Lesson Plan

Operating System
SEM IV
2018-2019

Subject Incharge
Prof.Mahendra Mehra

FR. Conceicao Rodrigues College of Engineering Department of Computer Engineering <u>Lesson plan</u>

SUBJECT: Operating System SUBJECT CODE: CSC405

FACULTY NAME: Prof. Mahendra Mehra

ACADEMIC YEAR: 2018-19

SEM: IV

- 1. Time table
- 2. Syllabus-text books, reference books, online resources
- 3. Course objectives
- 4. Course outcomes (level in blooms taxonomy-knowledge, skill, attitude)
- 5. CO-PO mapping, CO-PSO Mapping
- 6. CO attainment tools
- 7. CO attainment targets
- 8. Lecture plan (lectures, presentations, homework, videos, case study, social media)
- 9. Lab/assignments/mini-project plan
- 10. Curriculum gap (topic, action taken, mapped co or po)
- 11. Content beyond syllabus (topic, action taken, mapped co or po)
- 12. Guest lecture(invitation letter, attendance, thanks letter)
- 13. List of experiments
- 14. List of assignments/quiz/presentations
- 15. Rubrics for experiment/ assignment/mini project.. Tools used
- 16. Lab manual
- 17. Unit test question papers with marking scheme
- 18. Sample answer sheets for unit test/sample answer script
- 19. University question papers
- 20. Mini project list with some sample reports
- 21. Course exit survey form
- 22. Result analysis of previous semester (no. Of students appeared, passed, percentage, students> 60%)
- 23. Co attainment summary
- 24. Co attainment excel prints
- 25. Identified strong and weak students on the basis of test/assignment (>90% and <50%)
- 26. Assistance to weak students with remedial classes (attendance-contents)
- 27. Student feedback
- 28. Audit report
- 29. Attendance sheets
- 30. Attendance defaulters till test1/test2
- 31. Lecture notes
- 32. Proof of any claim made in SAR related to your subject like innovation in teaching learning and assignments and other pedagogical methods. (please refer final SAR)

TIME TABLE

Fr. Conceicao Rodrigues College of Engineering, Bandra Computer Engineering Department

Prof. Mahend	Prof. Mahendra Mehra				With Effect From: 14th January 2019					
	8.45 a.m 09.45 a.m.	9.45 a.m 10.45 a.m.	10.45 a.m 11 a.m.	11 a.m. – 12 p.m.	12 p.m 01 p.m.	1 p.m 1.30 p.m.	1.30 p.m 2.30 p.m.	2.30 p.m 3.30 p.m.	3.30 p.m 4.30 p.m.	4.30 p.m 5.30 p.m.
Monday							◆ SP(TEC	\rightarrow	SEC	
Tuesday				SPCC TEC			OS SEC	▼ OSEC		
Wednesday	OS SEC		BREAK			Lunch Time	◆ O SEC			
Thursday			EAK	SPCC TEC	OS SEC	Time				
Friday				OS SEC			◆ O SEC	-		
Saturday										
Total load: 16										

FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Computer Engineering S.E. (Computer) (semester IV) (2018-2019) Course Outcomes & Assessment Plan

Subject: Operating Systems (CSC405)

Course Outcomes:

Upon completion of this course students will be able to:

CSC405.1: Recognize the role of operating system as System software. [**B2: Understanding**] **CSC405.2:** Interpret the role of Process management towards increasing throughput of system. [**B3: Application**]

CSC405.3: Model the concepts of deadlock in operating systems and implement them in multiprogramming system. **[B3: Application]**

CSC405.4: Demonstrate different techniques of memory management, file and I/O management. **[B3: Application]**

CSC405.5: Execute Applications using Open Source technologies and Software utilities. [B3: Application]

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO1	PO1
	(Eng	(Ana	(De	(inve	(tools	(eng	(Env	(Eth	(ind	(comm.	1	2
	g	lysis)	sign	stiga)	g))	Team)	(PM)	(life
	Kno)	tion)		Soci))			Long
	w))
CSC405.1	3	2										
CSC405.2	3	2										
CSC405.3	3	2										
CSC405.4	3	2										
CSC405.5	2	2	2	2	2				2			
Course	2.8	2	0.4	0.4	0.4				0.4			
To PO												

СО	PSO1	PSO2
CSC405.1	3	
CSC405.2	3	
CSC405.3	3	
CSC405.4	3	
CSC405.5	3	
Course to PSO	3	

Justification for CO-PO Mapping

PO1:

All COs are mapped to PO1 because engineering graduates will be able to apply the knowledge of mathematics, Operating system and its functionalities to solve engineering problems

PO2:

CSC405.1 is mapped to PO2 because students will interpret the need of system calls in the working of Operating system

CSC405.2 is mapped to PO2 because students will interpret the need for process synchronization to avoid critical section problem

CSC405.3 is mapped to PO2 because students will analyze and solve the deadlock situations CSC405.4 is mapped to PO2 because students will implement various memory management schemes and page replacement schemes

CSC405.5 is mapped to PO2 because students analyze the need of selecting a particular topic for Mini project.

