
FR. Conceicao Rodrigues College Of Engineering

 Department of Computer Engineering

S.E. (Computer) (semester III)

 (2018-2019)

Subject: Analysis of Algorithms

Subject Code: CSC 402

Course Outcomes and Assessment Plan
Syllabus:
Course Objectives:

 To provide mathematical approach for Analysis of Algorithms

 To solve problems using various strategies

 To analyze strategies for solving problems not solvable in polynomial time.
Course Outcomes:
 At the end of the course student will be able to
1. Analyze the running time and space complexity of algorithms.
2. Describe, apply and analyze the complexity of divide and conquer strategy.
3. Describe, apply and analyze the complexity of greedy strategy.
4. Describe, apply and analyze the complexity of dynamic programming strategy.
5. Explain and apply backtracking, branch and bound and string matching techniques to deal
with some hard problems.
6. Describe the classes P, NP, and NP-Complete and be able to prove that a certain problem is
NP-Complete.

Module 1 Introduction to analysis of algorithm - 12 HRS
Performance analysis, space and time complexity, Growth of function – Big –Oh, Omega, Theta
notation, Mathematical background for algorithm analysis, Analysis of selection sort, insertion
sort. Recurrences: -The substitution method, Recursion tree method, Master method
Divide and Conquer Approach: General method, Analysis of Merge sort, Analysis of Quick sort,
Analysis of Binary search, Finding minimum and maximum algorithm and analysis, Stassen’s
matrix multiplication

Module 2: Dynamic Programming Approach: 08 HRS
General Method, Multistage graphs, single source shortest path, all pair shortest path,
Assembly-line scheduling, 0/1 knapsack, Travelling salesman problem, Longest common
subsequence

Module 3: Greedy Method Approach: 06 HRS
General Method ,Single source shortest path, Knapsack problem, Job sequencing with deadlines
Minimum cost spanning trees-Kruskal and prim’s algorithm ,Optimal storage on tapes

Module 4: Backtracking and Branch-and-bound: 08 HRS

General Method, 8 queen problem(N-queen problem) ,Sum of subsets, Graph coloring ,15
puzzle problem, Travelling salesman problem.

Module 5 :String Matching Algorithms: 06 HRS
The naïve string matching Algorithms, The Rabin Karp algorithm, String matching with finite
automata, The knuth-Morris-Pratt algorithm

Module 6 : Non-deterministic polynomial algorithms: 08 HRS

 Polynomial time, Polynomial time verification NP Completeness and reducibility NP
Completeness proofs Vertex Cover Problems Clique Problems

Text Books:

1. T.H.coreman , C.E. Leiserson,R.L. Rivest, and C. Stein, “Introduction to algorithms”, 2nd
edition , PHI publication 2005.

2. 2. Ellis horowitz , Sartaj Sahni , S. Rajsekaran. “Fundamentals of computer algorithms”
University Press

Reference Books:
 1. Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, “Algorithms”, Tata McGraw- Hill
Edition.
2. S. K. Basu, “Design Methods and Analysis of Algorithm”, PHI.
3. John Kleinberg, Eva Tardos, “Algorithm Design”, Pearson.
4. Michael T. Goodrich, Roberto Tamassia, “Algorithm Design”, Wiley Publication.

Course Outcomes:

Upon completion of this course students will be able to:

CSC 402.1 : Apply the methods for analyzing the complexity of the algorithms. (Apply)

CSC 402.2 : Analyze different techniques of algorithm design.(greedy,dynamic,divide and

conquer, backtracking, branch and bound). (Analyze)

CSC 402.3 : Analyze different String matching techniques. (Analyze)

CSC 402.4 : Implement algorithms using different designing techniques. (Apply)

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2

(Moderate Importance) or 3 (High Importance) in respective mapping cell.

 PO1

(Engg

Know

)

PO2

(Ana

)

PO3

(De

sign

)

PO4

(inve

stiga

)

PO5

(tools

)

PO6

(eng

g

Soci)

PO7

(Env

)

PO8

(Eth

)

PO9

(ind

Team

)

PO10

(comm.

)

PO1

1

(PM)

PO1

2

(life

Long

)

CSC402.

1

3 2

CSC402.

2

3 3

CSC402.

3

3 3

CSC402.

