FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering B.E. (Computer) (semester VI)

(2018-2019)

Course Outcomes & Assessment Plan

Subject: System Programming Compiler Construction (CPC601)

Credits-5

Syllabus:

1. Introduction to System Software

Concept of System Software, Goals of system softwares, system program and system programming, Introduction to various system programs such as Assembler, Macro processor, Loader, Linker,

Compiler, Interpreter, Device Drivers, Operating system, Editors, Debuggers

2. Assemblers

Elements of Assembly Language programming, Assembly scheme, pass structure of assembler, Assembler Design: Two pass assembler Design and single pass Assembler Design for Hypothetical / X86 family processor, data structures used.

3.Macros & Macro processors

Introduction, Macro definition and call, Features of Macro facility: Simple, parameterized, conditional and nested. Design of single pass macro processor, data structures used

4.Loaders and Linkers

Introduction, functions of loaders, Relocation and Linking concept, Different loading schemes:

Relocating loader, Direct Linking Loader, Dynamic linking and loading.

Compilers: Analysis Phase

Introduction to compilers, Phases of compilers: Lexical Analysis- Role of Finite State Automata in Lexical Analysis, Design of Lexical analyser, data structures used . Syntax Analysis- Role of Context Free Grammar in Syntax analysis, Types of Parsers: Top down parser- LL(1), Bottom up parser-Operator precedence parser, SLR Semantic Analysis, Syntax directed definitions.

Compilers: Synthesis Phase

Intermediate Code Generation: Types of Intermediate codes: Syntax tree, Postfix notation, Three address codes: Triples and Quadruples. Code Optimization: Need and sources of optimization, Code optimization techniques: Machine Dependent and Machine Independent. Code Generation: Issues in the design of code generator, code generation algorithm. Basic block and flow graph.

Reference Books: 1. Modern Compiler. Implementation in Java, Second. Edition. Andrew W. Appel Princeton University. Jens Palsberg Purdue University. CAMBRIDGE. 2. Crafting a compiler with C, Charles N. Fischer, Ron K. Cytron, Richard J. LeBlanc

Online resources:

NPTEL Links uploaded on moodle **Course objectives:**

- 1. To understand the role and functioning of various system programs over application program.
- 2. To understand basic concepts and designing of assembler, Macro processor and role of static and dynamic loaders and linkers.

- **3.** To understand the need to follow the syntax in writing an application program and to learn the how the analysis phase of compiler is designed to understand the programmer's requirements without ambiguity.
- **4.** To synthesize the analysis phase outcomes to produce the object code that is efficient in terms of space and execution time.

Course Outcomes:

Course	After successful completion of the course students should be able to
Outcome	
CO1	Identify the different system programs and their utility.(B2-Understanding)
CO2	Design basic two pass Assembler and Macro Pre-processor (B2-Understanding)
CO3	Acquire knowledge on various phases of Compiler. (B2-Understanding)
CO4	Design various parsing techniques (B2-Understanding)

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12
	(Engg	(Ana	(De	(inve	(tools	(eng	(Env	(Eth	(ind	(comm.	1	(life
	Know)	sign	stiga)	g))	Team)	(PM)	Long
)))		Soci)))
CPC601.	3	1										
1												
CPC601.	3	2	3									
2												
CPC601.	3	2	1		1							
3												
CPC601.	3	2	3		1							
4												
Course												
To PO												

СО	PSO1	PSO2
CPC601.1	2	
CPC601.2	2	
CPC601.3	2	
CPC601.4	2	

Course to PSO		
---------------	--	--

Justification

PO1: This subject all COs are mapped to PO1 because engineering graduates will be able to apply the knowledge of System Programming to solve complex engineering problems.

PO2: This subject all COs are mapped to PO2 because the students analyze the given problem statement PO3: This subject all COs are mapped to PO3 because the students design the various system soft wares. PO5: CO601.3 and CO601.4 are mapped to PO5 because the students use the tools like Lex and Yacc to implement phases of compilers.

PSO1: All COs are mapped to PSO1 because the graduates will be able to apply knowledge of system program to simulate the real world problem.

