### FR. Conceicao Rodrigues College Of Engineering

### Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering B.E. (Computer) (semester VII)

### (2019-2020)

### **Course Outcomes & Assessment Plan**

Subject: Digital Signal and Image Processing (Course Code CSC-701)

Credits-5

### Syllabus:

#### 1. Discrete-Time Signal and Discrete-Time System

#### 1.1 Discrete-Time Signal and Discrete-Time System

Introduction to Digital Signal Processing, Sampling and Reconstruction, Standard DT Signals, Concept of Digital Frequency, Representation of DT signal using Standard DT Signals, Signal Manipulations (shifting, reversal, scaling, addition, multiplication).

**1.2**. Classification of Discrete-Time Signals, Classification of Discrete Systems

**1.3** Linear Convolution formulation for 1-D and 2-D signal (without mathematical proof), Circular Convolution (without mathematical proof), Linear convolution using Circular Convolution. Auto and Cross Correlation formula evaluation, LTI system, Concept of Impulse Response and Step Response, Output of DT system using Time Domain Linear Convolution

#### 2. Discrete Fourier Transform

2.1 Introduction to DTFT, DFT, Relation between DFT and DTFT, IDFT

**2.2** Properties of DFT without mathematical proof (Scaling and Linearity, Periodicity, Time Shift and Frequency Shift, Time Reversal, Convolution Property and Parsevals' Energy Theorem). DFT computation using DFT properties.

**2.3** Transfer function of DT System in frequency domain using DFT. Linear and Circular Convolution using DFT, Convolution of long sequences, Introduction to 2-D DFT

### 3. Fast Fourier Transform

3.1 Need of FFT, Radix-2 DIT-FFT algorithm,

**3.2** DIT-FFT Flow graph for N=4 and 8, Inverse FFT algorithm.

3.3. Spectral Analysis using FFT

### 4. Digital Image Fundamentals

4.1 Introduction to Digital Image, Digital Image Processing System, Sampling and Quantization

#### 4.2 Representation of Digital Image, Connectivity

**4.3** Image File Formats: BMP, TIFF and JPEG.

#### 5. Image Enhancement in Spatial domain

- 5.1 Gray Level Transformations, Zero Memory Point Operations,
- **5.2** Histogram Processing, Histogram equalization.

**5.3** Neighborhood Processing, Spatial Filtering, Smoothing and Sharpening Filters, Median Filter.

#### 6. Image Segmentation

6.1 Segmentation based on Discontinuities (point, Line, Edge)

6.2 Image Edge detection using Robert, Sobel, Previtt masks, Image Edge detection using Laplacian Mask.

#### <u>Text Books</u>

- 1. John G. Proakis, Dimitris and G.Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications' 4th Edition 2007, Pearson Education.
- 2. Anand Kumar, Digital Signal Processing', PHI Learning Pvt. Ltd. 2013.
- 3. Rafel C. Gonzalez and Richard E. Woods, Digital Image Processing', Pearson Education Asia, 3<sup>rd</sup> Edition, 2009,
- 4. S. Sridhar, Digital Image Processing', Oxford University Press, Second Edition, 2012.

### **Reference Books**

- 1. Sanjit Mitra, \_Digital Signal Processing: A Computer Based Approach', TataMcGraw Hill, 3rd Edition.
- 2. S. Salivahanan, A. Vallavaraj, and C. Gnanapriya, Digital Signal Processing' Tata McGraw Hill Publication 1st Edition (2010).
- 3. S. Jayaraman, E. Esakkirajan and T. Veerkumar, Digital Image Processing' TataMcGraw Hill Education Private Ltd, 2009.
- 4. Anil K. Jain, Fundamentals and Digital Image Processing', Prentice Hall of India Private Ltd, 3<sup>rd</sup> Edition.

