FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering

B.E. (Computer) (semester VIII) (2018-2019) Course Outcomes & Assessment Plan

Subject: Big Data Analytics (BDA-CPE8035)

Credits-5

Syllabus:

- **1. Introduction to Big Data:** Introduction to Big Data, Big Data characteristics, types of Big Data, Traditional vs. Big Data business approach, Case Study of Big Data, Solutions.
- **2. Introduction to Hadoop:** What is Hadoop? Core Hadoop Components; Hadoop Ecosystem; Physical Architecture; Hadoop limitations.
- **3. NoSQL:** What is NoSQL? NoSQL business drivers; NoSQL case studies; NoSQL data architecture patterns: Key-value stores, Graph stores, Column family (Bigtable) stores, Document stores, Variations of NoSQL architectural patterns; Using NoSQL to manage big data: What is a big data NoSQL solution? Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer-to-peer; Four ways that NoSQL systems handle big data Problem

4. MapReduce and the New Software Stack: Distributed File Systems: Physical Organization of Compute Nodes, Large- Scale File-System Organization.
MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures.
Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce, Computing Natural Join by MapReduce, Grouping and Aggregation by MapReduce, Matrix Multiplication, Matrix Multiplication with One MapReduce Step.

- Finding Similar Items: Applications of Near-Neighbor Search, Jaccard Similarity of Sets, Similarity of Documents, Collaborative Filtering as a Similar-Sets Problem.
 Distance Measures: Definition of a Distance Measure, Euclidean Distances, Jaccard Distance, Cosine Distance, Edit Distance, Hamming Distance.
- **6. Mining Data Streams: The Stream Data Model**: A Data-Stream-Management System, Examples of Stream Sources, Stream Queries, Issues in Stream Processing.

Sampling Data in a Stream: Obtaining a Representative Sample, The General Sampling Problem, Varying the Sample Size.

Filtering Streams: The Bloom Filter, Analysis.

Counting Distinct Elements in a Stream: The Count-Distinct Problem, The Flajolet-Martin Algorithm, Combining Estimates, Space Requirements .

Counting Ones in a Window: The Cost of Exact Counts, TheDatar-Gionis-Indyk-Motwani Algorithm, Query Answering in the DGIM Algorithm, Decaying Windows.

7. Link Analysis: PageRank Definition, tructure of the web, dead ends, Using Page rank in a search engine, Efficient computation of Page Rank: PageRank Iteration Using MapReduce,

Use of Combiners to Consolidate the Result Vector. Topic sensitive Page Rank, link Spam, Hubs and Authorities.

- 8. Frequent Itemsets: Handling Larger Datasets in Main Memory Algorithm of Park, Chen, and Yu, The Multistage Algorithm, The Multihash Algorithm. The SON Algorithm and MapReduce Counting Frequent Items in a Stream Sampling Methods for Streams, Frequent Itemsets in Decaying Windows
- **9. Clustering:** CURE Algorithm, Stream-Computing , A Stream-Clustering Algorithm, Initializing & Merging Buckets, Answering queries
- **10.Recommendation Systems:** A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering.
- **11.Mining Social-Network Graphs:** Social Networks as Graphs, Clustering of Social-Network Graphs, Direct Discovery of Communities, SimRank, Counting triangles using Map-Reduce

Term Work:

Assign a case study for group of 2/3 students and each group to perform the followingexperiments on their case-study; Each group should perform the exercises on a large dataset created by them.

The distribution of marks for term work	shall be as follows:
Programming Exercises:	(10) Marks.
Mini project:	(10) Marks.
Attendance	(05) Marks
TOTAL:	(25) Marks.

Internal Assessment:

Internal Assessment consists of two tests. Test 1, an Institution level central test, is for 20 marks and is to be based on a minimum of 40% of the syllabus. Test 2 is also for 20 marks and is to be based on the remaining syllabus. Test 2 may be either a class test or assignment on live problems or course project.

