibration, data acquisition, analysis and presentation.
	PO5	5.1.1 Identify modern engineering tools, techniques and resources for engineering activities.
	PSO1	Students design and implement supervised DNN model for real – world application. They work on real-world datasets and apply DNN models to get the desired result.
	PSO2	In order to design the supervised DNN model they need to use modern technologies like TensorFlow. Keras , PyTorch and many more.
DO701.4	PO1	 1.1.1 Apply the knowledge of discrete structures, linear algebra, statistics and numerical techniques to solve problems 1.1.2 Apply the concepts of probability, statistics and queuing theory in modeling of computer-based system, data and network protocols. 1.4.1 Apply theory and principles of Electronics and/or computer science and
	PO2	 2.1.2 Identify Electronic Systems/components, variables, and parameters to solve the problems 2.1.3 Identify processes/modules/algorithms of a computer-based system and parameters to solve the problems 2.1.4 Identify mathematical algorithmic knowledge that applies to a given problem
	PO3	 3.1.1 Define a precise problem statement with objectives and scope. 3.2.1 Explore design alternatives. 3.2.2 Produce a variety of potential design solutions suited to meet functional requirements.
	PO4	4.1.2 Examine relevant methods, tools and techniques of experiment design, system calibration, data acquisition, analysis and presentation.
	PO5	5.1.1 Identify modern engineering tools, techniques and resources for engineering activities
	PSO1	Students design and implement unsupervised DNN model for real – world application. They work on real-world datasets and apply DNN models to get the desired result.
	PSO2	In order to design the unsupervised DNN model they need to use modern technologies like TensorFlow. Keras , PyTorch and many more.
DO701.5	PO1	 1.1.3 Apply the knowledge of discrete structures, linear algebra, statistics, and numerical techniques to solve problems. 1.3.1 Apply engineering fundamentals. 1.4.1 Apply theory and principles of Electronics and/or computer science and engineering to solve an engineering problem.

PO2	 2.1.1 Articulate problem statements and identifies objectives 2.1.3 Identify processes/modules/algorithms of a computer-based system and parameters to solve the problems. 2.2.2 Identify, assemble and evaluate information and resources. 2.3 Identify existing solution/methods to solve the problem, including forming justified approximations and assumption 2.2.4 Compare and contrast alternative solution/methods to select the best methods.
PO3	 3.1.3 Review state-of-the-art literature to synthesize system requirements. 3.2.1 Explore design alternatives. 3.4.1 Refine a conceptual design into a detailed design within the existing constraints (of the resources) 3.4.2 Generate information through appropriate tests to improve or revise the design
PO4	 4.3.1 Use appropriate procedures, tools and techniques to collect and analyze data 4.3.2 Critically analyze data for trends and correlations, stating possible errors and limitations 4.3.3 Represent data (in tabular and/or graphical forms) so as to facilitate analysis and explanation of the data, and drawing of conclusions
PO5	5.1.1 Identify modern engineering tools, techniques and resources for engineering activities
PO9	 9.1.1 Recognize a variety of working and learning preferences; appreciate the value of diversity on a team 9.3.1 Present results as a team, with smooth integration of contributions from all individual effort 9.2.1 Demonstrate effective communication, problem-solving, conflict resolution and leadership skills.
PO10	10.1.1 Read, understand and interpret technical and non-technical information 10.3.1 Create engineering-standard figures, reports and drawings to complement writing and presentations
PO12	12.3.1 Source and comprehend technical literature and other credible sources of information
PSO1	Students select a suitable real-world problem and provide a solution to it. They select a suitable DNN model by exploring various DNN models used in literature and implement it for real – world application using new technologies.
PSO2	In order to provide a feasible real-world solution, they need to use new technologies such as Keras, Pytorch, tensorflow.
-	

CO Assessment Tools:

Course Outcome	Direct Method (80%)										Indirect Method (20%)	
	Unit 7	ſests	As	signment	ts		Quizzes stu nic				End Sem Exam	Course exit survey
	1	2	1	2	3	1	2	3	4			
DO701.1	20%		20%			10%					50%	100%
DO701.2	20%			20%			10%				50%	100%
DO701.3	10%	10%			20%			10%			50%	100%
DO701.4		20%			20%			10%			50%	100%
DO701.5	20%								10%	20%	50%	100%

CO calculation= (0.8 *Direct method + 0.2*Indirect method)

Rubrics for Assignments:

