<u>Fr. Conceicao Rodrigues College Of Engineering</u> Department of Artificial Intelligence and Data Science Engineering

T.E. (AI DS) (semester V) (2022-2023) Course Outcomes & Assessment Plan

Subject: Data Warehousing and Mining (DWM-CSC504) Credits-3

Course Objectives:

- 1. To create awareness of how enterprise can organize and analyze large amounts of data by creating a Data Warehouse
- 2. To introduce the concept of data Mining as an important tool for enterprise data management and as a cutting edge technology for building competitive advantage.
- 3. To enable students to effectively identify sources of data and process it for data mining
- 4. To make students well versed in all data mining algorithms, methods of evaluation
- 5. To impart knowledge of tools used for data mining, and study web mining

Teaching Scheme

Course	Course Name	Те	aching Sch	eme	Credits Assigned					
Code		Theor	Practica	Tutorial	Theor	Practical/Ora	Tut	Credit		
		У	1		У	1		S		
CSC504	Data	03			03			03		
	Warehousing and									
	Mining									
CSL503	Data		02			1		01		
	Warehousing and									
	Mining Lab									

Examination Scheme

Course	Course Name							
Code			Theor	y Marks		Term	Practical	Total
		Inter	nal Asses	sment	End	Work	& Oral	
		Test 1	Test2	Avg	Sem Exam			
CSC502	Data Warehousing and Mining	20	20	20	80 (3hr)			100
CSL502	Data Warehousing and Mining Lab					25	25	50

Syllabus: Prerequisite: Database Management concepts

1. Data Warehouse and OLAP (09)

Data Warehousing, Dimensional Modeling and OLAP The Need for Data Warehousing; Data Warehouse Defined; Benefits of Data Warehousing ; Features of a Data Warehouse; Data Warehouse Architecture; Data Warehouse and Data Marts; Data Warehousing Design Strategies. Dimensional Model Vs ER Model; The Star Schema, The Snowflake Schema; Fact Tables and Dimension Tables; Factless Fact Table; Updates To Dimension Tables, Primary Keys, Surrogate Keys & Foreign Keys; Aggregate Tables; Fact Constellation Schema or Families of Star Need for Online Analytical Processing; OLTP vs OLAP; OLAP Operations in a cube: Roll-up, Drilldown, Slice, Dice, Pivot; OLAP Models: MOLAP, ROLAP, HOLAP. Major steps in ETL Process.

1. Introduction to Data Mining ,Data Exploration and Data Preprocessing (08)

Data Mining Task primitives, Architecture, KDD process, Issues in data Mining, Types of Attributes; Statistical Description of Data; Data Visualization; Measuring similarity and dissimilarity. Why Preprocessing? Data Cleaning; Data Integration; Data Reduction: Attribute subset selection, Histograms, Clustering and Sampling; Data Transformation & Data Discretization: Normalization, Binning, Histogram Analysis and Concept hierarchy generation.

2. Classification (06)

Basic Concepts; Classification methods: 1. Decision Tree Induction: Attribute Selection Measures, Tree pruning. 2. Bayesian Classification: Naïve Bayes" Classifier. Prediction: Structure of regression models; Simple linear regression, Multiple linear regression. Accuracy and Error measures, Precision, Recall

3. Clustering (04)

Cluster Analysis: Basic Concepts; Partitioning Methods: K-Means, KMediods; Hierarchical Methods: Agglomerative, Divisive, BIRCH;DensityBased Methods: DBSCAN What are outliers? Types, Challenges; Outlier Detection Methods: Supervised, Semi Supervised, Unsupervised, Proximity based, Clustering Based

4. Frequent Pattern (08)

Market Basket Analysis, Frequent Itemsets, Closed Itemsets, and Association Rules; Frequent Pattern Mining, Efficient and Scalable Frequent Itemset Mining Methods, The Apriori Algorithm for finding Frequent Itemsets Using Candidate Generation, Generating Association Rules from Frequent Itemsets, Improving the Efficiency of Apriori, A pattern growth approach for mining Frequent Itemsets; Mining Frequent itemsets using vertical data formats; Introduction to Mining Multilevel Association Rules and Multidimensional Association Rules; From Association Mining to Correlation Analysis, lift, ; Introduction to Constraint-Based Association Mining

5. Web Mining (04)

Introduction to Web content Mining, Crawlers, Personalization, Webstructure mining, Page rank,, Clever, Web Usage Mining