Practical/Oral examination:

An oral exam will be held based on the above syllabus.

Course Objectives (optional):

- **1.** To provide an overview of an exciting growing field of big data analytics.
- **2.** To introduce the tools required to manage and analyze big data like Hadoop, NoSql Map-Reduce.
- **3.** To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- **4.** To enable students to have skills that will help them to solve complex real-world problems in for decision support.

FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering

B.E. (Computer) (semester VIII) (2018-2019)

Lecture Plan:

Subject: Big Data Analytics (BDA-CPE8035)

Credits-5

Time Table (2 week):

	Prof. S	Swati Ri	nge			With Effect from 09 th January 2018				018	
	8.45-	9.30-	10.15-	11.00-	11.15-	12.00-	12.45-				
	9.30	10.15	11.00	11.15	12.00	12.45	13.15				
Mon				B			L				
				R			U				
Tues		BDA		E			Ν				
		BEC		A			С				
Wed				K		BDA	Н				
						BEC					
Thurs		BDA	BDA	1							
		BEC	BEC								
Fri						BDA					
						BEC					

Time Table (Regular):

Prof. Sv	Prof. Swati Ringe						With Effect from 14 th January 2019					
	8.45-	9.45-	10.45-	11.00-	12.00-	13.00-	13.30-	14.30-	15.30-	16.30-		
	9.45	10.45	11.00	12.00	01.00	13.30	14.30	15.30	16.30	17.30		
Mon			B			L	OSL		OSL			
			R			U	(SEC-D)		(SEC-C)			
			E			Ν						
Tues		BDA	A			С		OSL				
		BEC	K			Н		(SEC-D)				
Wed		BDA					OSL					
		BEC					(SEC-C)					
Thurs		BDA		BDA	BDA		OSL					
		BEC		(BEC-A)			(SEC-A)					
Fri		BDA					OSL			•		
		BEC					(SEC-A)					

Total Load: 4T + 14P = 18 + MENTOR

Lecture Plan : SEM VIII-BDA-CPE8035

Modes of Content Delivery:

i	Class Room	v	Self Learning Online	ix	Industry Visit
	Teaching		Resources		
ii	Tutorial	vi	Slides	x	Group
					Discussion
iii	Remedial Coaching	vii	Simulations/Demonstrations	xi	Seminar
iv	Lab Experiment	viii	Expert Lecture	xii	Case Study

No	Portion to be covered	Planned	Actual date	Content
		date		Delivery -
				Reference
				/Assessment
				Method
1.	Introduction to Big Data: Introduction to	01/01/2019	01/01/2019	PPT [1_BigData]
	Big Data, Big Data characteristics, types of	, ,		– Video1, [TB1]
	Big Data.			/UT1
2	Traditional vs. Big Data business approach,	02/01/2019	02/01/2019	PPT[1_BigData]-
-	Case Study of Big Data, Solutions.	0=,01,=01,		[TB1] / Group
				Discussion
3	Introduction to Hadoon, What is	03/01/2019	03/01/2019	PPT[2_Hadoop]-
З	Introduction to Hadoop: What is Hadoop? Core Hadoop Components;	(2 lectures)	03/01/2019	
		(2 lectures)		Video2,[TB1_4],
4	Hadoop Ecosystem; Physical Architecture;	04/01/2019	04/01/2019	Chart/
	Hadoop limitations.			UT1
5	MapReduce and the New Software	08/01/2019	08/01/2019	PPT[2_Hadoop]-
	Stack: Distributed File Systems: Physical			Video3,[TB1_4]
	Organization of Compute Nodes, Large-			/UT1
	Scale File-System Organization.			,
6	MapReduce: The Map Tasks, Grouping by	09/01/2019	09/01/2019	PPT[2_Hadoop]-
_	Key, The Reduce Tasks,	40/04/0040	111010000	[TB1_4]
7	Combiners, Details of MapReduce	10/01/2019	11/01/2019	/PostLab
10	Execution, Coping With Node Failures.	11/01/2019	10/01/2019	ClassDeam
10	Algorithms using MapReduce: Matrix Vector Multiplication by	11/01/2019	10/01/2019	ClassRoom
	MapReduce, Relational Algebra Operations.	15/01/2019	10/01/2019	Teaching -
	Computing Selections by MapReduce			[TB1_4] /
11	Computing Projections by MapReduce,	16/01/2019	16/01/2019	Lab Expt, UT1
	Union, Intersection and difference by		, ,	
	MapReduce, Computing Natural join by			
	MapReduce, Grouping and Aggregation by			
	MapReduce			

