Lesson Plan

Branch: Computer Engineering

Semester: I

Year: 2022-23

Course Title: Engineering	SEE: 3 Hours – Theory
Mathematics I	
Total Contact Hours: 36 Hours	Duration of SEE: 3 Hours
SEE Marks: 80 (Theory) + 20 (IA)	
Lesson Plan Author: Gauree	Date:
Jagushte.	
Checked By:	Date:

Prerequisites: Review of complex numbers – Algebra of complex number, Cartesian, Polar and Exponential form of complex number

Syllabus:

1. Complex Numbers

- Statement of D'Moivre's theorem
- Expansion of sine and cosine function from power to multiple and from multiple
- to power
- Powers and roots of complex numbers

2. Hyperbolic functions and Logarithm of a complex number

- Circular and hyperbolic functions, inverse circular and inverse hyperbolic functions, separation into real and imaginary parts
- Logarithm of a complex numbers, separation of real and imaginary parts of logarithmic functions

3. Partial Differentiation

- Functions of several variables, partial derivatives of first and higher order, differentiation of composite functions
- Euler's theorem (with proof) and its deductions for homogeneous functions of two Variables
- 4. Applications of partial differentiation and successive differentiation
 - Maxima and minima of functions of two variables and Lagrange multiplier of functions of two variables
 - nth derivative, Leibnitz theorem without proof and problems
- 5. Matrices
 - Types of matrices (symmetric, skew-symmetric, hermitian, skew-hermitian, orthogonal and unitary), Rank of a matrix using row-echelon form, normal form and PAQ form
 - Non-homogeneous and homogeneous system of linear equations and their solutions
- 6. Numerical solutions of transcendental equations, system of equations and expansion of functions
 - Numerical solutions of transcendental equations: Regula-Falsi and Newton, Raphson methods

- Numerical solutions of system of equations: Jacobi method, Gauss-Seidal method
- Expansion of functions: Taylor's series, Maclaurin's series, expansions of exponential, logarithmic functions, circular trigonometric and hyperbolic functions

Course Outcomes (CO):

On successful completion of course learner will be able to:

FEC101.1. Demonstrate the basics of complex numbers, obtain the roots of a complex number using

De Movire's theorem and separate the complex number into real and imaginary parts.

FEC101.2. Obtain the nth derivative of a function using successive differentiation.

FEC101.3. Apply partial differentiation technique to obtain the extremum of the given function

- FEC101.4. Apply the concepts of matrices to solve the system of linear equations.
- **FEC101.5.** Apply the concept of Numerical Methods for solving the engineering problems with the

help of SCILAB software

СО	BL	CO	PI	PO	Mapping
FEC101.1.	2	1.1	1.1.1	PO1	3
Demonstrate the basics of complex numbers,		1.3	1.3.1		
obtain the roots of a complex number using De Movire's		5.3	5.3.1	PO5	1
theorem and separate the complex number into real and					
imaginary parts.					
FEC101.2.	3	1.1	1.1.1	PO1	3
Obtain the nth derivative of a function using successive differentiation.		1.3	1.3.1		
FEC101.3.	3	1.1	1.1.1	PO1	3
Apply partial differentiation technique to		1.3	1.3.1		
obtain the extremum of the given function		5.3	5.3.1	PO5	1
FEC101.4.	3	1.1	1.1.1	PO1	3
Apply the concepts of matrices to solve the		1.3	1.3.1		
system of linear equations.		5.3	5.3.1	PO5	1
FEC101.5. Apply the concept of Numerical Methods for solving the engineering problems with the help of SCILAB	2	5.3	5.3.1	PO5	1
software.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
FEC101.1	3				1							
FEC101.2	3											
FEC101.3	3				1							
FEC101.4	3				1							
FEC101.5					1							

CO-PSO Mapping:

СО	BL	С	PI	PO	Mapping

PSO1	PSO2

CO Measurement Weightages for Tools:

	Test	Lab	Assignme	SEE	SEE (T)	Course
			nt	(0)		Exit
						Survey
FEC101.1	30%		10%		60%	100%
FEC101.2	30%		10%		60%	100%
FEC101.3	20%		20%		60%	100%
FEC101.4	30%		10%		60%	100%
FEC101.5		100%				100%

Attainment: CO FEC101.1:

Direct Method

 $A_{FEC101.1D} = 0.3 * Test + 0.1 * Assignment + 0.6 * SEE Theory$ Final Attainment:

$$A_{FEC101.1D} = 0.8 * A_{FEC101.1D} + 0.2 * AA_{FEC101.1I}$$

CO FEC101.2:

Direct Method

 $A_{FEC101.1D} = 0.3 * Test + 0.1 * Assignment + 0.6 * SEE Theory$ Final Attainment:

$$A_{FEC101.1D} = 0.8 * A_{FEC101.1D} + 0.2 * AA_{FEC101.1D}$$

CO FEC103.3:

Direct Method

 $A_{FEC101.1D} = 0.3 * Test + 0.1 * Assignment + 0.6 * SEE Theory$ Final Attainment:

$$A_{FEC101.1D} = 0.8 * A_{FEC101.1D} + 0.2 * AA_{FEC101.1I}$$

CO FEC104.4:

Direct Method

 $A_{FEC101.1D} = 0.3 * Test + 0.1 * Assignment + 0.6 * SEE Theory$ Final Attainment:

 $A_{FEC101.1D} = 0.8 * A_{FEC101.1D} + 0.2 * AA_{FEC101.1I}$

CO FEC101.5:

Direct Method $A_{FEC101.5D} = 1 * \Pr actical$ Final Attainment: $A_{FEC101.5} = 0.8 * A_{FEC101.5D} + 0.2 * A_{FEC101.5I}$

Course Level Gap (if any): No Content beyond Syllabus: No

Lecture Plan:

Mod	Contents	Hours	Planned	Actual date	Content	Remark				
ule			date		Delivery					
					Method					
	Module 01: Complex	11								
	Numbers - D' Moivre's		14/11/2022	14/11/2022	Traditional					
	theorem									
	Module 01: Complex		16/11/2022	16/11/2022	Traditional					
	Numbers - D'Moivre's									
	theorem (Examples)									
	Module 01: Complex		17/11/2022	17/11/2022	Traditional					
	Numbers - D'Moivre's									
1	theorem (Examples)									
1	Module 01: Complex		18/11/2022	18/11/2022	Traditional					
	Numbers - D'Moivre's									
	theorem (Examples)									
			21/11/2022	18/11/2022	Traditional	Extra				
						lecture of				
						Dipak sir				
	Module 01: Complex					as he was				
	Numbers - Roots of a					not				
	complex number					available				

	Module 01: Complex Numbers - Roots of a		22/11/2022	21/11/2022	Traditional	
	complex number Module 01: Power to		23/11/2022	22/11/2022	Traditional	
	multiple and multiple to power of trigonometric					
	functions					
	Module 01: Power to multiple and multiple to power of		24/11/2022	23/11/2022	Traditional	
	trigonometric functions					
	Module 01: Power to multiple and multiple to power of		25/11/2022	24/11/2022	Traditional	
	trigonometric functions					
	Module 01: Power to multiple and multiple		29/11/2022	25/11/2022	Traditional	
	to power of trigonometric functions			25/11/2022		
		10	30/11/2022	-	Traditional	Lecture taken by
	Module 02: Hyperbolic function and Logarithm of Complex Numbers					Dipak sir (exchange 18/11/202 2)
	Module 02: Hyperbolic function		01/12/2022	29/11/2022	Traditional	2)
	and Logarithm of Complex Numbers					
2	Module 02: Hyperbolic function and Logarithm of		06/12/2022	1/12/2022	Traditional	
	Complex Numbers Module 02: Hyperbolic function		07/12/2022	06/12/2022	Traditional	
	and Logarithm of Complex Numbers					
	Module 02: Hyperbolic functions		08/12/2022	07/12/2022	Traditional	
	Module 02: Hyperbolic functions		09/12/2022	08/12/2022	Traditional	
	Module 02: Inverse Hyperbolic function		13/12/2022	09/12/2022	Traditional	

	Module 02: Inverse		14/12/2022	00/12/2022	Traditional	
	Hyperbolic function		14/12/2022	09/12/2022		
	Module 02: Separation into real and imaginary parts		15/12/2022	14/12/2022	Traditional	
	Module 02: Logarithm of a complex number		27/12/2022	15/12/2022	Traditional	
	Applications of Partial Differentiation and Successive Differentiation	12	28/12/2022	16/12/2022	Traditional	
	Applications of Partial Differentiation and Successive Differentiation		29/12/2022	26/12/2022	Traditional	Extra session
	Applications of Partial Differentiation and Successive Differentiation		30/12/2022	27/12/2022	Traditional	
4	Module 04: Successive Differentiation - Examples on the Leibnitz Rule		03/01/2023	27/12/2022	Traditional	Extra session
	Module 04: Successive Differentiation - Examples on the Leibnitz Rule		04/01/23	28/12/2022	Traditional	
	Module 04: Successive Differentiation - Examples on the Leibnitz Rule		05/01/23	29/12/2022	Traditional	
	Module 04: Successive Differentiation - Leibnitz Rule		10/01/23	29/12/2022	Traditional	
	Module 04: Successive Differentiation - Examples on the Leibnitz Rule		11/01/2023	30/12/2022	Traditional	Tutorial conducted as lecture
	Module 03: Partial Differentiation		12/01/2023	3/1/2023	Traditional	
3	Module 03: Partial Differentiation – Examples		17/01/2023	4/1/2023	Traditional	
	Module 03: Partial Differentiation - Chain Rule		18/01/2023	4/1/2023	Traditional	SDP