ON-LINE COURSE - MATERIAL-REFERRED

MIT-OPEN-COURSEWARE

https://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011/

IMPERIAL COLLEGE -LONDON

http://www.commsp.ee.ic.ac.uk/~agc/course4.htm

### UNIVESCITY OF TEXAS

http://signal.ece.utexas.edu/~arslan/courses/dsp/index.html

TUTORIAL-POINT

https://www.tutorialspoint.com/digital\_signal\_processing/

### **Course Outcomes:**

Upon completion of this course students will be able to:

| CO. No   | Course Outcome                                                                                                                               | Blooms Taxonomy |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|          |                                                                                                                                              | Level           |
| CSC701.1 | To understand the fundamental concepts of digital signal processing and Image processing.<br>(Demonstrate understanding of discrete signals) | B2-Understand   |
| CSC701.2 | To explore DFT for 1-D and 2-D signal and FFT for 1-D signal                                                                                 | B4- Analyze     |
|          | (Characterizing the system)                                                                                                                  |                 |
| CSC701.3 | To apply processing techniques on 1-D and Image signals.                                                                                     | B2-Understand   |
|          | (Understand the concept of converting a discrete signal                                                                                      |                 |
|          | from time domain to frequency domain)                                                                                                        |                 |
| CSC701.4 | To apply digital image processing techniques for edge                                                                                        | B3- Application |
|          | detection (Apply the knowledge of signal processing to                                                                                       |                 |
|          | develop the small application)                                                                                                               |                 |

### Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

|          | PO1   | PO2   | PO3   | PO4    | PO5     | PO6   | PO7   | PO8   | PO9   | PO10    | PO11 | PO12  |
|----------|-------|-------|-------|--------|---------|-------|-------|-------|-------|---------|------|-------|
|          | (Engg | (Ana) | (De   | (inve  | (tools) | (engg | (Env) | (Eth) | (ind  | (comm.) | (PM) | (life |
|          | Know) |       | sign) | stiga) |         | Soci) |       |       | Team) |         |      | Long) |
| CSC701.1 | 3     | 1     |       |        |         |       |       |       |       |         |      |       |
| CSC701.2 | 3     | 3     |       |        |         |       |       |       |       |         |      |       |
| CSC701.3 | 3     | 1     |       |        |         |       |       |       |       |         |      |       |
| CSC701.4 | 3     | 3     | 3     |        | 1       |       |       |       | 3     |         |      |       |
|          |       |       |       |        |         |       |       |       |       |         |      |       |
| Course   | 3     | 2     | 3     |        | 1       |       |       |       | 3     |         |      |       |
| To PO    |       |       |       |        |         |       |       |       |       |         |      |       |

| СО            | PSO1 | PSO2 |
|---------------|------|------|
| CSC701.1      | 3    |      |
| CSC701.2      | 3    |      |
| CSC701.3      | 3    |      |
| CSC701.4      | 3    | 3    |
|               |      |      |
| Course to PSO | 3    | 3    |

### **Justification**

PO1: This subject all COs are mapped to PO1 because engineering graduates will be able to apply the knowledge Digital Signal Processing fundamentals to solve engineering problems

PO2 CSC 701.1 and CSC 701.2 are mapped to PO2 because students analyze the different operations of Discrete time signals and categories Discrete time system.

CSC 701.3 is mapped to PO2 because students are analyze the flow graphs

CSC 701.4 is mapped to PO2 because student perform review of literature of real world problem to develop an application of Signal processing

PO3: CSC 701.4 is mapped to PO3 because students design an application of signal processing

PO5: CSC 701.4 is mapped to PO5 because the students use the tools like scilab and matlab to implement application of signal processing

PO9 CSC 701.4 is mapped to this PO9 because the students work in a team to develop the mini project PSO1: All COs are mapped to PSO1 because the graduates will be able to apply fundamental knowledge of digital signal processing to solve the real world problems.

PSO2: CO701.4 is mapped to this PSO2 because students design and implement the system to meet specific requirement.

### CO Assessment Tools:

<u>CO1 (CSC701.1) -</u> To understand the fundamental concepts of digital signal processing and Image processing. (Demonstrate understanding of discrete signals)

CSC701.1:Direct Methods(80%): Test 1 quiz Lab Module Test UniExamTh<br/>CO1dm = 0.2T1 + 0.1Q +0.1ModuleTest+0.3L+ 0.3UTh<br/>InDirect Methods(20%): Course exit survey

CO1idm

CSC701.1 = 0.8\*CO1dm + 0.2\* CO1idm

Target level: 2.20

**CO2 (CSC701.2)** - To explore DFT for 1-D and 2-D signal and FFT for 1-D signal (Characterizing the system)

CSC701.2:Direct Methods(80%): Test 1 quiz Lab Module Test UniExamTh<br/>CO1dm = 0.2T1 + 0.2 A+0.1Q +0.1MT+ 0.4UTh<br/>InDirect Methods(20%): Course exit survey<br/>CO1idm<br/>CSC701.2 = 0.8\*CO1dm + 0.2\* CO1idm