PO3:

CSC405.5 is mapped to PO3 because students will design an application as part of mini projects

PO4:

CSC405.5 is mapped to PO4 because students will conduct investigations on the DevOps tools as part of mini projects

PO5:

CSC405.5 is mapped to PO5 because the students will use different tools like Android SDK to build Android application and DevOps tools to understand automation.

PO9:

CSC405.5 is mapped to this PO9 because the students work in a team to develop the mini project and present case studies.

PO10:

CSC405.5 is mapped to this PO10 because the students submit written report of the mini project

PSO1:

All COs are mapped to PSO1 because the graduates will be able to apply fundamental knowledge of operating system to build solutions for real world problems.

CO Assessment Plan

<u>CSC405.1</u>	CSC405.1: Recognize the role of operating system as System software. [B2: Understanding]				
Delivery Methods		Black Board, lecture notes and video			
	Target	2.5			
Sr.no CO Assessment Tools		Target (Tool wise)	Weightage		
1.	Test 1	60% student score more than 60%	0.2		
	Questions	TEST1(Q1 (a OR b) total 05 marks)			
	Date	Test1(5/2/19) Test2(9/4/19)			
2.	Lab Experiments	60% students will score minimum 70% marks	0.3		
	Experiment nos	1,2,3,4,5,10			
3.	Assignment 1	60% student score more than 70%	0.2		
	Date	14/1/2019			
4.	Semester End Exams	60% students score more than 60%	0.3		
	Date	29/05/2019			
5.	Course Exit Survey	75% student rate above average (4 & 5)	0.2		
	Date	15/4/2019			

CO Assessment Tools:

<u>CSC405.1:</u> Direct Methods(80%): Test(1), Assignment1, Quiz1, Lab_Exp(1-5), Uni_Exam(TH+PR)

CO1dm = 0.2(T1) + 0.3LAB(1-5) + 0.2A1 + (0.2UTh+0.1UPr)

Indirect Methods(20%): Course exit survey

CO3idm =Course_Exit_Survey

<u>CSC405.2</u>		CSC405.2: Interpret the role of Process management towards increasing throughput of system. [B3: Application]			
	Delivery Methods	Black Board, lecture notes and video			
Target		2.5			
Sr.no	CO Assessment Tools	Target (Tool wise)	Weightage		
1.	Test 1	60% student score more than 70%	0.2		
	Question no 2	TEST1(Q2 for 05M) & TEST1(Q3 for 10M)			
	Date	5/2/19			
2.	Lab Experiments	60% students will score minimum 70% marks	0.3		
	Experiment nos	6			
3.	Assignment 2	60% student score more than 70%	0.2		
	Date	1/2/2019			
4.	Semester End Exams	60% students score more than 60%	0.3		
	Date	29/05/2019			
5.	Course Exit Survey	75% student rate above average (4 & 5)	0.2		
	Date	15/4/2019			

 $\underline{\textbf{CSC405.2:}} \ \textbf{Direct Methods(80\%):} \ \mathsf{Test1} \ , \ \mathsf{Assignment2}, \ , \mathsf{Lab_Exp(6)}, \ \ \mathsf{Uni_Exam(TH+PR)}$

CO1dm = 0.2T1 +0.3LAB(6) + 0.2A2 + (0.2UTh+0.1UPr)

Indirect Methods(20%): Course exit survey

CO3idm =Course_Exit_Survey

<u>CSC405.3</u>	CSC405.3: Model the concepts of deadlock in operating systems and implement them in multiprogramming system. [B3: Application]				
	Delivery Methods	Black Board, lecture notes and video			
	Target	2.7			
Sr.no	CO Assessment Tools	Target (Tool wise)	Weightage		
1.	Test 2	60% student score more than 70%	0.2		
	Question no Test2 (Q1 for 10 marks) Test2(Q3 for 05 marks)				
	Date	9/4/19			
2.	Lab Experiments	60% students will score minimum 70% marks	0.3		
	Experiment nos	7			
3.	Assignment 3	60% student score more than 70%	0.2		
	Date	22/2/2019			
4.	Semester End Exams	60% students score more than 60%	0.3		
	Date	29/05/2019			
5.	Course Exit Survey	75% student rate above average (4 & 5)	0.2		
	Date	15/4/2019			

