Fr. Conceicao Rodrigues College Of Engineering

Fr. Agnel Ashram, Bandra

Department of Computer Engineering

Course Outcomes & Assessment Plan

B.E. (Computer) (semester VIII) Subject: Distributed Systems Subject Code: CSC802 Academic Term: Jan – May 2020 Teacher:Merly Thomas Puthiyadom

Syllabus:

Module	Hrs	Topics	
No.			
1.0	6	Introduction to Distributed Systems 1.1 Characterization of Distributed Systems: Issues, Goals, and Types ofdistributed systems, Distributed System Models, Hardware concepts,Software Concept. 1.2 Middleware: Models of Middleware, Services offered by middleware,Client Server model.	
2.0	10	Communication	
	10	 2.1 Layered Protocols, Interprocess communication (IPC): MPI, RemoteProcedure Call (RPC), Remote Object Invocation, Remote MethodInvocation (RMI) 2.2 Message Oriented Communication, Stream Oriented Communication, Group Communication. 	15%
3.0	10	Synchronization	
		 3.1 Clock Synchronization, Logical Clocks, Election Algorithms, Mutual Exclusion, Distributed Mutual Exclusion-Classification of mutualExclusion Algorithm, Requirements of Mutual Exclusion Algorithms, Performance measure. 3.2 Non Token based Algorithms: Lamport Algorithm, Ricart-Agrawala's Algorithm, Maekawa's Algorithm 3.3 Token Based Algorithms: Suzuki-Kasami's Broadcast Algorithms, Singhal's Heuristics Algorithm, Raymond's Tree Based Algorithm, Comparative Performance Analysis. 	15%
4.0	6	Resource and Process Management	
		 4.1 Desirable Features of global Scheduling algorithm, Task assignment approach, Load balancing approach, load sharing approach, 4.2 Introduction to process management, process migration, Threads, Virtualization, Clients, Servers, Code Migration 	15%
5.0	8	Consistency, Replication and Fault Tolerance	
		 5.1 Introduction to replication and consistency, Data-Centric and Client-Centric Consistency Models, Replica Management 5.2 Fault Tolerance: Introduction, Process resilience, Reliable client-server and group communication, Recovery 	15%
6.0	12	Distributed File Systems and Name Services	1.5 70
	12	Introduction, good features of DFS, File models, File Accessing models, File- Caching Schemes, File Replication, Network File System(NFS), Andrew File System(AFS), Hadoop Distributed File System and Map Reduce. Introduction to Name services and Domain Name System, Directory Services, Case Study: The Global Name Service, The X.500 Directory	
		Service	15%
	52	Total	100

Course Learning Objectives:

The price/performance ratios offered by distribution in computing, and the concept of sharing resources globally, along with the steady improvements in networking technologies have made Distributed systems very attractive and highly popular. The fundamental concepts and design principles discussed in the course are applicable to a variety of systems especially WWW.

This course aims to:

- 1. To provide students with contemporary knowledge in distributed systems
- 2. To equip students with skills to analyze and design distributed applications.

3. To provide master skills to measure the performance of distributed synchronization algorithms

Prerequisites:Operating Systems

Computer Networks

Course Outcomes:

Upon succe	essful com	oletion of thi	s course	students will	be able to:
- r	June I	· · · · · · · · · · · · · · · · · · ·			

CSC802.1	Demonstrate knowledge of the basic elements and concepts related to distributed systems & technologies (B2 – Comprehension)
CSC802.2	Illustrate the middleware technologies that support distributed applications such as RPC, RMI and Object based middleware.(B3 – Application)
CSC802.3	Analyze the various techniques used for clock synchronization and mutual exclusion(B4 – Analysis)
CSC802.4	Demonstrate the concepts of Resource and Process management, and Fault Tolerance techniques(B3 – Application)
CSC802.5	Assess the significance of Consistency and Replication Management models(B4 – Analysis)
CSC802.6	Apply the knowledge of Distributed File System to analyze various file systems like NFS, AFS and the experience in building large-scale distributed applications. (B4 – Analysis)

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2									2
CO2	3		2	2	2							
СОЗ	3	2	2	2								
CO4	3		2	2								
CO5	3	3	2									
CO6	3	3		2								
Course	3	3	2	3	3							2

Justification of CO to PO mapping

CSC802.1		Demonstrate knowledge of the basic elements and concepts related to distributed systems & technologies				
	PO1	As an Engineering solution to some complex computational problems which is efficient and cost effective				
	PO3	esign of System components to meet the specific needs				
	PO12	Gain ability to be prepared for life-long learning in the broadest context of technological change				
	Tools	Lectures, Presentations, Practical Sessions, Assignment I & IV				
	Target	2.5				
CSC802.2		Illustrate the middleware technologies that support distributed applications such as RPC, RMI and Object based middleware.				
	PO1	Specialized solutions to some complex computational problems				
	PO3	Design of System components or mini models to meet the specific needs				