Indicator	Not satisfactory	Satisfactory	Good	Excellent
Timeline (3)	More than two sessions late (0)	More than one session late (1)	One session late (2)	On time (3)
Depth of Understanding (4)	Unsatisfactory (1)	Superficial (2)	Satisfactory (3)	Adequate (4)
Completeness (3)	Not submitted (0)	Major topics are omitted or addressed minimally (1)	Most major and some minor points are covered and are accurate (2)	All major and minor points are covered and are accurate (3)

Curriculum Gap identified: (with action plan)

Transformers have revolutionized the way we process sequence–to–sequence data. Transformers are the next-generation deep neural networks and are successors of RNN and LSTM. It is essential that students have at least basic knowledge of transformer, and how to implement transformers to to solve real-world complex sequence–to–sequence problems.

Action plan:

To bridge the gap following actions have been planned.

- 1) Additional practicals based on Transformers will be taken in the laboratory.
- 2) Case study Review 3 technical papers on any advanced topic (not covered in the syllabus) in deep learning and present the summary of it.

Modes of content delivery

_

Modes of Delivery	Brief description of content delivered
Class room lecture, PPT	 Introduction Optimization and Regularization Convolution Neural Networks Recurrent Neural networks Encoders GAN
Assignments	Assignment 1: Covering the basics of neural networks Assignment 2: Covering Deep network optimization and regularization Assignment 3: Covering design of supervised and unsupervised deep networks.
Quizzes	Quiz on each module
Study of Technical papers	Covering module 6 topics: Image compression, Expression identification, fraud detection
Informative videos	CNN, LeNET, AlexNET, VGGNet
Review and present technical papers	Image compression, Expression identification, fraud detection
Case study/Mini project	Content Beyond syllabus.

Lesson Plan

DEEP LEARNING

		l Computer S	Science, S	Semester VII					
-	ctober 2022								
Deep 1	Learnin	g (DOC7()1)						
			Lecture	3					
Practical -									
		,	Tutorial	-	-				
				Hours	Marks	5			
		Theory exam		3	80				
		Internal Ass			20				
	Р	ractical Exar							
		Oral Exar							
		Tei	rm work						
	-	<u></u>	Total		100				
		Day		Tim	ie				
5									
Lecture	T	Date		Торіс		1			
No.	Planned			Торіс		C	ontent delivery	Refe	Remarks
	Tiaimea	netuai	Mo	dule1 : Introduction			ontent denvery	Reit	Itemar K.
1	19-7-22	19-7-22		ction to the course, info	orming	Class	sroom Teaching PPT	3,4	
				objectives and plan, Bio	-				
			neuron.	Mc-Culloch-Pitt Mode	el				
2	21-7-22	21-7-22	Percept	ron, perceptron learning	g		sroom Teaching PPT,	3,4,17	
						Lab,	Virtual Lab		
3	22-7-22	22-7-22	Delta le	earning		Class	sroom Teaching PPT,	13,4	
4	26-7-22	26-7-22	Multila	yer perceptron		Class	sroom Teaching PPT,	3,4,17	
4	20 / 22	20 7 22	Within	yer perception			Virtual Lab	0,1,17	
5	28-7-22	28-7-22	Deep N	etworks		Class	sroom Teaching PPT	1,2	Quiz1, Ass1
-	Module	2: Training,	1	tion and regularization	n of Deep Ne	ural N	etwork		-
6	29-7-22	29-7-22	Multi L	ayered Feed Forward N	Veural	Class	sroom Teaching PPT	1,2	
			Networ	k, Learning Factors,					
7	2-8-22	3-8-22	Activat	ion functions		Class	sroom Teaching PPT	1,2,3	
8	3-8-22	5-8-22	Loss Fu	inctions		Class	sroom Teaching PPT	1,2	
9	5-8-22	10-8-22	Learnin	g with Backpropagatio	n	Class	sroom Teaching PPT	1,2	
7	5-0-22								
10	10-8-22	17-8-22	Learnin	Learning parameters Classroom Teaching PPT 1,2				1.2	
10 11	10-8-22 12-8-22	17-8-22 24-8-22		g parameters ew of overfitting, types	of biases		sroom Teaching PPT	1,2	