4

3 3 3 1

Course

To PO

3 3 1 1

CO PSO1 PSO2

CSC402.1 3 2

CSC402.2 3 2

CSC402.3 3 2

CSC402.4 3 2

Course to PSO 3 2

Justification

PO1: CSC 402.1, CSC 402.2, CSC 402.3 and CSC402.4 maps to PO1 as engineering graduates apply the

knowledge of mathematics and computer programming knowledge for providing solution to complex

engineering problem.

PO2: CSC 402.1, CSC 402.2, CSC 402.3 ,CSC 402.4 maps to PO1 as engineering graduates identify and

formulate a solution to a problem by analyzing efficiency of different algorithms using their time and

space complexities ,selecting a design technique (greedy,dynamic,backtracking) as per the requirement

of solution .

PO3: CSC 402.4 maps to PO3 because engineering graduates design a programmed solution to a

problem using any high level programming language such as C,C++.

PO9: CSC402.4 maps to PO9 as students worked in a team for developing solution to real world

problem by applying proper strategy

PSO1: CSC 402.1 to CSC402.4 maps to PSO1 because the graduates will be able to apply knowledge

learnt in the subject to provide solution to real world problems.

 PSO2: CSC 402.1 to CSC 402.4 maps to PSO2 as the students design and implement a programmed

solution for a real world problem.

Assessment Tools:

Course Outcome Assessment Tool

Direct (weightage: 80%)

Assessment

Tool Indirect

(weightage=

20%)

CO1: Apply the methods for analyzing the

complexity of the algorithms. (PO1)

Test 1 (20%)

Postlab Assignment (10%)

Assignment 1(20%)

Quiz (10%)

University Exam (30%)

Gate questions(10%)

Course Exit

Survey

CO2: Analyze different techniques of algorithm

design.(greedy, dynamic, divide and conquer,

backtracking, branch and bound).

.

Test1+Test2 (20%)

Postlab assignment(10%)

Assignment 1(20%)

Quiz (10%)

University Exam(30%)

Gate questions(10%)

CO3: Analyze different String matching

techniques.

Test 2(20%)

Assignment 2(20%)

Post lab assignment(20%)

University Exam(30%)

Gate questions(10%)

CO4: Implement algorithms using different

design strategies. (PO4)

Lab Work(50%)

University Exam(20%)

Assignment 2 marks(10%)

Real world problem (20%)

CO Assessment Tools:

CSC402.1: Direct Methods(80%): Unit Test 1 + PostLab + Assignment 1+Quiz+UniExam+Gate_Quest

 CO1dm = 0.2T +0.1PLab+0.2Assignment+0.1Quiz + 0.3Uniexam+0.1Gate_Quest

 InDirect Methods(20%): Course exit survey

 CO1idm

 CSC402.1 = 0.8*CO1dm + 0.2* CO1idm

CPC501.2:Direct Methods (80%):

 Unit Test1&2+PostLab+Assignment+Quiz+UniExam+Gate_Quest

 CO2dm = 0.2T +0.1PLab+ 0.2Assig+ 0.1Quiz+0.3Uniexam+0.1Gate_Quest

 InDirect Methods(20%): Course exit survey

 CO2idm

 CSC402.2 = 0.8*CO2dm + 0.2* CO2idm

CPC501.3: Direct Methods (80%): Unit Test 2+PostLab+Assignment+Quiz+UniExam

 CO3dm = 0.20T +0.2PLab+ 0.2Assig+ 0.3Uniexam+0.1Gate_Quest

 InDirect Methods(20%): Course exit survey

 CO3idm

 CSC402.3 = 0.8*CO3dm + 0.2* CO3idm

CPC501.4: Direct Methods (80%): Lab assignments+Uniexam+Assig2+Real_world_problem

CO4dm=0.5LabAssignment+0.3UniExam+0.2Assign+0.2Real_world_Problem

 InDirect Methods(20%): Course exit survey

 CO4idm

 CSC402.4 = 0.8*CO4dm + 0.2* CO4idm

Rubrics for Lab Experiments:

Sr.

No

Performan

ce

Indicator

Excellent Good Below Average

1. Coding

Standards

[4M]

The code adheres to all

standards. The code is

exceptionally well organized and

very easy to follow. Comments

are complete and useful;

variables' purposes are clearly

communicated by their names.