CO Assessment Tools:

<u>CPC601.1:</u> Direct Methods(80%): Test1, Quiz UniExamTh

CO1dm =0.3T1 + 0.2assign+0.1Lab + 0.2Q + 0.1UTh+0.1UTPr

InDirect Methods(20%): Course exit survey

CO1idm

Direct Methods	Weightage	Target	Date	Marks
Test 1&Test2	0.3	60% students will score minimum 60%	05-02-19 &	Q-1 (05M)
		marks (i.6. 3 or more out of 5)	9-4-19	Q-2 (05M)
Assignment	0.2	60% students will score minimum 70%	20-02-19	10M
		marks (i.6. 7 or more out of 10)		
Quiz1	0.2	60% students will score minimum 70%	28-02-19	10M
		marks (i.6. 14 or more out of 20)		
Lab	0.1	60% students will score minimum 70%	Expt 3 and 8	10M
		marks (i.6. 7 or more out of 10)		
Uni Theory	0.1	60% students will score minimum 65%	17-05-19	80M
exam		marks (i.6. 52 or more out of 80)		
Uni. Practical	0.1	60% students will score minimum 70%	26-4-19 & 4-5-	25M
Exam		marks (i.6. 17.5 or more out of 25)	19	

<u>CSC302.1 = 0.8*CO1dm + 0.2* CO1idm</u>

<u>CPC601.2:</u> Direct Methods(80): Test1,2 Quiz Lab Assignment UniExamTh CO2dm =0.2T1,T2 + 0.2Q + 0.4Lab + 0.1UTh+0.1UTPr

InDirect Methods(20%): Course exit survey

CO2idm

CSC302.2 = 0.8*CO2dm + 0.2* CO2idm

Direct Methods	Weightage	Target	Date	Marks
Test 1&Test2	0.2	60% students will score minimum 60%	05-02-19 &	Q-1 (05M)
		marks (i.6. 3 or more out of 5)	9-4-19	Q-2 (05M)
Quiz2	0.2	60% students will score minimum 70%	30-03-19	10M

		marks (i.6. 14 or more out of 20)		
Lab	0.3	60% students will score minimum 70%	EXPERIMENT	10M
		marks (i.6. 14 or more out of 20)	NO 1,2 & 3	
Uni Theory	0.15	60% students will score minimum 65%	17-05-19	80M
exam		marks (i.6. 52 or more out of 80)		
Uni. Practical	0.15	60% students will score minimum 70%	26-4-19 & 4-5-	25M
Exam		marks (i.6. 17.5 or more out of 25)	19	

<u>CPC601.3:</u> Direct Methods(80%): Test1 Quiz Lab UniExamTh CO3dm =0.1T1 + 0.2Q++0.4Lab + 0.3UTh InDirect Methods(20%): Course exit survey

CO3idm

<u>CSC302.3 = 0.8*CO3dm + 0.2* CO3idm</u>

Direct Methods	Weightage	Target	Date	Marks
Test 1	0.1	60% students will score minimum 60%	05-02-19	Q-3 (10M)
		marks (i.6. 6 or more out of 10)		
Quiz2	0.2	60% students will score minimum 70%	02-04-19	20M
		marks (i.6. 14 or more out of 20)		
Lab	0.4	60% students will score minimum 70%	Experiments 4,	10M
		marks (i.6. 14 or more out of 20)	5 , 6 and 7	
Uni Theory	0.2	60% students will score minimum 65%	17-05-19	80M
exam		marks (i.6. 52 or more out of 80)		
Uni. Practical	0.1	60% students will score minimum 70%	26-4-19 & 4-5-	25M
Exam		marks (i.6. 17.5 or more out of 25)	19	

<u>CPC601.4</u>: **Direct Methods(80%):** Test2 Lab Assignment UniExamTh CO4dm = 0.2T2+0.3Lab +0.2A+ 0.3Uth

InDirect Methods(20%): Course exit survey

CO4idm

<u>CSC302.4 = 0.8*CO4dm + 0.2* CO4idm</u>

Direct Methods	Weightage	Target	Date	Marks
Test 1	0.2	60% students will score minimum 60%	05-02-19	Q-3 (10M)
		marks (i.6. 6 or more out of 10)		
Test2	0.2	60% students will score minimum 60%	09-04-19	Q-3 (10M)
		marks (i.6. 6 or more out of 10)		
Assignment	0.1	60% students will score minimum 70%	02-04-19	20M
		marks (i.6. 7 or more out of 10)		
Lab	0.2	60% students will score minimum 70%	Experiments 4,	10M
		marks (i.6. 14 or more out of 20)	5 , 6 and 7	

Uni Theory	0.2	60% students will score minimum 65% 17-05-19		80M
exam		marks (i.6. 52 or more out of 80)		
Uni. Practical	0.1	60% students will score minimum 70%	26-4-19 & 4-5-	25M
Exam		marks (i.6. 17.5 or more out of 25)	19	

Content beyond syllabus:

Case study on Natural Language processing – Students will understand to apply the knowledge of phases of compiler to NLP.