Target level: 2.20

**CO3 (CSC701.3)** - To apply processing techniques on 1-D and Image signals. (Understand the concept of converting a discrete signal from time domain to frequency domain)

CSC701.3:Direct Methods(80%): Test2 Assignments Lab UniExamTh<br/>CO3dm = 0.25Test2+0.15A + 0.3L + 0.3UTh<br/>InDirect Methods(20%): Course exit survey<br/>CO3idm<br/>CSC701.3 = 0.8\*CO3dm + 0.2\* CO3idm

Target level: 2.20

**CO4 (CSC701.4)** – To apply digital image processing techniques for edge detection (Apply the knowledge of signal processing to develop an small application)

<u>CSC701.4:</u> Direct Methods(80%): MiniProject UniExamTh CO4dm = 0.8MP + 0.2Report InDirect Methods(20%): Course exit survey *CO4idm* <u>CSC701.4 = 0.8\*CO4dm + 0.2\* CO4idm</u>

Target level: 2.20

### List of Experiments and Plan

| Sr. No | Title                       | Mapped to CO | Planned Week |
|--------|-----------------------------|--------------|--------------|
| 1      | Sampling and reconstruction | CO1          | Week1        |

| 2  | Discrete Correlation                             | CO1 | Week2 |
|----|--------------------------------------------------|-----|-------|
| 3  | Discrete Convolution                             | CO2 | Week3 |
| 4  | Discrete Fourier Transform                       | CO2 | Week4 |
| 5  | Fast Fourier Transform                           | CO3 | Week5 |
| 6  | Implementation of Image negative, Gray level     | CO3 | Week6 |
|    | Slicing and Thresholding                         |     |       |
| 7  | Implementation of Contrast Stretching ,Dynamic   | CO4 | Week7 |
|    | range compression & Bit plane Slicing            |     |       |
| 8  | Implementation of Histogram Processing           | CO4 | Week8 |
| 9  | Implementation of Image smoothing/ Image         |     |       |
|    | sharpening                                       |     |       |
| 10 | Implementation of Edge detection using Sobel and |     |       |
|    | Previtt masks                                    |     |       |

# Curriculum Gap and Content Beyond Syllabus:

In order understand current applications, trends and new directions in DSP following topics will be covered

| Sr.No. | Curriculum gap contents      | Action Plan     | Mapped to PO              |
|--------|------------------------------|-----------------|---------------------------|
| 1      | Open source Tool for Speech  | Online resource | Po5, PO12 (Life long      |
|        | Processing                   |                 | learning)                 |
| 2.     | Role of DSP in Mobile phones | Power Point     | PO12 (Life long learning) |
|        |                              | Presentation    |                           |

# **Rubrics for the Assignments :**

| Indicator           | Poor                                                       | Average                                                                                          | Good                                                            | Excellent                                                             |
|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|
| Timeline<br>(2)     | NA                                                         | Late (1)                                                                                         | NA                                                              | on time<br>(2)                                                        |
| Organization<br>(2) | readability very<br>poor and not<br>structured (0.5)       | Poor readability and<br>somewhat structured<br>(1)                                               | Readable with<br>one or two<br>mistakes and<br>structured (1.5) | Very well<br>written and<br>structured<br>without any<br>mistakes (2) |
| Solution<br>(4)     | Partially correct<br>Solution with<br>minor<br>mistakes(1) | Correct solution but<br>some of the<br>specifications or steps<br>in solution are missing<br>(2) | Correct and<br>detailed<br>solution (3)                         | Correct and<br>most detailed<br>solution (4)                          |

| Depth and<br>breadth<br>discussion (2) | No evidence,<br>superficial<br>at most (0.5) | Minor points/ missing<br>information and<br>minimal discussion (1) | Discussion<br>centers on some<br>of the points<br>covering<br>adequately (1.5) | Information is<br>presented in<br>detail<br>depth and is<br>accurate (2) |
|----------------------------------------|----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|----------------------------------------|----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|