<u>CSC405.3:</u> Direct Methods(80%): Test(1-2), Assignment3, Lab_Exp(7), Uni_Exam(TH+PR)

CO1dm = 0.2(T2) + 0.3LAB(7) + 0.2A3 + (0.2UTh+0.1UPr)

Indirect Methods(20%): Course exit survey

CO3idm =Course_Exit_Survey

<u>CSC405.4</u>	CSC405.4: Demonstrate different techniques of memory management, file and I/O management. [B4: Application]				
	Delivery Methods	Black Board, lecture notes and video			
Target		2.7			
Sr.no	CO Assessment Tools	Target (Tool wise)	Weightage		
1.	Test 2	60% student score more than 70%	0.2		
	Question no 2	Test2 (Q2 for 05 marks)			
	Date	Test1(5/2/19) Test2(9/4/19)			
2.	Lab Experiments	60% students will score minimum 70% marks	0.3		
	Experiment nos	8,9			
3.	Assignment 4	60% student score more than 70%	0.2		
	Date	18/3/2019			
4.	Semester End Exams	60% students score more than 60%	0.3		
	Date	29/05/2019			
5.	Course Exit Survey	75% student rate above average (4 & 5)	0.2		
	Date	15/4/2019			

<u>CSC405.4:</u> Direct Methods(80%): Test2 , Assignment4, Lab_Exp(8,9), Uni_Exam(TH+PR)

CO1dm = 0.2(T2) + 0.3LAB(8,9) + 0.2A4 + (0.2UTh+0.1UPr)

Indirect Methods(20%): Course exit survey

CO3idm =Course_Exit_Survey

<u>CSC405.5</u>	CSC405.5: Execute Applications using Open Source technologies and Software utilities. [B3: Application]			
	Delivery Methods	Mentoring , Workshops ,Video Series & Online Courses		
	Target	2.7		
Sr.no	CO Assessment Tools	Target (Tool wise)	Weightage	
1.	Mini Project (10 marks)	60% students will score minimum 70% marks 04/02/2019 TO 06/04/2019	0.8	
2.	Semester End Exams(Practical + Oral)	60% students score more than 60%	0.2	
	Date	22/4/19 & 24/4/19		
3.	Course Exit Survey	75% student rate above average (4 & 5)	0.2	
	Date	15/4/2019		

CSC405.5: Direct Methods(80%): Mini-Project, Uni_Exam(PR)

CO1dm = 0.8(MP) + 0.2 (UPr)

Indirect Methods(20%): Course exit survey

CO3idm =Course_Exit_Survey

Course Outcomes Target:

Upon completion of this course students will be able to:

CSC405.1: Recognize the role of operating system as System software. **[B2: Understanding]**

Target level: 2.5

CSC405.2: Interpret the role of Process management towards increasing throughput of system. [B3:

Application]

Target level: 2.5

CSC405.3: Model the concepts of deadlock in operating systems and implement them in multiprogramming system. **[B3: Application]**

Target level: 2.7

CSC405.4: Demonstrate different techniques of memory management, file and I/O management. **[B3: Application]**

Target level: 2.7

CSC405.5: Execute Applications using Open Source technologies and Software utilities. . **[B3: Application]**

Target level: 2.7

Content Beyond Syllabus:

In order understand current applications, trends and new directions in Open Source OS AND TOOLS following topics will be covered

Sr.no.	Curriculum gap contents	Action Plan	CO MAPPED
1.	Building Android Application	Mini Project	CO5
2.	DevOps Tools	Workshop/Online Courses /	CO5
		Mini Project	

Curriculum Gap:

No gap identified

Rubrics for assessment of Experiment:

FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Computer Engineering S.E. (Computer) (semester IV)

(2018-2019)

CLASS : S.E. (COMPUTER)

SUBJECT NAME: OPERATING SYSTEM

SUBJECT CODE: CSC405

EXPERIMENT NO:	(1-9)
TITLE:	
DATE OF PERFORMANCE :	
DATE OF SUBMISSION:	
ROLL NO :	
NAME OF STUDENT :	

EVALUATION:

Sr.no	Rubric	Marks
1	On time Submission (2)	
2	Coding Standards (4)	
3	Post Lab Assignments (4)	
Total		
Signature		