	PO4	Implementation of RPC, RMI and MPI
	PO5	Apply appropriate techniques and tools
	Tools	Lectures, Presentations, Practical Sessions
	Target	2.5
CSC802.3	Analyze t exclusion	he various techniques used for clock synchronization and mutual
	PO1	An Engineering solution to some complex computational problems
	PO2	Formulate solutions considering the several design issues
	PO3	Design solutions by developing components and processes
	PO4	Experimental approach to design solutions and valid conclusions
	Tools	Lectures, Presentations, Practical Sessions, Seminars
	Target	2.5
CSC802.4	Demonstr tolerant so	rate the concepts of Resource and Process management and Fault plutions
	PO1	Specialized solutions to some complex computational problems
	PO3	Design of System components or mini models to meet the specific needs
	PO4	Apply appropriate techniques and tools for solutions
	Tools	Lectures, Presentations, Practical Sessions, Seminars
	Target	2.5
CSC802.5	Assess the	e significance of Consistency and Replication Management
	PO1	An Engineering solution to some complex computational problems
	PO2	Formulate solutions considering the several design issues
	PO3	Design solutions by developing components and processes

	Tools	Lectures, Presentations, Practical Sessions, Seminars				
	Target	2.5				
CSC802.6	systems li	Apply the knowledge of Distributed File System to analyze various file systems like NFS, AFS and the experience in building large-scale distributed applications				
	PO1	An Engineering solution to some complex computational problems				
	PO2	Formulate solutions considering the several design issues				
	PO3	Design solutions by developing components and processes				
	Tools	Lectures, Presentations, Practical Sessions, Seminars				
	Target	2.5				

Program Specific Outcomes (PSOs)

Student will have an ability to

- 1. Apply fundamental computer science knowledge to address real world challenges/opportunities.
- **2.** Design and implement computing systems of varying complexity in multidisciplinary scenarios that meet specified requirements with appropriate consideration to architectural, algorithmic and security aspects.

Modes of delivery

Most of the time is spent on teaching the principles of Distributed Computations.

Modes of Delivery	Brief description of content delivered	Attained COs	Attained POs
Class room lectures	All modules	ALL	PO1, PO2, PO3,
and Presentations	Airmodules		PO4, PO5, PO12
Lab Experiments	Modules 2-6	CO2, CO3, CO6	PO1, PO2, PO3,
Lab Experiments		02,003,000	PO4, PO5
Students presentations	Module 3,6	CO5	PO1, PO10
Case Study	DCE, CORBA, HADOOP, NFS	CO6	

CO Assessment Tools:

Course Outcome	Asse	ssmen								
	Direc	t Me	Indirect Method (20%)							
	Unit Tests Assig			nments			SEE	Laboratory Practical	Course exit survey	
	1	2	1	2	3	4		Flactical	,	
CO1	30%		30%				40%		100%	
CO2	20%	20%		20%			40%		100%	
CO3								100%	100%	
CO4		30%			30%		40%		100%	
CO5		30%				30%	40%		100%	

Assignments:

Four assignments will be given on completion the modules as follows:

Assignment No.1	On completion of the 1 st module
Assignment No.2	On completion of 2 nd and 3 rd module
Assignment No.3	On completion of the 4 th module
Assignment No.4	On completion of 5 th and 6 th module

Rubrics for Assignment Grading:

Indicator				
Timeline (2)		More than one	One sessions late	On time (2)
		session late (0)	(1)	
Level of content (4)	Just Managed (1)	Major points are addressed minimally (2)	Only major topics are covered(3)	Most major and some minor criteria are included. Information is Adequate (4)
Reading and	Just Managed (1)	Superficial	Understood	Understood
Understanding		at most (2)	concepts but no	concepts and
(4)			related topics (3)	related topics (4)

Laboratory Experiments

Total ten number of laboratory experiments will be performed in the practical session as per the time schedule in the time table.