12	Matrix Multiplication (One-step)	17/01/2019	15/01/2019	ClassRoom Teaching- [TB1]/
				Lab Expt
13	NoSQL: What is NoSQL? NoSQL business	18/01/2019	17/01/2019	PPT[3_NoSQL],
	drivers; NoSQL case studies.			Case Study-
				[TB4]/UT1
14	Variations of NoSQL architectural patterns:	22/01/2019	18/01/2019	PPT[3_NoSQL],
	Key-value stores, Graph stores			Case Study
15	Column family (Bigtable) stores, Document	23/01/2019	22/01/2019	[TB3_4]/ UT1
	stores,			
16	Using NoSQL to manage big data: What is a	24/01/2019	23/01/2019	PPT[3_NoSQL]-
	big data NoSQL solution? Understanding	25/01/2019	24/01/2019	[TB4]/
	the types of big data problems; Analyzing			UT1
	big data with a shared-nothing			
	architecture; Choosing distribution models: master-slave versus peer-to-peer;			
	Four ways that NoSQL systems handle big			
	data Problem			
17	Finding Similar Items	29/01/2019	25/02/2019	ClassRoom
	Applications of Near-Neighbor Search,			Teaching –
	Jaccard Distance, Jaccard Similarity of Sets,			[TB1_4]/ Quiz1
	Similarity of Documents, Collaborative			
	Filtering as a Similar-Sets Problem .			
18	Distance Measures: Definition of a	30/01/2019	29/02/2019	
	Distance Measure, Euclidean			
	Distances, Cosine Distance,		_	
19	Edit Distance, Hamming Distance.	06/02/2019		
20	Link Analysis	07/02/2019	30/02/2019	PPT-
	PageRank Definition, Structure of the web,		06/02/2019	[TB1_4]/
	dead ends, Using Page rank			
	in a search engine			
21	Efficient computation of Page Rank	20/02/2019	07/02/2019	ClassRoom Teaching-
22	PageRank Iteration Using MapReduce, Use	21/02/2019	20/02/2019	[TB1_4]
	of Combiners to Consolidate the Result			/UT2/ Lab_Expt
	Vector.			, or a / hav_hapt
23	Topic sensitive Page Rank, link Spam	22/02/2019	21/02/2019	
24	Hubs and Authorities.	26/02/2019	22/02/2019	1
25	Mining Data Streams	27/02/2019	26/02/2019	PPT
	The Stream Data Model: A Data-Stream-			[TB1_4]
	Management System			
26	Stream Querie, Issues in Stream	28/02/2019	27/02/2019]
	Processing.Examples of Stream Sources			