#### **Rubrics for the Lab Experiments:**

| Sr.<br>No | Performance Indicator                                                                       | Excellent        | Good                     | Below<br>Average        | Total<br>Score |
|-----------|---------------------------------------------------------------------------------------------|------------------|--------------------------|-------------------------|----------------|
| 1         | On time Completion & Submission (01)                                                        | 01 (On<br>Time ) | NA                       | 00 (Not on<br>Time)     |                |
| 2         | Logic/Theory<br>understanding(02)                                                           | 02(Correct)      | NA                       | 01 (Tried)              |                |
| 3         | Coding Standards (03):<br>Comments/indention/Namin<br>g<br>conventions<br>Output/Test Cases | 03(All<br>used)  | 02 (Partial)             | 01 (rarely<br>followed) |                |
| 4         | Post Lab Assignment (04)                                                                    | 04(done<br>well) | 3 (Partially<br>Correct) | 2(submitte<br>d)        |                |

### <u>Unit Test-I</u>

### **CSC701.1**: Manipulate discrete time signal (Demonstrate understanding of discrete signals)

CSC701.2: Analyze discrete time system in time domain (Characterizing the system )

| Q.1 | Convert analog signal , $\sim (r) = 10e^{-5000ru}(r)$<br>into digital signal x(n), when sampling period is 125 microsecond, also<br>plot sample values                                                                                            | [CSC701.1] | 5M |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
| Q.2 | Determine any two new signals<br>(a) $y1(n) = w(n) + x(n)$<br>(b) $y2(n) = 3 + x(n)$<br>(c) $y3(n) = w(n)x(n)$<br>(d) $y4(n) = 3/2 x(n)$<br>(e) $y5(n) = X(-3-x)$<br>from the following two signals of length 5 defined for<br>$-1 \le n \le 3$ : | [CSC701.1] | 5M |

|    | $w(n) = \{1.5, 2_{\uparrow}, 3.4, -5, 10\}$ $x(n) = \{2.2, 3_{\uparrow}, 2, 4.2, 8\}$                                                                                                     |            |    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
| Q3 | Obtain the linear convolution of the following sequences by Graphical method<br>x(n) = {1,2,1,2 } and h(n) = {1,1,1}                                                                      | [CSC701.2] | 5M |
| Q4 | Determine the any two system properties (linear/non-linear, shift variant/invariant, causal/noncausal, static/ dynamic, stable/unstable) for the input-output relationships, y(n) = nx(n) | [CSC701.2] | 5M |

### <u>Unit Test-II</u>

**CSC-701.01** - To apply processing techniques on 1-D and Image signals. (Understand the concept of converting a discrete signal from time domain to frequency domain)

**CSC-701.01** - To apply digital image processing techniques for edge detection (Apply the knowledge of signal processing to develop an small application)

| Q No 1. How Spatial Filtering Methods works in image processing?          |                                   |
|---------------------------------------------------------------------------|-----------------------------------|
| (CO - CSC-701.01)                                                         | (10 Marks)                        |
| Q No 2. Discuss how the derivative filters are used in Digital Image Enha | ncement? (CO - CSC-               |
| 701.02)                                                                   | (5 Marks)                         |
| OR                                                                        |                                   |
| Q No 2. Explain Gray level transformation functions with example for co   | ntrast enhancement in image (CO - |
| CSC-701.02)                                                               | (5 Marks)                         |
| Q No 3. Explain how histogram is useful in image enhancement?             | (CO - CSC-                        |
| 701.02)                                                                   | (5 Marks)                         |

Q No 3. Explain about Prewitt and Sobel edge Detectors.(CO - CSC-701.02)(5 Marks)

# Assignments :

[First Assignment ]Date: 20-08-19 Submission Date :26-08-19

**CSC701.1**: To understand the fundamental concepts of digital signal and Image processing.

**CSC701.2** :To explore DFT for 1-D and 2-D signal and FFT for 1-D signal

1) Consider the sequence  $x[n] = \{3,7\}$  and  $h[n]=\{2,5,4\}$  Find y(n)

- 2) Determine the 4 part DFT and sketch the magnitude of DFT  $.x(n) = \{1,1,0,0\}$
- 3) Find the value of  $x(n) = \cos(0.25 \mathbb{D}n)$  for n = 0, 1, 2, 3 ... Compute the DFT of x(n) using FFT flow graph
- 4) Find the IDFT of X[K] ={10,-2+2j,-2,-2-2j) using IFFT
- 5) Perform Circular correlation of the following sequence  $x_1[n] = \{1,2,5,6\} \& x_2[n] = \{3,4,7,9\}$