Rubrics for the Experiments:

Indicator	Very Poor	Poor	Average	Good	Excellent
On time Submission (2)	Experiment not submitted (0)	More than two session late (0.5)	Two sessions late (1)	One session late (1.5)	Early or on time (2)
Coding Standards (4)	N/A	A difficult and inefficient solution. Does not execute due to errors. User prompts are misleading or non-existent (1)	A logical solution that is easy to follow but it is not the most efficient. Executes without errors. User prompts contain little information, poor design. (2)	Solution is efficient, easy to understand, and maintain Executes without errors. User prompts are understandable, minimum use of symbols or spacing in output. (3)	Solution is efficient and easy to follow (i.e. no confusing tricks). Executes without errors excellent user prompts, good use of symbols, spacing in output. (4)
Post Lab Assignments (4)	N/A	Major points are omitted / addressed minimally (1)	All major topics are covered, the Answers are accurate. (2)	Most major and some minor criteria are included. Answers are Accurate (3)	All major and minor criteria are covered and Answers are accurate. (4)

Rubrics for assessment of Mini Project:

FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Computer Engineering S.E. (Computer) (semester IV)

(2018-2019)

Class : S.E. (COMPUTER)

Subject Name: Operating System

Subject Code: CSC405

Experiment No:	10 MINI-PROJECT
Title:	
Date of Performance:	
Date of Submission:	
Roll No:	
Name of the Student:	

Evaluation:

Sr. No	Rubric	Grade
1	On time Submission (1)	
2	Completeness(03)	
3	Features (04)	
4	Solutions validity(2)	

Signature of the Teacher:

FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Computer Engineering

S.E. (Computer) (semester IV)

(2018-2019)

Project progress report

Title of the Project:	
Date:	
Class TE-COMPUTERS	SEM: V
Subject In charge: Prof. Mahendra Mehra	

Members name	Planned efforts	Actual efforts		Remarks
		Knowledge gained	Practical implementation	

Explanation of Rubrics: MINI-PROJECT

Indicator	Very Poor	Poor	Average	Good	Excellent
On time Submission (1) Maintains project deadline	Project not done (00)	More than two session late (0)	Two sessions late (00)	One of the progress report on time (0.5)	Both progress report on time (01)
Completeness(03) Complete all parts of project	N/A	40-60% 60-80% 80-90% complete complete (01) (02)		80-90% complete(2.5)	90-100% complete(03)
Project specific Technical Features(04) 1. Open source tool 2. Installation 3. Configuration 4. Test bed 5. Output	N/A	One feature (01)	Two features (02)	Three features(03)	4-5 features (04)
Solutions validity(2) 1. Process Automation 2. Working Prototype	N/A	N/A	N/A	Process Automation with default prototype (01)	Process automation with working prototype (02)

FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Computer Engineering S.E. (Computer) (semester IV)

(2018-2019)

Class : S.E. (COMPUTER)

Subject Name: Operating System

Subject Code: CSC405

Experiment No:	Assignments (1-4)
Title:	
Date of Performance:	
Date of Submission:	
Roll No:	
Name of the Student:	

Evaluation:

Sr. No	Rubric	Grade
1	On time Submission (2)	
2	Organization (2)	
3	Level of content(4)	
4	Depth and breadth of discussion (2)	

Signature of the Teacher:

Rubrics for the Assignments:

Indicator	Very Poor	Poor	Average	Good	Excellent
On time Submission (2)	Assignment not submitted (0)	More than two session late (0.5)	Two sessions late (1)	One session late (1.5)	Early or on time (2)
Organization (2)	N/A	Very poor readability and not structured (0.5)	Poor readability and somewhat structured (1)	Readable with one or two mistakes and structured (1.5)	Very well written and structured without any mistakes (2)
Level of content (4)	N/A	Major points are omitted / addressed minimally (1)	All major topics are covered, the information is accurate. (2)	Most major and some minor criteria are included. Information is Accurate (3)	All major and minor criteria are covered and are accurate.
Depth and breadth of discussion (2)	N/A	None in evidence; superficial at most (0.5)	Minor points/information may be missing and discussion is minimal (1)	Discussion centers on some of the points and covers them adequately (1.5)	Information is presented in depth and is accurate (2)

FR. CONCEICAO RODRIGUES COLLEGE OF ENGG. Fr. Agnel Ashram, Bandstand, Bandra (W) Mumbai 400 050.