1		I	гг			
	Module 03: Partial				Traditional	
	Differentiation - Chain		19/01/2023	5/1/2023		
	Rule					
	Module 03: Partial				Traditional	
	Differentiation -		24/01/2023	5/1/2023		SDP
	Euler's Theorem and					
	Deductions					
	Module 04:				Traditional	
	Applications of Partial		25/01/2022	7/1/0000		
	Differentiation -		25/01/2023	7/1/2023		
	Maxima/Minima and					
	Lagrange Function Module 04:				Tra diti an al	
					Traditional	
	Applications of Partial Differentiation -		26/01/2023	10/1/2023		
	Maxima/Minima and		20/01/2025	10/1/2025		
	Lagrange Function					
	Module 04:				Traditional	
	Applications of Partial				Traditional	
	Differentiation -		31/01/2023	11/1/2023		
	Maxima/Minima and		51/01/2025	11/1/2023		
	Lagrange Function					
-	Module 04:				Traditional	
	Applications of Partial					
	Differentiation -		01/02/2023	12/1/2023		
	Maxima/Minima and					
4	Lagrange Function					
4	Module 04:	11			Traditional	
	Applications of Partial					
	Differentiation -		02/02/2023	17/01/2023		
	Maxima/Minima and					
	Lagrange Function					
	Module 04:				Traditional	
	Applications of Partial					
	Differentiation -		07/02/2023	18/01/2023		
	Maxima/Minima and					
	Lagrange Function					
	Module 04:				Traditional	
	Applications of Partial			10/01/0000		
	Differentiation -		08/02/2023	18/01/2023		SDP
	Maxima/Minima and					
	Lagrange Function					
	Module 04:				Traditional	
	Applications of Partial Differentiation -		09/02/2023	19/01/2023		
	Maxima/Minima and		09/02/2023	19/01/2023		
	Lagrange Function					

Module 04:			Traditional	
Applications of Partial			Traditional	
Differentiation -		24/01/2023		
Maxima/Minima and				
Lagrange Function				
Module 04:			Traditional	
Applications of Partial				
Differentiation -		25/01/2023		
Maxima/Minima and				
Lagrange Function				
			Traditional	RIVISIO
Module 04:				N AND
Applications of Partial		03/02/2023		REMEDI
Differentiation -		03/02/2023		AL
Maxima/Minima and				SESSION
Lagrange Function				S
			Traditional	RIVISIO
				N AND
		06/02/2023		REMEDI
				AL
				SESSION
				S
			Traditional	RIVISIO
				N AND
		08/02/2023		REMEDI
				AL
				SESSION
			Traditional	S
			Traditional	RIVISIO
				N AND Demedi
		10/02/2023		REMEDI AL
				AL SESSION
				SESSION
				3

Text Books:

1. Engineering Mathematics-I by G.V. Kumbhojkar, J. Jamnadas Publication

2. Engineering Mathematics-I by Dr. N.R. Dasre, TechKnowledge Publication

Reference Books:

- 1. Advance Engineering Mathematics by H.K. Dass, S.Chand & Company Limited
- 2. Advance Engineering Mathematics by Peter O' Neil, Cengage Learning

Web References:

- 1.
- 2.

Evaluation Scheme

CIE Scheme

Internal Assessment: 20 (Average of two tests)

Internal Assessment Scheme

Module		Lecture	No. of questions in			No. of questions
		Hours	Test 1	Test 2	Test 3*	in SEE
1	Complex numbers		02 (10			03(17 Marks)
			marks)			
2	Hyperbolic functions		01 (5			04(25 Marks)
	and Logarithm of		Marks)			
	complex numbers					
3	Partial differentiation			02 (7 Marks)		04(25 Marks)
4	Applications of		01 (5	01 (3 Marks)		03(20 Marks)
	partial differentiation		Marks)			
	and successive					
	differentiation					
5	Matrices			2 (10 Marks)		05(33 Marks)

Note: Four to six questions will be set in the Test paper

Verified by:	
Programme Coordinator	Subject Expert: GAUREE JAGUSHTE