27	Sampling Data in a Stream : Obtaining a	01/03/2019	28/02/2019	
	Representative Sample			
28	The General Sampling Problem, Varying	05/03/2019	01/03/2019	
	the Sample Size.			
29	Filtering Streams:	06/03/2019	05/03/2019	Expert Lecture
	The Bloom Filter, Analysis.			[TB1_4]/
				Quiz, Guest Lect
30	Counting Distinct Elements in a	07/03/2019	06/03/2019	Classroom
	StreamThe Count-Distinct Problem, The			Teaching,
	Flajolet-Martin Algorithm, Combining			[TB1_4]/
	Estimates, Space Requirements			UT2
31	Counting Ones in a Window:	08/03/2019	07/03/2019	Classroom
	The Cost of Exact Counts, The Datar-Gionis-			Teaching,
	Indyk-Motwani Algorithm,Query			[TB1_4]/
	Answering in the DGIM Algorithm,			UT2
	Decaying Windows.			
32	Frequent Itemsets-Handling Larger	12/03/2019	08/03/2019	Classroom
	Datasets in Main Memory			Teaching
33	Algorithm of Park, Chen, and Yu	13/03/2019	12/02/2019	[TB1_4]/UT2
34	The Multistage Algorithm, The Multihash	14/03/2019	13/02/2019	Seminar
	Algorithm.			[TB1_4]
35	The SON Algorithm and MapReduce	19/03/2019	14/02/2019	
36	Counting Frequent Items in a Stream	20/03/2019	19/03/2019	-
	Sampling Methods for Streams, Frequent			
	Itemsets in Decaying Windows			
37	Clustering - CURE Algorithm,	22/03/2019	20/03/2019	PPT-
38	Stream-Computing	26/03/2019	22/03/2019	[TB1_4]
		05 (00 (0040	06/00/0040	/Lab Expt
39	A Stream-Clustering Algorithm,	27/03/2019	26/03/2019	_
40	Initializing & Merging Buckets, Answering	28/03/2019	27/03/2019	
	Queries			
41	Recommendation Systems	29/03/2019	03/04/2019	Case Study-
	A Model for Recommendation Systems,			Seminar
	Content-BasedRecommendations,			[TB1_4]
42	Collaborative Filtering.	02/04/2019	04/04/2019	/UT2
43	Mining Social-Network Graphs	03/04/2019	28/03/2019	PPT
	Social Networks as Graphs, Clustering of			[TB4], HB
	Social-Network Graphs			/UT2, Lab Expt
44	Direct Discovery of Communities	04/04/2019	29/03/2019	PPT
4 -	Sim Donk Counting triangles using Mar	11/04/2010	02/04/2010	[TB4]
45	SimRank, Counting triangles using Map-	11/04/2019	02/04/2019	
	Reduce			

Course	Course	Teaching S	cheme		Credits Assigned			
Code	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tut	Credits
CPE	Big Data	04	02		04	01		05
8035	Analytics							

Course	Course		Examination Scheme							
Code	Name	Theory M	arks			Term	Practical	Oral	Total	
		Internal A	ssessment		End Sem	Work				
		Test1	Test2	Avg	Exam					
CPE	Big Data	20	20	20	80	25		25	150	
8035	Analytics									

Term Work:

Assign a case study for group of 2/3 students and each group to perform the following experiments on their case-study; Each group should perform the exercises on a large dataset created by them.

The distribution of marks for term work shall be as follows:

Programming Exercises:	(10) Marks.
Mini project:	(10) Marks.
Attendance	(05) Marks
TOTAL:	(25) Marks.

Internal Assessment:

Internal Assessment consists of two tests. Test 1, an Institution level central test, is for 20 marks and is to be based on a minimum of 40% of the syllabus. Test 2 is also for 20 marks and is to be based on the remaining syllabus. Test 2 may be either a class test or assignment on live problems or course project.

Practical/Oral examination:

An oral exam will be held based on the above syllabus.

Text Books/ Reference Books:

<u>TextBooks:</u>

[TB1]- Anand Rajaraman and Jeff Ullman "Mining of Massive Datasets", Cambridge University Press, **[TB2]-**Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech Press.

- **[TB3]-**Dan McCreary and Ann Kelly "Making Sense of NoSQL" A guide for managers and the rest of us, Manning Press.
- [TB4]- VijayaLaxmi, Radha Shankarmani, "Big Data Analytics", Wiley.