I UNIT TEST

SEMESTER: IV BRANCH: COMPUTER SUBJECT: Operating Systems (CSC405) MAX. MARKS: 20

DATE: 05/02/2019 TIME: 01PM -02PM

Course Outcomes uptil UT1:

CSC405.1: Recognize the role of operating system as System software. **[B2: Understanding]**

CSC405.2: Interpret the role of Process management towards increasing throughput of system. **[B3:**

Application]

Q.No	Answer the following			Marks	CO
Q-1	A. Differentiate between Microkernel architect each must be used. OR B. "Multiprogramming whether the given state same. What are the research."	[5]	CSC405.1		
Q-2	A. Three concurrent processes code segments that access Process X executes the P of and c; process Y executes the d; process Z executes the before entering the respect the execution of its code operation (i.e., signal) on are binary semaphores in following represents a decoperations by the processes (A)X:P(a)P(b)P(c) (B)X:P(b)P(a)P(c) (C)X:P(b)P(a)P(c)	[5]	CSC405.2		
Q-3	A. Consider the following set and the CPU-burst times g	Turnaround time te processes with the quantum for I	Burst Time 5 3 1 and Average SRTF and Round RR is 2ms)	[10]	CSC405.2

FR. CONCEICAO RODRIGUES COLLEGE OF ENGG. Fr. Agnel Ashram, Bandstand, Bandra (W) Mumbai 400 050.

I UNIT TEST

SEMESTER: IV BRANCH: COMPUTER

SUBJECT: Operating Systems (CSC405) MAX. MARKS: 20 DATE: 09/04/2019 TIME: 01PM -02PM

Note: Draw Diagrams where necessary

Highlight Formulas and results in numerical section.

Q.1. Consider the following snapshot of the system

(1*10M = 10M) (CO3)

PROCESS	ALLO	ALLOCATION MAX			MAX		AVA	ILABLE	,
	A	В	C	A	В	С	A	В	C
P0	0	1	0	7	5	3	3	3	2
P1	2	0	0	3	2	2			
P2	3	0	2	9	0	2			
Р3	2	1	1	2	2	2			
P4	0	0	2	4	3	3			

Answer the following question using Bankers algorithm

a. What is the content of the Need Matrix?

(02 marks)

b. Is the system in safe state?

(04 marks)

c. If the request from P1 arrives for (1, 0, 2) can the request be granted immediately? (04 marks)

Q.2 Consider following disk request sequence for a disk with 100 tracks. (1*10M = 05M) (CO4)

44, 20,95,4,50,52,47,61,87,25

Head pointer starting at 39. Find the no. of head movements in cylinders using, SCAN, C-SCAN, LOOK scheduling. Assume head moving towards cylinder 99.

Q.3. Numerical: (1*05M = 05M) (CO3)

Using LRU, OPT page replacement policy for the given page frame sequence, 0,2,1,6,4,0,1,0,3,1,2,1,6,2,0,3,4

Page frame size is 4.

Calculate page hit and page miss and page fault ratio for each of the policy.

OS ASSIGNMENTS

Assignment 1:

- 1. Why use API's rather than system calls?
- 2. Differentiate between system software and application software also list out all the tools required to build them.
- **3.** What are the design consideration for multicore os and multiprocessor architecture?

Assignment 2:

- 1. Compare and contrast between multiprocessor and multicore architecture.
 - 2. Differentiate between Intel Pentium, i3, i5, i7 processors.
- 3. Explain the reason why Linux OS supports all kind of hardware devices unlike Window OS which requires installing device drivers separately.
 - **4.** Write a short note on Linux Scheduling.

Assignment 3:

- 1. Explain the rationale behind choosing the page size to be power of 2.
- 2. Explain buddy system in memory allocation strategy.
- 3. Distinguish between paging and segmentation.

Assignment 4:

- 1. Explain Linux Virtual file system Architecture with a neat diagram.
- 2. Calculate the **TOTAL HEAD MOVEMENT** for following disk scheduling algorithm
- a. FCFS b. SSTF c. SCAN AND C-SCAN d. LOOK AND C-LOOK

Work Queue: 23, 89, 132, 42, 187

There are 200 cylinders numbered from 0 - 199 the disk head stars at number 100.