[4 marks]

There may be some

minor failures to

adhere to standards,

for instance,

indentation may be

inconsistent, some

lines may be too long,

or a few variables may

have unobvious

names or be

undocumented. [2

marks]

There are major

problems with the

program's design or

coding style that

would interfere with

its comprehension,

reuse, or

maintenance. File or

function comments

may be sketchy,

variable descriptions

or names may be

unenlightening. The

code may be poorly

formatted.[0.5-1M]

2 Output

validation

[2M]

output is obtained for different

cases of input.[2M]

Output is obtained

only for some subsets

of input.[1M]

no output is

obtained.

[0 mark]

3 Post Lab

Questions

[2M]

Answers to all questions are

correct and explained in depth.

[2 marks]

Answers to most of

the questions are

correct but not

explained in depth.

[1 marks]

Answers to most of

the questions are

incorrect.

[0 mark]

4 Promptnes

s

{2M]

The laboratory report is

submitted on time

[2 mark]

The laboratory report

is submitted next day.

[1 marks]

The laboratory report

is submitted in next

practical session.

[0 marks]

Rubrics for Assignments:

Indicator Excellent Good Below average

Timeline

 (2)

 submitted on time
or early (2)

Submitted next day
(1)

Submitted in same week (0.5)

Organization (2) Well organized,
neat and clear
handwriting, neat
diagrams with all
labels.(2)

Organized to some
extent, diagrams and
handwriting is neat
with some missing
labels(1)

Poorly organized, diagrams
incomplete (0.5)

Level of content

 (3)

All points are
covered(3) and
answered accurately

Some important
points are omitted /
addressed minimally
(1-2)

Many important points are
missing and the answers are not
accurate.
(1-0)

Knowledge
about the topic
(3)

All Concepts of a
topic are clear and
knows the
application to real
world problems (3)

All Concepts of a
topic are mostly clear
lacks understanding
about the application
to real world
problems (2-1)

Poor understanding of concepts
and application to real world
problems.(1-0)

Lesson Plan

Module 1: Introduction to Analysis of Algorithms

Lecture

No.

Date Topic Content Delivery

Method
Planned Actual

1 1/1/2019 2/1/2019 Introduction to analysis of algorithms:

Introduction to subject and fundamentals of

algorithms. What is meant by efficient algorithm?

Chalk and board

2 2/1/2019 3/1/2019 Efficiency of algorithms, Time and Space

Complexities Fundamentals

Chalk and board

3 3/1/2019 3/1/2019 Growth of Function – Big O, Omega, Theta Chalk and board

4 4/1/2019 7/1/2019 Calculation of time complexity for code samples Chalk and board

5 7/1/2019 8/1/2019 Calculation of time complexity for code samples

continued

Chalk and board

6 8/1/2019 9/1/2019 Finding space complexity for code samples Chalk and board

7 9/1/2019 10/1/2019 Finding Complexities of Bubble, Insertion &

Selection Sort & Linear Search

Chalk and board ,

Lab performance

8 10/1/2019 11/1/2019 Recurrences: Solving recurrence using Iteration

Method

Chalk and board

9 11/1/2019 14/1/2019 Solving recurrence using Recursion Tree Chalk and board

10 14/1/2019 15/1/2019 Solving recurrence using Master Method Chalk and board

11 15/1/2019 17/1/2019 Divide and Conquer Approach:

General Method of Divide & Conquer, Analysis of

Binary Search

Chalk and board,

simulation

12 17/1/2019 18/1/2019 Analysis of Merge Sort and quick sort Chalk and board ,

Lab performance,

animation

13 18/1/2019 21/1/2019 Minmax algorithm Chalk and board ,

Lab performance

14 21/1/2019 22/1/2019 Strassen’s matrix multiplication Chalk and board

Module 3: Greedy Method

15 22/01/201

9

29/01/201

9

General Method, Knapsack Problem Chalk and board ,

Lab performance

16 28/01/201

9

29/01/201

9

Job Sequencing with deadline Chalk and board

17 29/01/201

9

1/2/2019 SSSP (Dijkstra’s Algo) Chalk and board ,

visualization,Lab

performance

18 1/2/2019 7/2/2019 MST- Prims Chalk and board ,

visualization , Lab

performance

19 7/2/2019 8/2/2019 MST – Kruskal Chalk and board ,

Lab performance,

visualization

20 8/2/2019 18/2/2019 Optimal Storage on tapes Chalk and board

Module 2: Dynamic Programming

21 18/2/2019 21/2/2019 General Method, 0/1 Knapsack Chalk and board ,

Lab performance

22 21/2/2019 22/2/2019 Single Source Shortest Path Chalk and board ,

Lab performance,

visualization

23 22/2/2019 25/2/2019 All pair shortest Path Chalk and board ,

Lab performance,

visualization

24 25/2/2019 26/2/2019 MultiStage Graph Chalk and board

25 26/2/2019 1/3/2019 Travelling Salesman Problem Chalk and board,

visualization

26 28/2/2019 1/3/2019 Longest common subsequence Chalk and board ,

Lab performance

27 1/3/2019 5/3/2019 Assembly line schedulling Chalk and board ,

Lab performance

Module 4: Backtracking and branch and bound

28 5/3/2019 8/3/2019 General Method of backtracking, n queen
problem

Chalk and board ,

Lab performance

29 7/3/2019 11/3/2019 Sum of Subsets Chalk and board ,

Lab performance

30 8/3/2019 12/3/2019 Graph Coloring Chalk and board ,

Lab performance

31 11/3/2019 14/3/2019 General Method of branch and bound, 15 puzzle

problem

Chalk and board

32 12/3/2019 18/3/2019 Travelling Salesman Problem Chalk and board

Module 5: String Matching algorithms

33 14/3/2019 22/3/2019 Naïve String Maching Chalk and board

34 28/3/2019 26/3/2019 Rabin Karp Algo Chalk and board

35 29/3/2019 26/3/2019 KMP Algo Chalk and board

36 25/3/2019 27/3/2019 String matching with Finite Automata Chalk and board

Module 6: Non Deterministic Polynomial algorithms

37 26/3/2019 29/03/201

9

Polynomial time ,Polynomial time verification Chalk and board ,

handouts

38 28/3/2019 1/4/2019 NP completeness and reducibility Chalk and board ,

handouts

39 29/3/2019 2/4/2019 Vertex cover problems, Clique Problem Chalk and board,

handouts

40 1/4/2019 4/4/2019 Multiplying long integers(divide and

Conquer(Content Beyond Syllabus)

Chalk and board,

handouts

41 2/4/2019 5/4/2019 Optimal binary search tree(dynamic programming

(Content Beyond Syllabus)

LAB PLAN

Sr.
No.

TITLE Mapped
Co

Planne
d Week

Actual
dates

Batch A

Actual
dates

Batch B

Actual
dates

Batch C

Actual
dates Batch

D

1 WAP to
implement
Modified bubble
sort, Insertion
sort, Selection
sort and derive
its complexity.

CO1 and
CO4

1 st
week

14-01-
2019

16-01-
2019

18-01-
2019 14-01-2019

2 WAP to
implement Liner
search and
binary search
and derive its
time complexity.

CO1 and
CO4

1 st
week

14-01-
2019

16-01-
2019

18-01-
2019 14-01-2019

3 WAP to
implement Quick
sort, randomized
quick sort, merge
sort and derive
its complexity.

CO1 and
CO4

2nd
week

21-01-
2019

23-01-
2019

25-01-
2019 21-01-2019

4 WAP to
implement min
max algorithm.

CO2
andCO4

2nd
week

21-01-
2019

23-01-
2019

25-01-
2019 21-01-2019

5 WAP to
implement
fractional
knapsack using
greedy method.

CO2 and
CO4

3rd
week

28-01-
2019

30-01-
2019

01-02-
2019 28-01-2019

6 WAP to
implement
Dijkstra’s
algorithm.

CO2 and
CO4

3rd
week 28-01-

2019
30-01-
2019

01-02-
2019 28-01-2019

7 WAP to
implement Prim’s
algorithm

CO2 and
CO4

4th
week

18-02-
2019

20-02-
2019

08-02-
2019 18-02-2019

8 WAP to
implement 0/1
knapsack using

CO2 and
CO4

4th
week

18-02-
2019

20-02-
2019

08-02-
2019 18-02-2019

dynamic
programming.