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first-class test is to be conducted when

approx. 40% syllabus is completed and second class test when additional40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will consist of 6 questions, each carrying 20 marks.
- 2. The students need to solve a total of 4 questions.
- 3. Question No.1 will be compulsory and based on the entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Lecture Plan : SEM V-DWM-CSC504

i	Class Room	v	Self-Learning Online	ix	Industry Visit
	leaching		Resources		
ii	<mark>Tutorial</mark>	vi	Slides	x	Group Discussion
ii	Remedial Coaching	vii	Simulations/Demonstrations	xi	Seminar
i					
i	Lab Experiment	vii	Expert Lecture	xi	<mark>Case Study</mark>
v		i		i	

Modes of Content Delivery:

Term : 18th July – 30 Oct 2022

(UT1:05 Sept - 07 Sept) (UT2:170ct -19 Oct)

No.	Portion to be covered	Planned date	Actual date	Content Delivery -
				Assessment
				Method
1	Prerequisite CO	18/07/2022	20/07/202	PPT/BlackBoard
-	Discussion		2	
	Introduction to Data Warehouse,			
2	Data Warehousing, Dimensional Modeling and	22/07/2022	22/07/202	РРТ
	OLAP The Need for Data Warehousing; Data		2	
	Warehouse Defined; Benefits of Data Warehousing			
	;			
3	Features of a Data Warehouse; Data Warehouse	25/07/2022	25/07/202	PPT/BlackBoard
	Architecture; Data Warehouse and Data Marts;		2	
4	Data Warehousing Design Strategies. Dimensional	27/07/2022	27/07/202	PPT/BlackBoard
	Model Vs ER Model; The Star Schema, The		2	
	Snowflake Schema; Fact Tables and Dimension			
	Tables;			
5	Factless Fact Table; Updates To Dimension Tables,	29/07/2022	29/07/202	PPT
	Primary Keys, Surrogate Keys & Foreign Keys;		2	
	Aggregate Tables; Fact Constellation Schema or			
	Families of Star			
6	Need for Online Analytical Processing; OLTP vs	1/8/2022	3/8/2022	PPT/Lab Demo
	OLAP; OLAP Operations in a cube:			
7	Roll-up, Drilldown, Slice, Dice, Pivot ;	3/8/2022	5/8/2022	Lab Demo
8	Solved problems on schema design and OLAP	5/8/2022	8/8/2022	PPT/BlackBoard
	operations			
9	OLAP Models: MOLAP, ROLAP, HOLAP. Major steps	8/8/2022	9/8/2022	PPT/BlackBoard
	in ETL Process			
10	Data Mining Task primitives, Architecture, KDD	10/8/2022	9/8/2022	PPT/BlackBoard
	process, Issues in data Mining,			
11	Types of Attributes; Statistical Description of Data;	12/8/2022	10/8/2022	PPT/BlackBoard

No.	Portion to be covered	Planned date	Actual date	Content Delivery -			
				Reference			
				/Assessment			
				Method			
12	Data Visualization; Measuring similarity and	17/08/2022	12/8/22	PPT/BlackBoard			
	dissimilarity.						
13	Why Preprocessing? Data Cleaning;	17/08/2022	12/8/22	PPT/BlackBoard			
14	Data Integration; Data Reduction: Attribute subset	22/08/2022	17/08/202	PPT/BlackBoard			
	selection, Histograms, Clustering and Sampling;		2				
15	Data Transformation & Data Discretization:	24/08/2022	22/08/202 2	PPT/Blackboard			
16	Normalization, Binning, Histogram Analysis and Concept hierarchy generation.	26/08/2022	24/08/202 2 29/08/202 2	PPT/BlackBoard			
17	Basic Concepts; Classification methods: 1. Decision Tree Induction: Attribute Selection Measures, Prediction:	29/08/2022	29/08/202 2 09/09/202 2	PPT			
18	Decision Tree Induction: Attribute Selection Measures,	09/09/2022	12/09/202 2 13/09/202 2	PPT/BlackBoard			
19	Solved examples based on DT	12/09/2022	14/09/202 2	BlackBoard chalk			
20	Tree pruning. Bayesian Classification: Naïve Bayes" Classifier.	14/09/2022	16/09/202 2	PPT/BlackBoard			
21	Solved examples based on Bayesian Classification	16/09/2022	19/09/202 2	PPT/BlackBoard			
22	Structure of regression models; Simple linear	19/09/2022	19/09/202	PPT/Blackboard			
	regression, Multiple linear regression.		2				
23	Accuracy and Error measures, Precision, Recall	21/09/2022	21/09/202 2	PPT/BlackBoard			
24	Cluster Analysis: Basic Concepts; Partitioning Methods: K-Means	21/09/2022	21/09/202 2	PPT/BlackBoard			
25	KMediods;	22/09/2022	21/09/202 2	PPT/BlackBoard			
26	Hierarchical Methods: Agglomerative, Divisive,	23/09/2022	22/09/202 2	BlackBoard chalk			
27	Solved problems on K-Mean and K-medoid	24/09/2022	22/09/202 2	BlackBoard chalk			
28	BIRCH;DensityBased Methods: DBSCAN	26/09/2022	23/09/202 2	PPT/BlackBoard			
29	What are outliers? Types, Challenges;	27/09/2022	25/09/202 2	Online on Google classroom, PPT			