Reference Books:

- 1. Bill Franks, "Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analytics", Wiley
- 2. Chuck Lam, "Hadoop in Action", Dreamtech Press

<u>Reference</u>

[HB1]-Handbook with sample real life problems solution

<u>Slides</u>

Reference Web Resources:

- **1.** Stanford University Lecture series on Mining Massive Data Sets.
- **2.** BigDataUniversity web site.

Course Outcomes:

Upon completion of this course students will be able to:

- **CPE8035.1:** Explain characteristics of and trends in big data.[**B2:Comprehension**]
- CPE8035.2: Solve big data related problems using the tools like Hadoop and

NoSQL.[B3:Application]

- **CPE8035.3:** Apply appropriate algorithms for extracting knowledge from given BigDataSet. [B3:Application]
- **CPE8035.4:** Simulate real life applications of big data analytics. **[B3:Application]**

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CSC8035.1	3			1					2				3	
CSC8035.2	3	3	2		3				2				3	3
CSC8035.3	3	3	3		2				2	1		3	3	3
CSC8035.4	3	3	3		2				2	2	2		3	3
TOTAL	9	6	8	1	7				8	3	2	3	12	9
CO-PO MATRIX	3	3	2.66	1	2.33				2	1.5	2	3	3	3

<u>Justification</u>

PO2: COs are mapped to this PO1 and 2 because the students understand and analyze the Big Data generated..

PO3: CO8035.2 , CO8035.3 and CO8035.4 are mapped to this PO3 because the students design and develop the mini software system using Big Data technologies.

PO4: CO8035.1 and CO8035.3 are mapped to PO4 because the students investigate the case studies. PO5: CO8035.2 , CO8035.3 and CO8035.4 are mapped to this PO5 because the students use the tools like hadoop, mapreduce, MongoDB, Mahout tools to do the mini analytics system

PO9: CO8035.1-4 are mapped to this PO9 because the students work in a team and individually to develop the mini software system. (2 because not multidisplinary)

P010: C0302.3 and C0302.4 are mapped to this P010 because the students have do presentation and submit written report of the mini software system.

P011: C0302.4 are mapped to P011 because They do presentation of their mini project and research paper.

P012: C0302.3 is mapped to P012 because the students study research papers on a particular topic and summarizes them.

PSO1: All COs are mapped to PSO1 because the graduates will be able to apply fundamental knowledge of Big Data Analytics to provide computer base solution to real world problems.

PSO2: All COs are mapped to this PSO2 because the students design and implement the mini software system with consideration of Analytics

CO Assessment Tools:

<u>CSC8035.1:</u>	Direct Methods(80%): Test1(Q1) Quiz1 UniExamThUniExamOral						
	CO1dm = 0.3T1(Q1-5M) + 0.3Quiz1 + 0.2UTh + 0.2UO.						
	InDirectMethods(20%): Course exit survey						
	CO1idm						
	CSC8035.1 = 0.8*CO1dm + 0.2*CO1idm						
<u>CSC8035.2:</u>	Direct Methods(80%): Test 1(Q2) Labs1-5 Assign1 UniExamThUniExamOral						
	CO2dm = 0.3T1(Q2-15M) + 0.3Lab1-5 +0.1ASSIGN1 + 0.2UTh + 0.1UO.						
	InDirectMethods(20%): Course exit survey						
	CO2idm						
	CSC8035.2 = 0.8*CO2dm + 0.2*CO2idm						
<u>CSC8035.3:</u>	Direct Methods(80%): Test2 (Q1) Labs6-8 MiniProject UniExamThUniExamOral CO3dm = 0.4UT2 (Q1-15M)+ 0.1MP +0.2Lab6-8+ 0.2UTh + 0.1UPO.						
	InDirectMethods(20%): Course exit survey						
	CO3idm						
	CSC8035.3 = 0.8*CO3dm + 0.2*CO3idm						
<u>CSC8035.4:</u>	Direct Methods(80%): Test2(Q2) MiniProject UniExamThUniExamOral						
	CO4dm = 0.2UT2 (Q 2-5M) + 0.4MiniProject + 0.2UTh + 0.2UO.						
	InDirectMethods(20%): Course exit survey						
	CO4idm						