#### [Second Assignment] Date: 01-10-19 Submission Date: 10-10-19

**CSC701.3:** To apply processing techniques on 1-D and Image signals.

**CSC701.3:** To apply digital image processing techniques for edge detection

- Q 1. Discuss the importance of a kernel/ mask/window used in spatial filtering for digital image enhancement.
- Q 2. What is meant by image enhancement by point processing? Discuss any two methods.
- Q 3. Discuss how the derivative filters are used in Image Enhancement?
- Q 4. Explain Gray level transformation functions for contrast enhancement
- Q 5. Explain about Region Splitting and Merging with an example
- Q 6. Perform the Histogram Stretching of below image with 8 intensity levels.

OR

| Grey Level    | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7 |
|---------------|---|---|----|----|----|----|----|---|
| No. of Pixels | 0 | 0 | 50 | 60 | 50 | 20 | 10 | 0 |

## DSIP Course Exit Survey/ Acc. Year 19-20 /Sem VII



### FR. Conceicao Rodrigues College Of Engineering

### Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering B.E. (Computer) (semester VII)

### (2019-2020)

### Modes of Content Delivery:

| i                                                       | Clas | s Room Teaching                                                                          | V       | Self Learning Online Resources |           |             | Ix                               | Industry Visit         |
|---------------------------------------------------------|------|------------------------------------------------------------------------------------------|---------|--------------------------------|-----------|-------------|----------------------------------|------------------------|
| ii                                                      | Tut  | orial                                                                                    | Vi      | Slides                         |           |             | Х                                | Group Discussion       |
| iii                                                     | Ren  | nedial Coaching                                                                          | Vii     | Simulations/Demonstrations     |           |             | xi                               | Seminar                |
| iv                                                      | Lab  | Experiment                                                                               | Viii    | Expert Lecture                 |           |             | xii                              | Case Study             |
| Leo                                                     | :t.  | Portion to be cov                                                                        | vered   |                                | Planned   | Actual date |                                  | Content                |
| No                                                      | •    |                                                                                          |         |                                | date      |             |                                  | Delivery               |
|                                                         |      |                                                                                          |         |                                |           |             |                                  | Method/Learn           |
|                                                         |      |                                                                                          |         |                                |           |             |                                  | ing Activities         |
| Module 1: Discrete-Time Signal and Discrete-Time System |      |                                                                                          |         |                                |           |             |                                  |                        |
| 1.                                                      |      | Introduction to Dig<br>Processing,                                                       | ital Si | gnal                           | 2/7/2019  | 3/7/2019    | )                                | Class Room<br>Teaching |
| 2                                                       |      | Sampling and<br>Reconstruction,                                                          |         | 3/7/2019                       | 4/7/2019  |             | Class Room<br>Teaching           |                        |
| 3                                                       |      | Standard DT Signals, Concept of Digital Frequency,                                       |         |                                | 4/7/2019  | 9/7/2019    | )                                | Class Room<br>Teaching |
| 4                                                       |      | Representation of DT signal using Standard DT Signals,                                   |         |                                | 5/7/2019  | 10/7/201    | .9                               | Class Room<br>Teaching |
| 5                                                       |      | Signal Manipulations (shifting,<br>reversal, scaling, addition,<br>multiplication).      |         |                                | 9/7/2019  | 11/7/201    | .9                               | Class Room<br>Teaching |
| 6                                                       |      | Signal Manipulations (shifting,<br>reversal, scaling, addition,<br>multiplication).      |         | 10/7/2019                      | 12/7/201  | .9          | Class Room<br>Teaching           |                        |
| 7                                                       |      | Classification of Discrete-Time Signals                                                  |         | 11/7/2019                      | 16/7/201  | .9          | Class Room<br>Teaching           |                        |
| 8                                                       |      | Classification of Discrete-Time Signals,<br>Classification of Discrete-<br>Systems       |         | 12/7/2019                      | 17/7/2019 |             | Class Room<br>Teaching           |                        |
| 9                                                       |      | Classification of Discrete-<br>Systems                                                   |         |                                | 16/7/2019 | 18/7/201    | L8/7/2019 Class Room<br>Teaching |                        |
| 10                                                      |      | Linear Convolution formulation for 1-D<br>and 2-D signal (without<br>mathematical proof) |         | 17/7/2019                      | 19/7/201  | .9          | Class Room<br>Teaching           |                        |