12	17-8-22	24-8-22	Regularization: L1,L2, Parameter sharing,	Classroom Teaching, PPT	1,2,5,1	
12			Drop out, weight decay	[Youtube Video]	5	
13	19-8-22	26-8-22	Batch Normalization, Data augmentation,	Classroom Teaching PPT	1,2,5,1	Quiz2,
			early stopping, Adding noise to input and		5	Ass2
		Moe	output dule 3: Convolutional Neural Networks			
1.4		20.0.22		Classes Tasshirs DDT	1.2	
14	23-8-22	30-8-22	Convolution Operation, Motivation,	Classroom Teaching PPT [NPTEL Video,	1,2	
				coursera video]		
15	25-8-22	6-9-22	Basic structure of a convolutional neural	Classroom Teaching PPT	1,2	
			network: Padding, strides	[NPTEL Video, coursera video]		
16	26-8-22	7-9-22	pooling, fully connected layers,	Classroom Teaching PPT	1,2	
			interleaving between			
17	13-08-22	13-9-22	Training a convolutional network:	Classroom Teaching PPT	1,2	
			Backpropagation through convolution,			
18	13-08-22	13-9-22	Backpropagation as convolution with	Classroom Teaching PPT	1,2	
			inverted filter, convolution/			
			backpropagation as matrix multiplication			
19	25-08-22	14-9-22	LeNet, AlexNet	Classroom Teaching PPT	1,2	
				[Technical paper]		
20	26-08-22	20-9-22	ZF-Net, VGGNet,	Classroom Teaching PPT	1,2	
				[Technical paper]		
21	30-8-22	20-9-22	GoogLeNet, ResNet	Classroom Teaching PPT	1,2	Quiz3
		Modu	le 4: Recurrent Neural Networks (RNN)			
22	27-08-22	21-09-22	Sequence Learning Problem, Unfolding	Classroom Teaching PPT	1,2	31/8 - 4/9
			Computational graphs			Midterm
23	9-9-22	21-09-22	Recurrent Neural Network	Classroom Teaching PPT	1,2	break 5,6,7 Sep
23)-)-22	21-07-22	Recurrent Recura Retwork		1,2	UT1
24	13-9-22	23-9-22	Bidirectional RNN	Classroom Teaching PPT	1,2	
25	15-9-22	24-9-22	Back propagation Through Time (BTT),	Classroom Teaching PPT	1,2	
			Vanishing and Exploding Gradients,,			
			Truncated BTT			
26	16-9-22	27-9-22	Long Short Term Memory: Selective	Classroom Teaching PPT	1,2	
					-	
			Read, Selective write, Selective Forget,			
27	20-9-22	28-9-22	Read, Selective write, Selective Forget,Long Short Term Memory (continued)	Classroom Teaching PPT	1,2	Quiz,
27	20-9-22	28-9-22		Classroom Teaching PPT		Quiz, Ass3
27	20-9-22	28-9-22		Classroom Teaching PPT		-
27	20-9-22	28-9-22	Long Short Term Memory (continued)	Classroom Teaching PPT Classroom Teaching PPT		-
			Long Short Term Memory (continued) Module 5: Encoders		1,2	-
28	22-9-22	29-9-22	Long Short Term Memory (continued) Module 5: Encoders Introduction, linear encoder	Classroom Teaching PPT	1,2	-
28 29	22-9-22 23-9-22	29-9-22 30-9-22	Long Short Term Memory (continued) Module 5: Encoders Introduction, linear encoder Undercomplete encoder	Classroom Teaching PPT Classroom Teaching PPT	1,2 1,2 1,2	-
28 29 30	22-9-22 23-9-22 27-9-22	29-9-22 30-9-22 30-9-22	Long Short Term Memory (continued) Module 5: Encoders Introduction, linear encoder Undercomplete encoder Overcomplete encoder	Classroom Teaching PPT Classroom Teaching PPT Classroom Teaching PPT	1,2 1,2 1,2 1,2	-
28 29 30 31	22-9-22 23-9-22 27-9-22 29-9-22	29-9-22 30-9-22 30-9-22 4-10-22	Long Short Term Memory (continued) Module 5: Encoders Introduction, linear encoder Undercomplete encoder Overcomplete encoder Regularization in encodr	Classroom Teaching PPT Classroom Teaching PPT Classroom Teaching PPT Classroom Teaching PPT	1,2 1,2 1,2 1,2 1,2	-
28 29 30 31 32	22-9-22 23-9-22 27-9-22 29-9-22 30-9-22	29-9-22 30-9-22 30-9-22 4-10-22 4-10-22 7-10-22	Long Short Term Memory (continued) Module 5: Encoders Introduction, linear encoder Undercomplete encoder Overcomplete encoder Regularization in encodr Denoising encoders	Classroom Teaching PPT Classroom Teaching PPT Classroom Teaching PPT Classroom Teaching PPT Classroom Teaching PPT	1,2 1,2 1,2 1,2 1,2 1,2	Ass3
28 29 30 31 32	22-9-22 23-9-22 27-9-22 29-9-22 30-9-22	29-9-22 30-9-22 30-9-22 4-10-22 4-10-22 7-10-22	Long Short Term Memory (continued)Module 5: EncodersIntroduction, linear encoderUndercomplete encoderOvercomplete encoderRegularization in encodrDenoising encodersSparse encoders, Contractive encoders	Classroom Teaching PPT Classroom Teaching PPT Classroom Teaching PPT Classroom Teaching PPT Classroom Teaching PPT	1,2 1,2 1,2 1,2 1,2 1,2	Ass3