9 WAP to
implement Floyd
Warshall
algorithm.

CO2 and
CO4

6th
week 25-02-

2019
27-02-
2019

22-02-
2019 25-02-2019

10 WAP to
implement
bellman ford
algorithm.

CO2 and
CO4

6th
week 11-03-

1019 6-03-1019 1-03-1019 11-03-1019

11 WAP to
implement N
queen problem
using
backtracking
approach.

CO2 and
CO4

6th
week

18-03-
2019

13-03-
2019

08-03-
2019 18-03-2019

12 WAP to
implement sum
of subset
problem using
backtracking
approach

CO2 and
CO4

7th
week

18-03-
2019

13-03-
2019

08-03-
2019 18-03-2019

13 WAP to
implement graph
coloring using
backtracking
approach.

CO2 and
CO4

8th
week

25-03-
2019

20-03-
2019

22-03-
2019 25-03-2019

14 WAP to
implement
Longest common
subsequence.

CO2 and
CO4

8th
week 25-03-

2019
27-03-
2019

22-03-
2019 25-03-2019

15 WAP to
implement Knuth
Morris Pratt
Algorithm

CO3 and
CO4 9th

week 01-04-
2019

03-04-
2019

05-04-
2019 01-04-2019

16 WAP to
implement
Assembly Line
schedulling

CO2 and
CO4

9th
week 01-04-

2019
03-04-
2019

05-04-
2019 01-04-2019

AOA ASSIGNMENT 1

CLASS: SE COMPS (SEM IV) YEAR: 2018-19

CO1: Analyze time and space complexity of algorithms
CO2: Analyze various strategies of algorithm design

Q. 1) Let f(n) = 16n4 +10 n log n and g(n) = 8758 n3 log n + 9248 n2. Which of the following is

true?

i) f(n) is O(g(n)) and g(n) is O(f(n)).
ii) f(n) is O(g(n)), but g(n) is not O(f(n))
iii) g(n) is O(f(n)), but f(n) is not O(g(n))
iv) f(n) is not O(g(n)) and g(n) is not O(f(n))

Q. 2) If T(n) = n √ n then:

 i) T(n) is O(n3)

ii) T(n) is O(n log n)

iii) T(n) is O(n)

iv) None of these

Q 3) A new algorithm MaxPack for optimally packing furniture in a transportation container
claims to have worst cas A new algorithm MaxPack for optimally packing furniture in a
transportation container claims to have worst case complexity O(n2 log n), where n is the
number of items to be packed.

From this, we can conclude that:

i) For every n, for every input of size n, MaxPack requires time proportional to n2 log n.
ii) For some n, for every input of size n, MaxPack requires time proportional to n2 log n.
iii) For every n, every input of size n can be solved by MaxPack within time proportional to

n2 log n.
iv) For every n, there is an input of size n for which MaxPack requires time proportional to

n2 log n.

Q.4) Your final exams are over and you are catching up on sports on TV. You have a schedule of

interesting matches from all over the world during the next week. You hate to start or stop

watching a match midway, so your aim is to watch as many complete matches as possible

during the week. Suppose there are n such matches {M1 ,M2 ,…,Mn } available during the

coming week. The matches are ordered by starting time, so for each i ∈ {1, 2, …, n−1}, Mi starts

before Mi+1. However, match Mi may not end before Mi+1 starts, so for each i ∈ {1,2,…,n−1},

Next[i] is the smallest j > i such that Mj starts after Mi finishes. Given the sequence {M1 , M2 , …

, Mn } and the values Next[i] for each i ∈ {1, 2, …, n−1}, your aim is to compute the maximum

number of complete matches that can be watched.

Let Watch[i] denote the maximum number of complete matches that can be watched among

{Mi , Mi+1, …, Mn }.

A) Which of the following is a correct recursive formulation of Watch[i]?

i) Watch[n] = 1

 Watch[i] = max(Watch[Next[i]], 1 + Watch[i + 1]), i ∈ {1, 2, …, n−1}

ii) Watch[1] = 1

 Watch[i] = max(Watch[i − 1], 1 + Watch[Next[i − 1]]), i ∈ {2, 3, …, n}

iii) Watch[n] = 1

 Watch[i] = max(1 + Watch[Next[i]], Watch[i + 1]), i ∈ {1, 2, …, n−1}

iv) Watch[1] = 1

 Watch[i] = max(Watch[i − 1] + 1, Watch[Next[i − 1]]), i ∈ {2, 3, …, n}

 B) What is a good order to compute Watch[i] using dynamic programming?