Course Outcomes Target:

Upon completion of this course students will be able to:

<u>CPC601</u>.1: Identify the different system programs and their utility Target level: 2.5 <u>CPC601</u>.2: Design basic two pass assembler and Macro Pre-processor Target level: 2.5 <u>CPC601</u>.4: Acquire various phases of Compiler Target level: 2.5 <u>CPC601</u>.5: Design various parsing techniques Target level: 2.5

RUBRICS for the SPCC Lab Experiments

1	Time Line (2)	N.A	Two sessions late (0)	One session late (1)	Early or on time (2)
2	Output (3)	Practical not performed. (0)	Practical performed but failed to show output due to some error. (1)	Output shown but not as expected (Partial output) (2)	Expected output shown (3)
3	Code optimization (3)	Practical not performed (0)	Code is unstructured and difficult to understand(1)	The code is structured (2)	The code is structured and optimized (3)

4	Knowledge	N.A	Not able to	Able to	Answered all
	about the topic		answer any	answer few	the questions
			question	questions	with relevant
	(2)			(1)	explanation
			(0)	(1)	(2)
					(2)

Rubrics for the Assignment :

Indicator	Very Poor	Poor	Average	Good	Excellent
On time Submission (2)	Assignment not submitted (0)	More than two session late (0.5)	Two sessions late (1)	One session late (1.5)	Early or on time (2)
Organization (2)	N/A	Very poor readability and not structured (0.5)	Poor readability and somewhat structured (1)	Readable with one or two mistakes and structured (1.5)	Very well written and structured without any mistakes (2)
Level of content (4)	N/A	Major points are omitted / addressed minimally (1)	All major topics are covered, the information is accurate. (2)	Most major and some minor criteria are included. Information is Accurate (3)	All major and minor criteria are covered and are accurate. (4)
Depth and breadth of discussion (2)	N/A	None in evidence; superficial at most (0.5)	Minor points/information may be missing and discussion is minimal (1)	Discussion centers on some of the points and covers them adequately (1.5)	Information is presented in depth and is accurate (2)

FR. CONCEICAO RODRIGUES COLLEGE OF ENGG. Fr. Agnel Ashram, Bandstand, Bandra (W) Mumbai 400 050.

I UNIT TEST

SEMESTER:VI	BRANCH: COMPUTER
SUBJECT: System Programming Compiler Construction (CPC601)	MAX. MARKS: 20
DATE: 05/02/2019	TIME: 10AM -11AM

Course Outcomes:

CPC601.1 Identify the different system programs and their utility.

CPC601.2 Design basic two pass Assembler and Macro Pre-processor.

CPC601.3 Acquire knowledge on various phases of Compiler.

CPC601.4 Design various parsing techniques.

Q.No	Answer the following	Marks	СО
Q-1	List and explain various system programs, Draw a neat		CPC601.1
	labelled diagram showing their interconnection.		
	OR	[5]	
	What are System Softwares, Explain the Goals of		
	system Softwares		
Q-2	Convert the Given Source Program into Intermediate		CPC601.2
	code also populate all the required data structures.		
	START 300		
	MOVEM BREG, DATA1		
	LA1: PRINT DATA2		
	COMP DREG, ='43'		
	LTORG	[5]	
	DATA1 DS 49		
	LA2: EQU LA1 ORIGIN 550		
	SUB AREG, ='22'		
	LTORG		
	DATA2 DC 87		
	END		

Q-3	a.	Design predictive parser for the grammar given below	[6]	CPC601.3 &
		$S \rightarrow XS \mid dS \mid NULL$		срс601.4
		$X \rightarrow Y \mid Zb \mid aY$		
		$Y \rightarrow cZ$		
		Z→ e		
		Check whether input dace is valid		
	b.	Compute First and Follow set of the Grammar given below	[4]	
		E→ TQ		
		T→FR		
		$Q \rightarrow +TQ -TQ NULL$		
		R→*FR /FR NULL		
		F→(E) id		
			[4]	

FR. CONCEICAO RODRIGUES COLLEGE OF ENGG. Fr. Agnel Ashram, Bandstand, Bandra (W) Mumbai 400 050.