No.	Portion to be covered	Planned date	Actual date	Content Delivery - Reference /Assessment Method		
30	Outlier Detection Methods: Supervised, Semi Supervised, Unsupervised, Proximity based, Clustering Based	28/09/2022	25/09/202 2	Online on Google classroom, PPT		
31	Market Basket Analysis, Frequent Itemsets, Closed Itemsets, and Association Rules;	30/09/2022	26/09/202 2	BlackBoard chalk		
32	Frequent Pattern Mining, Efficient and Scalable Frequent Itemset Mining Methods, The Apriori Algorithm for finding Frequent Itemsets Using Candidate Generation, Generating Association Rules from Frequent Itemsets,	03/10/2022	28/09/202 2	BlackBoard chalk		
33	Solve problems based on Apriory algorithm	07/10/2022	30/09/202 2	BlackBoard and Chalk		
34	Improving the Efficiency of Apriori, A pattern growth approach for mining Frequent Itemsets;	08/10/2022	3/10/2022	BlackBoard and Chalk		
35	Mining Frequent itemsets using vertical data formats; Introduction to Mining Multilevel Association Rules and Multidimensional Association Rules;	10/10/2022	07/10/202 2	BlackBoard and Chalk		
36	From Association Mining to Correlation Analysis, lift, ; Introduction to Constraint-Based Association Mining	12/10/2022	10/10/202 2	BlackBoard and Chalk		
37	Introduction to Web content Mining, Page rank,, Clever, Web Usage Mining	14/10/2022	12/10/202 2	BlackBoard and Chalk		
38	Crawlers, Personalization,	20/10/2022	14/10/202 2	PPT/blackboard		
39	Webstructure mining,	21/10/2022	21/10/202 2	Online on google meet, PPT		
40	Page rank,, Clever, Web Usage Mining	27/10/2022	27/10/202 2	Online on google meet, PPT		

Total Lectures : 40

Text Books:

- 1. Paulraj Ponniah, "Data Warehousing: Fundamentals for IT Professionals!", Wiley India.
- 2. Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann
- 3. Reema Theraja," Data warehousing, Oxford University Press.
- 4. M.H. Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education.

Reference Books:

- 1. Ian H. Witten, Eibe Frank and Mark A. Hall, "Data Mining ", 3rd Edition Morgan Kaufmann publisher.
- 2. Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Introduction to Data Mining", Person Publisher.

Useful Links:

- 1 <u>www.leetcode.com</u>
- 2 www.hackerrank.com
- 3 www.cs.usfca.edu/~galles/visualization/Algorithms.html
- 4 <u>www.codechef.co</u>

Course Outcomes: [Target 2.6]

After successful completion of the course students will be able to:

 $\label{eq:csc504.1} CSC504.1: Organize strategic data in an enterprise and build a data Warehouse.$

CSC504.2: Analyze data using OLAP operations so as to take strategic decisions and

Demonstrate an understanding of the importance of data mining.