- 3. Write short note on
 - a. File Organization and access
 - b. Secondary storage management
 - c. File Allocation methods
 - d. Operating system Design Issues

FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Computer Engineering S.E. (Computer) (semester IV)

(2018-2019)

Lesson Plan: Operating System

Semester IV Year: 2018-19

Subject Incharge: Prof. Mahendra Mehra

Course Objectives:

CSC405.1: Recognize the role of operating system as System software. **[B2: Understanding]**

CSC405.2: Interpret the role of Process management towards increasing throughput of system. [B3:

Application]

CSC405.3: Model the concepts of deadlock in operating systems and implement them in multiprogramming system. **[B3: Application]**

CSC405.4: Demonstrate different techniques of memory management, file and I/O management. **[B3: Application]**

CSC405.5: Execute Applications using Open Source technologies and Software utilities. **[B3: Application]**

Modes of Content Delivery:

i	Class Room Teaching	V	Self Learning Online Resources	lx	Industry Visit
ii	Tutorial	vi	Slides	Х	Group Discussion
iii	Remedial Coaching	vii	Simulations/Demonstrations	хi	Seminar
iv	Lab Experiment	viii	Expert Lecture	xii	Case Study

Lect.	Portion to be covered	Planned date	Actual date	Content Delivery Method
1.	Introduction to Operating System,	1/1/19	1/1/19	i
2.	Objectives and Functions of O.S, OS Services,	1/1/19	1/1/19	İ
3.	Special purpose systems, Types Of OS	2/1/19	2/1/19	İ

4.	System calls, types of system calls	3/1/19	3/1/19	i, vi
5.	OS Design Considerations for Multiprocessor and Multicore architectures,	4/1/19	8/1/19	i, iv , vi
6.	Operating system structure,. Linux Kernel and Shell	8/1/19	10/1/19	I, vii,

- 1. Silberschatz A., Galvin P., Gagne G. "Operating Systems Principles", Willey Eight edition
- 2. Andrew S. Tanenbaum, "Modern Operating System", Prentice Hall.

- 1. http://www.tutorialspoint.com/operating_system/
- 2. http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/1_Introduction.html
- 3. http://www.csl.mtu.edu/cs4411.ck/www/NOTES/process/fork/create.html

Lect.	Portion to be covered	Planned date	Actual date	Content Delivery
No.				Method
7.	Operations on process: Process scheduling: basic conce pts	9/1/19	11/1/19	İ
8.	Concept of a Process, Process States, Process Description, Process Control Block, Operations on Processes	10/1/19	15/1/19	i
9.	Threads: Definition and Types, Concept of Multithreading, Multicore processors and threads.	11/1/19	16/1/19	İ
10.	Scheduling criteria , scheduling algorithms, Preemptive, Non preemptive, FCFS	15/1/19	17/1/19	i , iv
11.	Scheduling algorithms: SJF ,SRTN	16/1/19	17/1/19	i , iv
12.	Scheduling algorithms: Priority based, Round Robin	17/1/19	18/1/19	i , iv
13.	Multilevel Queue scheduling, Operating System Examples.	18/1/19	22/1/19	İ

14.	Introduction to Thread Scheduling, Multiprocessor Scheduling and Linux Scheduling.	16/1/19	23/1/19	İ
15.	Concurrency: Principles of Concurrency, InterProcess Communication, Process/Thread Synchronization.	17/1/19	24/1/19	i
16.	Synchronization: Background , the critical section problem, Peterson's Solution	18/1/19	25/1/19	i, vi
17.	Synchronization Hardware Sem aphores, classic problems of Synchronization: The Producer Consumer Problem	22/1/19	29/1/19	i, vi
18.	classic problems of Synchronization: Readers writers problem,	23/1/19	30/1/19	i, vi
19.	Dinning Philosopher Problem	24/1/19	30/1/19	i, vi
20	Revision : SUM SOLVING SESSIONS	25/1/19	1/2/19	İ

- 1. Silberschatz A., Galvin P., Gagne G. "Operating Systems Principles", Willey Eight edition
- 2. Andrew S. Tanenbaum, "Modern Operating System", Prentice Hall.

- 1. http://www.tutorialspoint.com/operating_system/os_process_scheduling_algorithms.html
- $2. \quad \underline{\text{https://www.it.uu.se/edu/course/homepage/oskomp/vt07/lectures/scheduling_algorithms/ha} \\ \underline{\text{ndout.pdf}}$
- 3. http://www.dailyfreecode.com/code/simulate-process-synchronization-call-2182.aspx

Lect.	Portion to be covered	Planned date	Actual date	Content Delivery Method
21	Deadlock Problem, Deadlock Characterization, Deadlock Prevention.	29/1/19	7/2/19	i

22	Deadlock avoidance Banker's al gorithm for single & multiple resources -I	30/1/19	7/2/19	i, iv, vi
	'			
23	Deadlock avoidance Banker's al gorithm for single &			i, iv, vi
	multiple resources- II	1/2/19	20/2/19	
24	Deadlock recovery ,	7/2/19	21/2/19	i, iv
25	Deadlock Detection,	8/1219	22/1219	i, iv
26	Revision : SUM SOLVING SESSIONS	12/2/19	25/2/19	İ

- 1. Silberschatz A., Galvin P., Gagne G. "Operating Systems Principles", Willey Eight edition
- 2. Andrew S. Tanenbaum, "Modern Operating System", Prentice Hall.