36	12-10-22	12-10-22	Brain tumor detection	Classroom Teaching PPT	Flip
				[Technical paper]	classroom
37	14-10-22	14-10-22	Identification	Classroom Teaching PPT	Quiz4, flip
				[Technical paper]	classroom

Text Books:

- 1. Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning. An MIT Press book,2016.
- 2. Li Deng and Dong Yu, "Deep Learning Methods and Applications", now publishers Inc (30 June 2014),
- 3. Satish Kumar "Neural Networks A Classroom Approach" Tata McGraw-Hill.
- 4. J M Zurada "Introduction to Artificial Neural Systems", Jaico Publishing House
- 5. M. J. Kochenderfer, Tim A. Wheeler. "Algorithms for Optimization", MIt Press.

Reference Books:

- 6. Jon Krohn, Grant Beyleveld, Aglae Bassens, "Deep Learning Illustrated: A Visual, Interactive
- 7. Guide to Artificial Intelligence", Pearson Education.
- 8. Buduma, N. and Locascio, N., "Fundamentals of deep learning: Designing next-generation machine intelligence algorithms" 2017. O'Reilly Media, Inc.".
- 9. François Chollet, "Deep Learning with Python", Manning Publications, 2018.
- 10. Douwe Osinga. "Deep Learning Cookbook", O'REILLY, SPD Publishers, Delhi.
- 11. Simon Haykin, Neural Network- A Comprehensive Foundation- Prentice Hall International, Inc.

Online references:

- 12. https://nptel.ac. https://deeplearning.cs.cmu.edu/S21/index.html
- 13. http://www.cse.iitm.ac.in/~miteshk/CS6910.html
- 14. https://nptel.ac.in/courses/106/106/106106184/
- 15. https://www.deeplearningbook.org/
- 16. http://introtodeeplearning.com/
- 17. http://vlabs.iitb.ac.in/vlabs-dev/labs/machine_learning/labs/index.php

Videos:

Video 1: L2 Regularization: L1 and L2 Regularization Methods, Explained | Built In

Video 2: Convolution Operation: <u>Deep Learning(CS7015): Lec 11.1 The convolution operation - YouTube</u>

Video 3: CNN: Deep Learning(CS7015): Lec 11.3 Convolutional Neural Networks - YouTube

Video 4: CNN: One Layer of a Convolutional Network - Foundations of Convolutional Neural Networks | Coursera

Video 5: How to calculate Neural network Parameters: https://www.youtube.com/watch?v=bikmA-VmSbY

Technical papers:

[1] Alex Krichevsky et al. "ImageNet Classification with Deep Convolutional Neural Networks ", NIPS'12: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 December 2012 .

[2] Karen Simonyan et al. "VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION", ICLR 2015,

[3] Asifullah Khan et al. ," A Survey of the Recent Architectures of Deep Convolutional Neural Networks", In Artificial Intelligence Review, DOI: <u>https://doi.org/10.1007/s10462-020-09825-6</u>.

Examination Scheme

Module		Lecture Hours	Marks distribution in Test (For internal assessment/TW)		Approximate Marks distribution in Sem. End Examination
			Test 1	Test 2	
1	Introduction	05	06 (CO1)		
2	Optimization and regularization	08	08 (CO2)		
3	Convolution Neural networks	08	06 (CO3)	05(CO3)	
4	Recurrent Neural networks	06		08 (CO4)	
5	Encoders	06		03 (CO5)	
6	Recent trends and Application	06		04 (CO5)	

Approved By			
ii) Dr. D. V. Bhoir	Sign:		
ii) Prof. K. Narayanan	Sign:		
iii) Prof. Shilpa Patil	Sign:		
Date of Approval:			
	ii) Dr. D. V. Bhoir ii) Prof. K. Narayanan iii) Prof. Shilpa Patil		