| 11     | Circular Convolution (without       | 18/7/2019 | 23/7/2019 | Class Room     |
|--------|-------------------------------------|-----------|-----------|----------------|
|        | mathematical                        |           |           | Teaching, Lab  |
|        | proof)                              |           |           | Experiment     |
| 12     | Linear convolution using Circular   | 19/7/2019 | 24/7/2019 | Class Room     |
|        | Convolution                         |           |           | Teaching , Lab |
|        |                                     |           |           | Experiment     |
| 13     | Auto and Cross Correlation formula  | 23/7/2019 | 25/7/2019 |                |
|        | evaluation, LTI system              |           |           |                |
|        |                                     |           |           |                |
| 14     | Concept of                          | 24/7/2019 | 26/7/2019 |                |
|        | Impulse Response and Step Response, |           |           |                |
|        | Output of DT system using           |           |           |                |
|        | Time Domain Linear Convolution      |           |           |                |
|        |                                     |           |           |                |
| Module | 2: Discrete Fourier Transform       |           |           |                |
| 15     | Introduction to DTFT_DFT            | 25/7/2010 | 20/7/2010 | Class Boom     |
| 15     | Introduction to DTFT, DFT           | 23/7/2019 | 50/7/2019 |                |
| 16     | Relation between DET and DTET       | 26/7/2019 | 31/7/2019 | Class Room     |
|        | IDET                                | 20,7,2013 | 01,7,2010 | Teaching       |
| 18     | Properties of DET without           | 30/7/2019 | 1/8/2019  | Class Room     |
| 10     | mathematical proof - Scaling and    | 30/7/2015 | 1/0/2015  | Teaching       |
|        | Linearity                           |           |           |                |
| 18     | Broportion of DET without           | 31/7/2019 | 2/8/2019  | Class Boom     |
| 10     | mathematical proof Pariodicity      | 51/7/2015 | 2/0/2015  | Teaching       |
|        | Time Shift and Frequency Shift      |           |           |                |
| 10     | Properties of DET without           | 1/8/2019  | 6/8/2019  | Class Boom     |
| 15     | mathematical proof - Time           | 1/0/2015  | 0,0,2015  | Teaching       |
|        | Reversal Convolution Property and   |           |           |                |
|        | Parsovals' Energy Theorem           |           |           |                |
| 20     | DET computation using DET           | 2/8/2019  | 7/8/2019  | Class Boom     |
| 20     | properties                          | 2/0/2015  | //0/2015  | Teaching       |
| 21     | Transfer function of DT System in   | 6/8/2010  | 8/8/2010  |                |
| 21     | frequency domain using DET          | 0/8/2019  | 0/0/2019  |                |
|        | Linear and Circular Convolution     |           |           |                |
|        | using DET                           |           |           |                |
| 22     | Convolution of long                 | 7/8/2010  | 8/8/2010  |                |
| ~~~    | convolution of long                 | //8/2019  | 0/0/2019  |                |
|        | sequences, introduction to 2-D DFT  |           |           |                |
| Module | 3: Fast Fourier Transform           |           |           |                |
| mouule |                                     |           |           |                |
| 23     | Need of FFT, Radix-2 DIT-FFT        | 8/8/2019  | 9/8/2019  | Class Room     |
|        | algorithm                           |           |           | Teaching       |
| 24     | Need of FFT, Radix-2 DIT-FFT        | 9/8/2019  | 20/8/2019 | Class Room     |
|        | algorithm                           |           |           | Teaching       |
| 25     | DIT-FFT Flow graph for N=4 and 8    | 13/8/2019 | 21/8/2019 | Class Room     |
|        |                                     | ,,        |           | Teaching       |
| 26     | Inverse FFT algorithm               | 14/8/2019 | 22/8/2019 | Class Room     |
|        | -                                   |           |           | Teaching       |