- 1. http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/7_Deadlocks.html
- 2. http://web.cs.wpi.edu/~cs3013/c07/lectures/Section07-Deadlocks.pdf
- 3. http://www.youtube.com/watch?v=q71pmJYE86U

Lect. No.	Portion to be covered	Planned date	Actual date	Content Delivery Method
27.	Memory management strategies: background, swapping ,contiguous memory allocation,	13/2/19	26/2/19	i
28.	Paging , structure of page table s ,	14/2/19	27/2/19	i, iv, vi
29.	segmentation	5/3/19	5/3/19	i
30	Virtual memory management: Demand paging , copy on write	6/3/19	6/3/19	i, iv, vi
31.	Page replacement, FIFO, Optimal, LRU	7/3/19	7/3/19	i, iv
32	LRU Approximation, Counting Based, Allocation of frames , Thrashing	8/3/19	7/3/19	i

Lect.	Portion to be covered	Planned date	Actual date	Content Delivery Method
33	Files System Structure,	12/3/19	8/3/19	i, iv
34	File System implementation, Directory implementation	13/3/19	12/3/19	
35	Allocation Methods contiguous allocation	14/3/19	13/3/19	i, iv
36	Linked list allocation, indexed allocations, Free space management	19/3/19	14/3/19	i, iv
37	Secondary storage : structures: Disks Scheduling Algorithm: FCFS, SSTF	20/3/19	19/3/19	i, iv, vi
38	SCAN, CSCAN	22/3/19	20/3/19	i, iv, vi
39	LOOK, Disk Management	26/3/19 27/3/19	22/3/19 26/3/19	i, iv, vi
40	Disk Cache, Linux I/O.	28/3/19	27/3/19	i, iv, vi
41	Revision : SUM SOLVING SESSIONS	3/4/19	28/4/19 3/4/19	i

- 1. Silberschatz A., Galvin P., Gagne G. "Operating Systems Principles", Willey Eight edition
- 2. Andrew S. Tanenbaum, "Modern Operating System", Prentice Hall.

- 1. http://www.tutorialspoint.com/operating_system/os_file_system.htm
- 2. http://www.cs.iit.edu/~cs561/cs450/disksched/disksched.html
- 3. http://www2.cs.uregina.ca/~hamilton/courses/330/notes/io/node8.html

Text Books:

- William Stallings, Operating System: Internals and Design Principles, Prentice Hall, 8th Edition, 2014, ISBN-10: 0133805913 • ISBN-13: 9780133805918.
- Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts, John Wiley & Sons, Inc., 9th Edition, 2016, ISBN 978-81-265-5427-0
- 3. Andrew Tannenbaum, Operating System Design and Implementation, Pearson, 3rd Edition.
- D.M Dhamdhere, Operating Systems: A Concept Based Approach, Mc-Graw Hill

Reference Books:

- Maurice J. Bach, "Design of UNIX Operating System", PHI
- Achyut Godbole and Atul Kahate, Operating Systems, Mc Graw Hill Education, 3rd Edition
- 3. The Linux Kernel Book, Remy Card, Eric Dumas, Frank Mevel, Wiley Publications.

FR. Conceicao Rodrigues College Of Engineering Department Of Computer Engineering OS: List of Experiments (2018-2019)

Sr.no	Concept	CO	Experiment
01	FILE MANAGEMENT COMMANDS	CO1	To study the Linux File system Hierarchy and different types users in LINUX.
02	Challandation		Learning Linux File User Process Management commands.
03	Shell scripting		Linux Bash Scripting (BASICS)
04			Linux Bash Scripting (Advanced) (GREP AWK SED CUT)
05	System calls Process synchronization	CO1	System Calls a. Program to implement I/O System call b. Process management (fork wait getpid getppid getuid setuid getgid getegid)
06	PROCESS SCHEDULING	CO1	Write a program to demonstrate Process Scheduling Algorithms a. FCFS b. Non Preemptive SJF c. Round Robin d. Non Preemptive Priority
07	Deadlock Avoidance	CO2	Write a program to Demonstrate Bankers Algorithm for Deadlock Avoidance
08	Memory	СОЗ	Implement various page replacement policies a. FIFO b. LRU
09	Management	CO4	Implement Dynamic Partitioning Placement Algorithms a. Best Fitb. First-Fitc. Worst-Fit etc
10	Mini- Project(Devops tools / Android)	CO5	Mini Project