CSC504.3: Organize and Prepare the data needed for data mining using pre preprocessing techniques

CSC504.4: Implement the appropriate data mining methods like classification, clustering or Frequent Pattern mining on large data sets

CSC504.5: Define and apply metrics to measure the performance of various data mining algorithms

CSC504.6: Understand Concepts related to Web mining

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance),

2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P01 1	P012	PSO1
CSC504.1	3	3	3										3
CSC504.2	3	3	2	2	3							2	3
CSC504.3	3	3			3							3	2

CSC504.4	3	3	2	2	3							2	2
CSC504.5	3	3	2	2	3								3
CSC504.6	3	2	2	2									2
TOTAL	18	17	11	8	12	0	0	0	6	6	0	7	15
СО-РО													
MATRIX	3	2.83	1.83	1.33	2	0	0	0	1	1	0	1.16	2.5

CO ASSESSMENT TOOLS

	Direct Methods (80%)								
CSC504.1	Test 1 (30%)	Lab 7 (20%)	UE –TH (20%)	UE-O (20%)	Assign 1 (10%)	(100%)			
CSC504.2	Test1 (30%)	Lab 4 (30%)	UE –TH (20%)	UE-O (10%)	Assign 1 (10%)	(100%)			
CSC504.3	Test1 (30%)	Tut (30%)	UE –TH (20%)	UE-0 (10%)	Assign 2 (10%)	(100%)			
CSC504.4	Test2 (30%)	Lab 6 (30%)	UE –TH (20%)	UE-0 (20%)		(100%)			
CSC504.5	Test2 (30%)	MP (20%)	UE –TH (20%)	UE-0 (20%)	Assign 3 (10%)	(100%)			
CSC604.6			UE –TH (50%)	UE-O (50%)		(100%)			

<u>Gurriculum Gap/Content Beyond Syllabus:</u>

Sr.No	Gap/Content Beyond Syllabus	Activity	Торіс
1	Information Package diagram	Extra	What is IPD? Contents of IPD
		Lecture	
2	Outlier Analysis	Extra	Outlier Detection Methods:
		Lecture	Supervised, Semi Supervised,
			Unsupervised, Proximity based,
			Clustering Based
3	Tree Pruning	Extra Lecture	What is tree pruning, importance of tree pruning, tree pruning
			methous.

4 OLAP operation implementation in Excel	DEMO	OLAP operations implementation using pivot table and visualization using pivot chart, data analysis using Excel pivot table.
--	------	--

<u>Rubrics for Assignments</u>

Class : T.E. AI & DS

Semester : V

Assignment No:	
Title:	
Date of Performance:	
Roll No:	
Name of the Student:	

Evaluation:

Indicator	cator Poor		Good
Timeliness Maintains assignment deadline (2) 	Assignment not done (0)	One or More than One week late (1)	Maintains deadline (2)
Completeness and neatness Complete all parts of assignment(3) 	N/A	< 80% complete (1-2)	100% complete (3)
Originality • Extent of plagiarism(2)	Copied it from someone else(0)	Atleast few questions have been done without copying(1)	Assignment has been solved completely without copying (2)
KnowledgeIn depth knowledge of the assignment(3)	Unable to answer all questions(0)	Unable to answer some questions (1 or 2)	Able to answer all questions (3)

Signature

Department of AI & DS Engineering

Rubrics for Lab Experiment

Class : T.E. AI and DS Semester : V

Subject Name :DWM Subject Code :CSC504

Practical No:	
Title:	
Date of Performance:	
Roll No:	
Name of the Student:	

Rubrics for assessment of Experiment:

Sr. No	Parameters	Exceed	Meet	Below	
		Expectations(EE)	Expectations	Expectations	
			(ME)	(BE)	
1	Timeline (2)	Early or on time	One session late	More than one	
		(2)	(1)	session late (0)	
2	Preparedness (2)	Knows the basic	Managed to	Not aware of the	
		theory related to	explain the	theory to the	
		the experiment	theory related to	point. (1)	
		very well. (2)	the experiment.		
			(1)		
3	Effort (3)	Done expt on their	Done expt with	Just managed.	
		own. (3)	help from other.	(1)	
			(2)		
4	Documentation(2)	Lab experiment is	Documented in	Experiments not	
		documented in	proper format	written in	
		proper format and	but some	proper format	
		maintained neatly.	formatting	(0.5)	
		(2)	guidelines are		
			missed. (1)		

5	Result (1)	Specific conclusion.(1)	Partially specific conclusion.	Not specific at all. (0)
			(0.5)	

Assessment Marks:

Timeline(2)	Preparedness(2)	Effort(3)	Documentation(2)	Result(1)	Total(10)

Signature