| 27                                            | Spectral Analysis using FFT                      | 16/8/2019 | 23/8/2019 | Class Room<br>Teaching                               |  |  |  |  |
|-----------------------------------------------|--------------------------------------------------|-----------|-----------|------------------------------------------------------|--|--|--|--|
| 28                                            | Spectral Analysis using FFT                      | 20/8/2019 | 27/8/2019 | Class Room<br>Teaching                               |  |  |  |  |
| Module 4: Digital Image Fundamentals          |                                                  |           |           |                                                      |  |  |  |  |
| 29                                            | Introduction to Digital Image                    | 21/8/2019 | 28/8/2019 | Class Room<br>Teaching                               |  |  |  |  |
| 30                                            | Digital Image Processing System                  | 22/8/2019 | 29/8/2019 | Class Room<br>Teaching                               |  |  |  |  |
| 31                                            | Sampling and Quantization                        | 23/8/2019 | 29/8/2019 | Class Room<br>Teaching                               |  |  |  |  |
| 32                                            | Sampling and Quantization                        | 27/8/2019 | 30/8/2019 | Class Room<br>Teaching                               |  |  |  |  |
| 33                                            | Representation of Digital Image,<br>Connectivity | 28/8/2019 | 30/8/2019 | Class Room<br>Teaching                               |  |  |  |  |
| 34                                            | Representation of Digital Image,<br>Connectivity | 29/8/2019 | 3/9/2019  | Class Room<br>Teaching                               |  |  |  |  |
| 35                                            | Image File Formats: BMP, TIFF and JPEG           | 30/8/2019 | 4/9/2019  | Class Room<br>Teaching                               |  |  |  |  |
| 36                                            | Image File Formats: BMP, TIFF and JPEG           | 3/9/2019  | 5/9/2019  |                                                      |  |  |  |  |
| Module 5: Image Enhancement in Spatial domain |                                                  |           |           |                                                      |  |  |  |  |
| 37                                            | Gray Level Transformations                       | 4/9/2019  | 5/9/2019  | Class Room<br>Teaching                               |  |  |  |  |
| 38                                            | Zero Memory Point Operations                     | 5/9/2019  | 18/9/2019 | Class Room<br>Teaching                               |  |  |  |  |
| 39                                            | Histogram Processing                             | 6/9/2019  | 18/9/2019 | Class Room<br>Teaching                               |  |  |  |  |
| 40                                            | Histogram equalization                           | 11/9/2019 | 19/9/2019 | Class Room<br>Teaching, Slides                       |  |  |  |  |
| 41                                            | Neighborhood Processing                          | 12/9/2019 | 20/9/2019 | Class Room<br>Teaching,<br>Slides/online<br>recourse |  |  |  |  |
| 42                                            | Spatial Filtering                                | 13/9/2019 | 24/9/2019 | Class Room<br>Teaching, Slides                       |  |  |  |  |
| 43                                            | Spatial Filtering                                | 17/9/2019 | 24/9/2019 | Class Room<br>Teaching, Slides                       |  |  |  |  |
| 44                                            | Smoothing and Sharpening Filters                 | 18/9/2019 | 25/9/2019 | Case Study , Slides                                  |  |  |  |  |
| 45                                            | Smoothing and Sharpening Filters                 | 19/9/2019 | 26/9/2019 | Case Study ,<br>Slides                               |  |  |  |  |
| 46                                            | Median Filter                                    | 20/9/2019 | 26/9/2019 | Class Room<br>Teaching                               |  |  |  |  |

| Module 6: Image Segmentation |                                              |           |           |                  |  |  |  |
|------------------------------|----------------------------------------------|-----------|-----------|------------------|--|--|--|
| 47                           | Segmentation based on                        | 24/9/2019 | 29/9/2019 | Class Room       |  |  |  |
|                              | Discontinuities (point, Line, Edge),         |           |           | Teaching, Slides |  |  |  |
| 48                           | Segmentation based on                        | 25/9/2019 | 27/9/2019 | Class Room       |  |  |  |
|                              | Discontinuities (point, Line, Edge),         |           |           | Teaching         |  |  |  |
| 49                           | Image Edge detection using Robert            | 26/9/2019 | 30/9/2019 |                  |  |  |  |
| 50                           | Sobel, Previtt masks                         | 27/9/2019 | 30/9/2019 |                  |  |  |  |
| 51                           | Image Edge detection using<br>Laplacian Mask | 1/10/2019 | 1/10/2019 |                  |  |  |  |
| 52                           | Image Edge detection using<br>Laplacian Mask | 3/10/2019 | 3/10/2019 |                  |  |  |  |