FR. Conceicao Rodrigues College Of Engineering Department Of Computer Engineering OS: List of Experiments (2018-2019) Practical Plan

Exp	Date Planned		Date Planned		Concept	Title/aim
No.	A	В	С	D		
01	14/1/2019	18/1/2019	15/1/2019	16/1/2019	FILE MANAGEMENT COMMANDS	To study the Linux File system Hierarchy and different types users in LINUX.
02					Shell scripting	Learning Linux File User Process Management commands.
	21/1/2019	25/1/2019	22/1/2019	23/1/2019		
03						Linux Bash Scripting (BASICS)
	28/1/2019	1/2/2019	29/1/2019	30/1/2019		
04					System calls	Linux Bash Scripting (Advanced) (GREP AWK SED CUT)
	18/2/2019	8/2/2019	26/2/2019	20/2/2019		
05						Implement System Calls
						 a. Program to implement I/O System call b. Process management (fork wait getpid getpid getuid setuid getgid getegid)
	25/2/2019	22/2/2019	5/3/2019	27/2/2019		
06					Process Scheduling	Write a program to demonstrate Process Scheduling Algorithms
	11/3/2019	1/3/2019	12/3/2019	6/3/2019		a. FCFS b. Non Preemptive SJF c. Round Robin d. Non Preemptive Priority
07					Deadlock Avoidance	
						Write a program to Demonstrate Bankers Algorithm for Deadlock Avoidance
08	18/3/2019	8/3/2019	19/3/2019	13/3/2019	Memory Management	
	25/3/2019	22/3/2019	26/3/2019	20/3/2019	Memory Management	Implement various page replacement policies a. FIFO b. LRU
	201012017		201312017	201312017	l	

09	1/4/2019	5/4/2019	2/4/2019	27/3/2019		Implement Dynamic Partitioning Placement Algorithms d. Best Fit e. First-Fit f. Worst-Fit etc
10	04/02/2019	04/02/2019	04/02/2019	04/02/2019	Mini-Project(Devops tools / Android)	
	TO	TO	ТО	ТО		Mini Project
	06/04/2019	06/04/2019	06/04/2019	06/04/2019		
11	DOA	14/1/2019	DOS	23/1/2019	Assignments	Assignment 1 (CO1)
12	DOA	1/2/2019	DOS	18/2/2019		Assignment 2 (CO2)
13	DOA	22/2/2019	DOS	12/3/2019		Assignment 3 (CO3)
14	DOA	18/3/2019	DOS	1/4/2019		Assignment 4 (CO4)

FR. Conceicao Rodrigues College Of Engineering

Department Of Computer Engineering OS-LAB (CSC405) (2018-2019)

Mini-Project Plan

CSC405.5: Execute Applications using Open Source technologies and Software utilities. [B3: Application]

Date	Activity
29/01/2019	Project Group formation, Topic Submission through Google Form
	https://forms.gle/UGsP9EhhbGFHpFva8
21/02/2019	1 st Project Progress Report
05/03/2019	Project Demonstration + Corrections and Improvements
22/03/2019	2 nd Project Progress Report
04/04/19 to 06/04/19	Project Report and Presentation

FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Computer Engineering Department

Course Exit Form Operating System (2018 - 2019)

1. I am able to understand the role of operating system as System	i soitware.
---	-------------

- a. Strongly Agree
- b. Agree
- c. Neutral
- d. Disagree
- e. Strongly Disagree

2. I am able to describe the role of Process synchronization towards increasing throughput of system

- a. Strongly Agree
- b. Agree
- c. Neutral
- d. Disagree
- e. Strongly Disagree

3. I am able to Model the concepts of deadlock in operating systems and implement them in multiprogramming system.

- a. Strongly Agree
- b. Agree
- c. Neutral
- d. Disagree
- e. Strongly Disagree

4. I am able to Demonstrate different techniques of memory management, file and I/O management

- a. Strongly Agree
- b. Agree
- c. Neutral
- d. Disagree
- e. Strongly Disagree

5. I am able to Execute Applications using Open Source technologies and Software utilities

- a. Strongly Agree
- b. Agree
- c. Neutral
- d. Disagree
- e. Strongly Disagree