<u>Course Outcomes Target:</u>

Upon completion of this course students will be able to:

CPE8035.1: Explain characteristics of and trends in big data.[B2:Comprehension] Target level: 2.5 CPE8035.2: Solve big data related problems using the tools like Hadoop and NoSQL. [B3:Application] Target level: 2.5 CPE8035.3: Apply appropriate algorithms for extracting knowledge from given BigDataSet. [B3:Application] Target level: 2.5 CPE9025 4: Simulate real life applications of his data explorition.[B2:Application]

CPE8035.4: Simulate real life applications of big data analytics. [B3:Application] Target level: 2.5

Content Beyond Syllabus:

1. Blooms Filter (Guest Lecture)

2. Research Paper study individually.

Curriculum Gap:

The students need to know basics of Data Mining Algorithms.

In order to achieve the course objectives, there are some topics listed below are not given much importance.

Sr.No.	Content Beyond Syllabus	Action Plan	PO Mapping
1	Blooms Filter	Planned one lecture.	PO2, PSO2

Department of Computer Engineering Academic Term: Jan-April 2019

Rubrics for Lab Experiments

Class : B.E. Computer Semester : VIII

Subject Name :*BDA* Subject Code :*CPE8035*

Practical No:	
Title:	
Date of Performance:	
Roll No:	
Name of the Student:	

Evaluation:

Indicator	Very Poor	Poor	Average	Good	Excellent
Timeline (2)	More than three sessions late (0)	More than two sessions late (0.5)	Two sessions late (1)	One session late (1.5)	Early or on time (2)
Completeness(3)	N/A	N/A	Not Completed (1)	Partially Completed (2)	Completed(3)
Legibility(3)	N/A	N/A	Poor(1)	Good(2)	Very Good(3)
PostLab(2)	N/A	N/A	N/A	Partially Correct(1)	All Correct(2)

Total Marks Signature of the Teacher

:

:

Department of Computer Engineering Academic Term : Jan-April 2019

Rubrics for Assignments

Class : B.E. Computer Semester : VIII

Subject Name :*BDA* Subject Code :*CPE8035*

Assignment No:	
Title:	
Date of Performance:	
Roll No:	
Name of the Student:	

Rubrics for Assignment Grading:

Indicator	Very Poor	Poor	Average	Good	Excellent
Timeline (2)	More than three sessions late (0)	More than two sessions late (0.5)	Two sessions late (1)	One session late (1.5)	Early or on time (2)
Organization (3)Very poor readability and not structured (0.5)		readability and not structured	Poor readability and somewhat structured (1)	Readable with one or two mistakes and structured (2)	Very well written and structured without any mistakes (3)
Level of content (3) N/A		Major points are omitted or addressed minimally (0.5)	All major topics are covered, the information is accurate.(1)	Most major and some minor criteria are included. Information is Accurate (2)	All major and minor criteria are covered and are accurate. (3)
Knowledge(2) N/A		One answer correct(0.5)	Two answers correct(1)	Three answers correct(1.5)	Four answers correct(2)

:

:

Department of Computer Engineering Academic Term: Jan-April 2019 <u>Rubrics for Mini Project</u>

Class : B.E. Computer Semester : VIII Subject Name :*BDA* Subject Code :*CPE8035*

Practical No:	
Title:	
Date of Performance:	
Roll No:	
Name of the Student:	