II UNIT TEST

SEMESTER: VI B	RANCH: COMPUTER
SUBJECT: System Programming Compiler Construction (CPC601)	MAX. MARKS: 20
DATE: 09/04/2019	TIME: 10AM -11AM

Course Outcomes:

CPC601.1 Identify the different system programs and their utility. CPC601.2 Design basic two pass Assembler and Macro Pre-processor. CPC601.4 Design various parsing techniques.

Q.No	Answer the following	Marks	СО
Q-1	Convert the Given Source Program into target code using two pass assembler also populate all the required data structures. START 300 MOVEM CREG, INFO1 LA1: PRINT DATA2 ADD AREG, ='32' LTORG INFO1 DS 44 LA2: EQU LA1 ORIGIN 550	[5]	CPC601.1
Q-2	SUB DREG, ='33' LTORG DATA2 DC 66 END Explain the working of single pass Macro processor with neat	[5]	
	flowcharts and databases (Clearly Show Entries in database) MACRO EVAL &X, &Y=, &OP=ADD LOAD &X &OP &Y STORE &X MEND		CPC601.2
Q-3	Design LR(1) and LALR parser for the grammar given below $S \rightarrow CC$ $C \rightarrow cC$ $C \rightarrow d$	[10]	CPC601.3 & CPC601.4

Note: Date of submission: 25/3/19

<u>CO4:</u> Design various parsing techniques.

1. Design operator precedence parser for the grammar

 $E \rightarrow E + E | E^*E | id$

2. Design predictive parser for the grammar given below

E→ TEdash

Edash→ +TEdash|NULL

T→(E) | id

Check whether input **id*id+** is valid

3. Design LR(0) parser table for the grammar

 $E \rightarrow E+T|T$

T
ightarrow id

4. Design LR (1) and LALR parser for the grammar given below

A→ (A)

A→ a

RUBRICS

- 1. Timeline (2)
- 2. Organization (2)
- 3. Steps of Design(6)

SPCC ASSIGNMENT NO 2

D0A: 22/2/19

- 1. Explain various functions of Loaders. Compare linking loader and linkage loader.
- 2. Discuss various intermediate code forms in detail
- 3. Differentiate between :
 - a. Compiler and Interpreter
 - b. System software and Application software

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering T.E. (Computer) (semester VI)

(2018-2019)

Lesson Plan: SPCC

Semester VI

Year: 2018-19

Modes of Content Delivery:

Ι	Class Room Teaching	v	Self Learning Online Resources		Industry Visit
Ii	Tutorial	vi	Slides		Group Discussion
Iii	Remedial Coaching	vii	Simulations/Demonstrations		Seminar
Iv	Lab Experiment	viii	Expert Lecture		Case Study

Lect. No.	Portion to be covered	Planned date	Actual date	Content Delivery Method/Learning Activities
1	Introduction to compilers, Phases of compilers	02/01/2019	02/01/2019	Class Room Teaching, Case Study, Lab Experiment Simulations/Demonstrations
2	Lexical Analysis- Role of Finite State Automata in Lexical Analysis	04/01/2019	04/01/2019	Class Room Teaching, Case Study, Lab Experiment
3	Design of Lexical analyser, data structures used . Syntax Analysis- Role of Context Free Grammar in Syntax analysis,	09/01/2019	07/01/2019	Class Room Teaching, Case Study, Lab Experiment
4	Types of Parsers: Top down parser	11/01/2019	09/01/2019	Class Room Teaching, Lab Experiment
5	Design of Predictive parser	17/01/2019	11/01/2019	Class Room Teaching
6	Design of Predictive parser and	18/01/2019	14/01/2019	Class Room Teaching
7	LL(1) Grammar	24/01/2019	18/01/2019	Class Room Teaching
8	Design of recursive descent parser	25/01/2019	24/01/2019	Class Room Teaching, , Lab Experiment
9	Bottom up parser- Operator precedence parser	31/01/2019	25/01/2019	Class Room Teaching
10	Design of SLR Parser	1/2/2019	1/2/2019	Class Room Teaching
11	Design of LR1 parser	7/2/2019	7/2/2019	Class Room Teaching
12	More Examples on parsers	8/2/2019	8/2/2019	Class Room Teaching
13	Semantic Analysis	21/2/2019	18/2/2019	Class Room Teaching, Self Learning Online Resources
14	Syntax directed definitions.	22/2/2019	18/2/2019	Class Room Teaching, Self