 i) From Watch[1] to Watch[n]

 ii) From Watch[n] to Watch[1]

 iii) Either from Watch[1] to Watch[n] or from Watch[n] to Watch[1]

 iv) None of these

C) Suppose the list of matches to be watched is presented in the form

[(11,55),(22,31),(33,45),(44,52),(56,62),(57,58),(59,63),(64,70),(71,80)] where each match

Mi is represented by a pair (Si ,Ti) indicated its starting time and ending time. To be able

to watch both Mi and Mj , for j > i, it must be the case that Sj > Ti .

What is the maximum number of matches you can watch in this case

i) 4

ii) 5

iii) 6

iv) 7

Q.5) We are given a directed graph, using an adjacency matrix representation. For each vertex

v, we want to compute the set of incoming edges (u, v). Which of the following is the most

accurate description of the complexity of this computation. (Recall that n is the number of

vertices and m is the number of edges)

 i)O(n)

 ii)O(n+m)

 iii)O(n 2)

 iv)O(m)

Q.6) Consider the following strategy to solve the single source shortest path problem with edge

weights from source s. 1. Replace each edge with weight w by w edges of weight 1 connected

by new intermediate nodes. 2. Run BFS(s) on the modified graph to find the shortest path to

each of the original vertices in the graph. Which of the following statements is correct?

i) This strategy will solve the problem correctly but is not as efficient as Dijkstra's algorithm.

ii) This strategy will solve the problem correctly and is as efficient as Dijkstra's algorithm.

iii) This strategy will not solve the problem correctly.

Q.7) An airline charges a fixed price for each direct flight. For each sequence of hopping flights,

the ticket price is the sum of the fares of the individual sectors. TripGuru has pre calculated the

cheapest routes between all pairs of cities so that it can offer an optimum choice instantly to

customers visiting its website. Overnight, the government has added a 13% luxury service

surcharge to the cost of each individual flight. Which of the following most accurately describes

the impact of this surcharge on TripGuru's computation?

i) There is no impact. Cheapest routes between all pairs of cities remains unchanged.

ii) The surcharge favours hopping flights with fewer sectors. TripGuru should recompute

any cheapest route where there is a shorter route in terms of number of flights.

iii) The surcharge favours hopping flights with more sectors. TripGuru should recompute

any cheapest route where there is a longer route in terms of number of flights.

iv) The impact is unpredictable. TripGuru should recompute all cheapest routes.

AOA ASSIGMENT 2

CLASS: SE COMPS (SEM IV) YEAR: 2018-19

 CO3: Apply string matching techniques to problems.

 CO4: Implement the algorithm using different design strategies

Q.1) A shoemaker has N orders from customers that he must execute. The shoemaker can work

on only one job each day. For each job i, it takes Ti days for the shoemaker to finish the job,

where Ti is an integer and (1 ≤ Ti ≤ 1000). For each day of delay before starting to work for the

job i, shoemaker must pay a fine of Si (1 ≤ Si ≤ 10000) rupees. Your task is to help the shoemaker

find the sequence in which to complete the jobs so that his total fine is minimized. If multiple

solutions are possible, print the one that is lexicographically least (i.e., earliest in dictionary

order).

Solution hint

Sort the jobs in terms of the ratios Si / Ti. To compare a/b and c/d, cross-multiply to avoid
floating point comparisons. Use a stable sort to get the lexicographically smallest value.

Input format

The first line of input contains an integer N (1 ≤ N ≤ 100000). Each of the next N lines contains
two space separated integers: the time Ti and fine Si for job i, 1 ≤ i ≤ N.

Output format

You program should print the sequence of jobs with minimal fine. Each job should be
represented by its position in the input and each job should appear on a new line, by itself. If
multiple solutions are possible, print the one that is lexicographically least (i.e., earliest in
dictionary order).

Sample input

4
3 4
1 1000
2 2
5 5

Sample output

2
1
3
4

Q.2) In Siruseri, there are junctions connected by roads. There is at most one road between any
pair of junctions. There is no road connecting a junction to itself. The travel time for a road is
the same in both directions.

At every junction there is a single traffic light. These traffic lights are a bit peculiar. Starting
from time 0, each light flashes green once every T time units, where the value of T is different
for each junction.