Rubric for Mini Project

Indicator	Very Poor	Poor	Average	Good	Excellent
Timeline: Maintains project deadline (2)	Project not done (0) More than two sessio late (0.5)		Two sessions late (1)	One session late (1.5)	Early or on time (2)
Completeness:Complete all parts of project(2)		< 40% complete (0.5)	~ 60% complete (1)	~ 80% complete(1.5)	100% complete(2)
Application design: (4)	Design aspects are not used (0)	Poorly designed (1)	Project with limited functionalities (2)	Working project with good design (3)	Working project with good design and advanced techniques are used (4)
Presentation(2)	Not submitted report (0)	Poorly written and poorly kept report(0.5)	Report with major mistakes(1)	Report with less than 3-4 mistakes (1.5)	Well written accurate report(2)

Total marks:

Signature of Teacher:

List of Experiments/Mini Project Plan

Expt No.	Batch A Fri	CO Mappi ng	Title/aim
01	17/01/19	CO2	Study and Installation of Hadoop Ecosystem
02	24/01/19	CO2	Count the frequency of word using Map Reduce.
03	31/01/19	CO2	Perform CRUD operations in MongoDB.
04	07/2/19	CO2	Matrix – Vector Multiplication using Map-reduce.
05	21/02/19	CO2	Matrix – Matrix Multiplication using Map-reduce.
06	28/02/19	CO3	Implement PM algorithm using Map-reduce.
07	07/03/19	CO3	Implement basic PageRank algorithm using Map-reduce.
08	14/03/19	CO3	Implement PCY algorithm for frequent itemsetmining.
09		CO4	Mini Project: One real life large data application using standard dataset (Group of 2/3).
	3/2/19		Topic Submission
	10/3/19		Progress review
	24/3/19		Presentation and Demo
	13/4/19		Mini Project Report submission

Assignments Plan

Assig	Assignments					
01	14/02/2019	CO2-3	Topic of Study			
02	31/03/2019	CO4 /PO12	Study of Research Paper			
03	31/03/2019	CO1	 Provide the trends and solution using Big data Analytics. (use diagrams) Traffic Analysis An organization wants to create a real-time traffic analysis and prediction application that can be used to control traffic congestion and streamline traffic flow. The application must be targeted to provide cost optimization in commuting and help reduce waiting time and pollution levels. Data has to be captured from existing government provided datasets that include sources such as traffic-camera, traffic sensor, GPS and weather prediction systems. The government data needs to be coupled with social media to assist in predicting traffic speed and volume on reads. The analysis scenarios include the following: Analysis of historical data to gain insights and understand patterns of behavior of traffic and road incidents, Prediction of traffic speed and volume well ahead of time, Based on analysis of real-time and historical traffic conditions across the entire transportation needs to provide a catalog of services based on social media, governmental data and different data options. Telecom Industry A telecommunication organization needs a solution for analyzing customer behaviour and viewing patterns in advance of rollout of video-over-IP (VOIP) offereings. The logs have to be compared to region specific, feature specific existing system data spread across multiple applications. Because the volume of data is already huge and the VOIP logs data will add many terabutes, the organization is looking for a robust solution to apply across all devices and systems.			
		3. Health Care Sector				

Assignment on Recommendation systems and mining social network graphs

Q.1

	M1	M2	M3	M4	M5	M6	M7	M8
Α	4	5		5	1		3	2
B		3	4	3	1	2	1	
С	2		1	3		4	5	3

Treating the utility matrix representing the ratings on a 1-5 star scale of eight movies provided by users A, B, C. Compute the following from the data of the matrix.

- 1. Treat the utility matrix as Boolean, compute the jaccard distance between each pair of users.
- 2. Repeat Part(1), but use Cosine distance.
- 3. Treat ratings of 3,4 and 5 as 1,2 and blank as 0. Compute the Jaccard distance between each pair of users.
- 4. Repeat part (3), but use the cosine distance.
- 5. Normalize the matrix by subtracting from each non blank entry the average value for its user.
- 6. Using the normalized matrix from part(5), compute the cosine distance between each pair of users.

Q. 2

Write an algorithm for finding triangles in social network graphs. How to use the algorithm using Map Reduce?