				Learning Online Resources
15	Intermediate Code Generation: Types of Intermediate codes: Syntax tree, Postfix notation, Three address codes: Triples and Quadruples.	28/2/2019	22/2/2019	Class Room Teaching, Self Learning Online Resources
16	Intermediate Code Generation: examples	1/3/2019	25/2/2019	Class Room Teaching, Self Learning Online Resources, slides
17	Code Optimization: Need and sources of optimization	07/3/2019	1/3/2019	Class Room Teaching, Self Learning Online Resources
18	Code optimization techniques: Machine Dependent	08/3/2019	6/3/2019	Class Room Teaching, Self Learning Online Resources
19	Code optimization techniques: Machine Dependent	14/3/2019	08/3/2019	Class Room Teaching, Self Learning Online Resources
20	Code optimization techniques :Machine Independent	22/3/2019	14/3/2019	Class Room Teaching, Self Learning Online Resources
21	Code Generation: Issues in the design of code generator,	28/3/2019	28/3/2019	Class Room Teaching, Lab experiment, Self Learning Online Resources
22	code generation algorithm.	29/3/2019	29/3/2019	Class Room Teaching, Lab experiment, Self Learning Online Resources
23	Basic block and flow graph.	04/04/2019	01/04/2019	Class Room Teaching
24	University Paper solution	05/3/2019	03/04/2019	Class Room Teaching
1	Concept of System Software, Goals of system softwares, system program and system programming,	1/1/19	1/1/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
2	Introduction to various system programs such as Assembler, Macro processor, Loader, Linker, Compiler, Interpreter, Device Drivers, Operating system, Editors, Debuggers.	3/1/19	3/1/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
3	Elements of Assembly Language programming	9/1/19	9/1/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
4	Assembly scheme	15/1/19	15/1/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
5	pass structure of assembler	17/1/19	17/1/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
6	Assembler Design: Two pass assembler Design and single pass Assembler Design for	21/1/19	21/1/19	Class Room Teaching, Lab experiment, Self Learning Online Resources

	Hypothetical / X86 family processor, data structures used.			
7	Assembler Design: Two pass assembler Design and single pass Assembler Design for Hypothetical / X86 family processor, data structures used.	22/1/19	22/1/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
8	Assembler Design: Two pass assembler Design and single pass Assembler Design for Hypothetical / X86 family processor, data structures used.	28/1/19	28/1/19	Class Room Teaching, Lab experiment , Self Learning Online Resources
9	Assembler Design: Two pass assembler Design and single pass Assembler Design for Hypothetical / X86 family processor, data structures used.	29/1/19	29/1/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
10	Features of Macro facility: Simple, parameterized, conditional and nested	1/2/19	1/2/19	Class Room Teaching, Lab experiment , Self Learning Online Resources
11	Features of Macro facility: Simple, parameterized, conditional and nested	11/2/19	25/2/19	Class Room Teaching, Lab experiment , Self Learning Online Resources
12	Design of single pass macro processor, data structures used.	5/3/19	5/3/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
13	Design of single pass macro processor, data structures used.	11/3/19	12/3/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
14	Introduction, functions of loaders,	12/3/19	18/3/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
15	Relocation and Linking concept,	18/3/19	18/3/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
16	Different loading schemes: Relocating loader	19/3/19	22/3/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
17	Direct Linking Loader,	25/3/19	22/3/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
18	Dynamic linking and loading.	26/3/19	27/3/19	Class Room Teaching, Lab experiment, Self Learning Online Resources
19	University Paper solution	1/4/19	1/4/19	Class Room Teaching,
20	University Paper solution	2/4/19	2/4/19	Class Room Teaching,