A vehicle that is at a junction can start moving along a road only when the light at the current
junction flashes green. If a vehicle arrives at a junction between green flashes, it must wait for
the next green flash before continuing in any direction. If it arrives at a junction at exactly the
same time that the light flashes green, it can immediatly proceed along any road originating
from that junction.

You are given a city map that shows travel times for all roads. For each junction i, you are
given Ti, the time period between green flashes of the light at that junction. Your task is to find
the minimum time taken from a given source junction to a given destination junction for a
vehicle when the traffic starts.

Solution hint

Use Dijkstra's algorithm. At each phase, from the current shortest time for a given junction,
compute when the next green flash will occur to let you travel to its neighbours and use this to
update shortest path information.

Input Format

There are N junctions and M roads. The junctions are identified by integers 1 through N.

 The first line of input contains two integers: the source junction and the destination
junction.

 The second line contains two integers: N and M.
 The third line contains N integers, T1, T2,…TN, describing the time periods at which the

traffic lights flash green. The light at junction i flashes green at times 0, Ti, 2Ti, 3Ti, …
 The next M lines contain information about the M roads. Each line has three

integers i, j, lij , where:
o i and j are the junctions connected by this road
o lij is the time required to move from junction i to junction j using this road

Output Format

A single line consisting of a single integer, the time taken by a minimum-time path from source
to destination.

Constraints:

 2 ≤ N ≤ 300
 1 ≤ M ≤ 14,000
 1 ≤ T_i ≤ 100
 1 ≤ lij ≤ 100

Sample Input

1 4
4 5
4 3 2 5
1 2 4
1 3 8
2 3 6
2 4 10
3 4 7

Sample Output

15

Explanation

 1 to 2 to 4 takes time 4 + 2 (wait till 6) + 10 = 16.
 1 to 3 to 4 takes time 8 + 0 (no wait) + 7 = 15.
 1 to 2 to 3 to 4 takes time 4 + 2 (wait till 6) + 6 + 0 (no wait) + 7 = 19.
 1 to 3 to 2 to 4 takes time 8 + 0 (no wait) + 6 + 1 (wait till 15) + 10 = 25.

Q 3) As we all know, a palindrome is a word that equals its reverse. Here are some examples of
palindromes: malayalam, gag, appa, amma.

We consider any sequence consisting of the letters of the English alphabet to be a word.
So axxb,abbba and bbbccddx are words for our purpose. And aaabbaaa, abbba and bbb are
examples of palindromes.

By a subword of a word, we mean a contiguous subsequence of the word. For example the
subwords of the word abbba are a, b, ab, bb, ba, abb, bbb, bba, abbb, bbba and abbba.

In this task you will be given a word and you must find the longest subword of this word that is
also a palindrome.

For example if the given word is abbba then the answer is abbba. If the given word
is abcbcabbacba then the answer is bcabbacb.

Solution hint

Any subword of w that is a palindrome is also a subword when w is reversed.

Input format

The first line of the input contains a single integer N indicating the length of the word. The
following line contains a single word of length N, made up of the letters a,b,…, z.

Output format

The first line of the output must contain a single integer indicating the length of the longest
subword of the given word that is a palindrome. The second line must contain a subword that is
a palindrome and which of maximum length. If there is more than one subword palindrome of
maximum length, print the one that is lexicographically smallest (i.e., smallest in dictionary
order).

Test Data:

You may assume that 1 ≤ N ≤ 5000. You may further assume that in 30% of the inputs 1 ≤ N ≤
300.

Example:

We illustrate the input and output format using the above examples:

Sample Input 1:

5
abbba

Sample Output 1:

5
abbba

Sample Input 2:

12

abcbcabbacba

Sample Output 2:

8
bcabbacb

 FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING

 Fr. Agnel Ashram,Bandstand,Bandra (west),Mumbai 400050

 I Unit Test

Semester/Branch: (IV Computer)

Subject: Analysis of Algorithms Max. Marks: 20

Date: 4 th Feb 2019 Time: 1:00-2:00 p.m.

CSC402.1 (CO1): Apply the methods for analyzing complexity of the algorithm

CSC402.2 (CO2): Analyze various strategies of design of an algorithm

Q. 1 a) Arrange the following function in an increasing order

n, logn , n 3,n 2,nlogn,2n,n!

01M CO1

 b) What is time complexity of fun()?

int fun(int n)

{ int count = 0;
 for (int i = n; i > 0; i /= 2)
 for (int j = 0; j < i; j++)
 count += 1;
 return count; }
(A) O(n^2)

(B) O(nLogn)

(C) O(n)

(D) O(nLognLogn)

02M CO1

 c) An algorithm takes 6 seconds for an input size n=10 how much time it will take

when n=100 if time complexity is given as a) n 3 b) log n

02M CO1

 d) What is recurrence for worst case of Quick Sort and what is the time complexity

in Worst case?

a) Recurrence is T(n) = T(n-2) + O(n) and time complexity is O(n^2)

b) Recurrence is T(n) = T(n-1) + O(n) and time complexity is O(n^2)

c) Recurrence is T(n) = 2T(n/2) + O(n) and time complexity is O(nLogn)

d) Recurrence is T(n) = T(n/10) + T(9n/10) + O(n) and time complexity is

O(nLogn)

01M CO1

 e) For the following code determine space complexity
int gcd(n,m)
{
 if (n%m ==0) return m;
 n = n%m;
 return gcd(m, n);
}

02M

 Q.2 Find an optimal solution to the knapsack instance n=7, M=15

Profit ={10,5,15,7,6,18,3}

Weight={ 2,3,5,7,1,4,1}

 OR

Consider the following processes, their profits and deadlines and apply the

suitable algorithm to maximize the profit.

Jobs 1 2 3 4 5 6 7

Profits 40 15 60 20 10 45 55

Deadli

nes

2 4 3 2 3 1 1

06M CO2

Q. 3 Apply suitable algorithm to determine optimal path to reach other cities from

source city ‘A’

 A B

 E

 C D

06M CO2

Dist(A,B)=2 , Dist(A,C)= 6 Dist(A,D) = 12, Dist(B,C)=7, Dist(B,E) =3, Dist(D,E)=3,

Dist(C,D)=5

 OR

Multiply two matrices using Divide and conquer strategy

A= 2 4 6 3 B = 1 1 1 1
 1 2 2 1 1 1 1 2
 3 1 1 3 2 1 1 2
 1 1 1 1 3 1 1 3

 FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING

 Fr. Agnel Ashram,Bandstand,Bandra (west),Mumbai 400050

 II Unit Test

Semester/Branch: (IV Computer)

Subject: Analysis of Algorithms Max. Marks: 20

Date: 8
th

 April 2019 Time: 1:00-2:00 p.m.

CSC402.2 (CO2): Analyze various strategies of design of an algorithm

CSC402.3 (CO3): Apply string matching techniques to problems.

Q. 1 a) Consider two strings A = "qpqrr" and B = "pqprqrp". Let x be the length of the

longest common subsequence (not necessarily contiguous) between A and B and let y

be the number of such longest common subsequences between A and B. Then x +

10y = ___.

a) 33

b) 23

c) 34

d) 43

02M CO3

 b) In a weighted graph, assume that the shortest path from a source ‘s’ to a destination

‘t’ is correctly calculated using a shortest path algorithm. Is the following statement

true?

If we increase weight of every edge by 1, the shortest path always remains same.

(A)Yes

01M CO2

(B) No

 c) Which of the following is not a backtracking algorithm?

(A) Knight tour problem

(B) N queen problem

(C) Tower of hanoi

(D) M coloring problem

01M CO2

Q.2 Construct Finite state automata for the pattern ababaca and illustrate its operation on

the text abababacabacba

 OR

Compute prefix function for the pattern ababbabbabab. Derive time complexity of

prefix function.

05M CO3

Q. 3 Consider Two DNA strands S1=ACCGGTCGAG and S2= GTCGTTCGGA. Use

suitable technique to compare two strands to determine how similar the two strands

are.

05M CO2

Q. 4

A graph given below needs to be colored using 3 colors. Draw state space tree and

list down all possible solutions

 OR

Find optimal tour path a salesman should use for a graph given below using branch

and bound strategy

 Dist(1,2)=4 Dist(3,1)=1

 Dist(2,3)=4 Dist(2,1)=3

 Dist(1,3)=2 Dist(3,2)=8

06M CO2

A

B

C

D

E

1

3

2