List of Experiments:

Sr. No	Title of Experiments
1.	Client/server using RPC/RMI.
2.	Implementation of multi tread application
3.	Inter-process communication
4.	Group Communication
5.	Load Balancing Algorithm.
6.	Name Resolution protocol.
7.	Election Algorithm.
8.	Clock Synchronization algorithms.
9.	Mutual Exclusion Algorithm.
10.	Deadlock management in Distributed systems
11.	Distributed File System
12.	CORBA (Demo)

Rubrics for Laboratory Experiment Grading:

Indicator				
Timeline (3)	More than two sessions late (0)	Two sessions late (1)	One sessions late (2)	On time (3)
Knowledge (4)	Not adequate (1)	Superficial at most (2)	Understood concepts but no related topics (3)	Understood concepts and working (4)
skill (3)	Just Managed (1)	Just Managed (1)	Few steps are not appropriate (2)	Structured and optimum performance (3)

	Lecture Plan					
Class	BE (Computer Eng	BE (Computer Engineering) Semester VIII				
Academic term	Jan – May 2020					
Subject	Distributed Systems	Distributed Systems CSC 802				
Subject Code	CSC 802					
	CSL 802					
No of Students	78	78				
Periods (Hours) per week	Lecture	4 2				
	Practical					
	Tutorial					
Evaluation System		Hours	Marks			
	Theory examination	3	80			
	Internal Assessment	1+1	20			
	Practical Examination					
	Oral Examination		25			
	Term work		25			
	Total		150			
Time Table	Day	7	Time			
(Theory)	Tuesday	8.45 -	- 9.45 am			
	Wednesday	8.45 – 9.45 am				
	Thursday	9.45 – 10.45 am				
	Friday		1.30 – 2.30 pm			
	Tuesday	11 am – 1.00 pm (B Batch)				
(Practicals)	Tuesday	2.30 pm – 4.30 pm (C Batch)				
	Wednesday	11 am – 1.00 pm (D Batch)				
	Thursday	11 am – 1.00 pm (A Batch)				

Course Content and Lesson plan.	Distributed Computing

01	Lecture No.	Date		Торіс	Remarks(If
		Planned	Actual		any)
1.1	1	07/01/2020	07/01/2020	Characterization of Distributed Systems: Issues of distributed systems	
	2	08/01/2020	08/01/2020	Goals, and typesof distributed systems	
	3	09/01/2020	09/01/2020	Distributed System Models, Hardware concepts,	
1.2	4	14/01/2020	14/01/2020	Software Concept	
	5	15/01/2020	15/01/2020	Middleware: Models of Middleware	
	6	16/01/2020	16/01/2020	Services offered by middleware	
	7	16/01/2020		Client Server models	Student
Modu	<i>ule 2</i> : Com	nunication			Seminars
2.1	8	17/01/2020	17/01/2020	Layered Protocols, Interprocess communication (IPC)	
	9	21/01/2020	21/01/2020	Remote Procedure Call (RPC)	
	10	22/01/2020	22/01/2020	Remote Object Invocation, Remote Method Invocation (RMI)	
	11	23/01/2020	23/01/2020	MPI – Message Passing Interface	
	12	24/01/2020	23/01/2020	Message Types	
2.2	13	28/01/2020	28/01/2020	Message Oriented Communication	
	14	29/01/2020	29/01/2020	Stream Oriented Communication	
	15	30/01/2020	30/01/2020	Group Communication	
	16	31/01/2020	31/01/2020	Group Communication	

: Sync 18 19 20 21	chronization 05/02/2020 06/02/2020 07/02/2020 11/02/2020	05/02/2020 06/02/2020	Clock Synchronization, Logical Clocks Election Algorithms, Mutual Exclusion Distributed Mutual Exclusion- Classification of mutual Exclusion Algorithms	
19 20	06/02/2020 07/02/2020		Election Algorithms, Mutual Exclusion Distributed Mutual Exclusion- Classification of mutual Exclusion	
20	07/02/2020	06/02/2020	Distributed Mutual Exclusion- Classification of mutual Exclusion	
			Classification of mutual Exclusion	
21	11/02/2020			
	11,02,2020		Requirements of Mutual Exclusion Algorithms, Performance measure.	
22	12/02/2020		Non Token based Algorithms: Lamport Algorithm, Ricart-Agrawala's Algorithm, Maekawa's Algorithm	
23	13/02/2020		Non Token based Algorithms: Comparative Performance Analysis	Seminar
24			Token Based Algorithms: Suzuki- Kasami's Broadcast Algorithms,	
25	18/02/2020		Singhal's Heuristics Algorithm,Raymond's Tree Based Algorithm	
26	25/02/2020		Token Based Algorithms:Comparative Performance Analysis	Seminar
	23 24 25	23 13/02/2020 24	23 13/02/2020 24	Algorithm, Ricart-Agrawala's Algorithm, Maekawa's Algorithm2313/02/2020Non Token based Algorithms: Comparative Performance Analysis24Token Based Algorithms: Suzuki- Kasami's Broadcast Algorithms,2518/02/2020Singhal's Heuristics Algorithm,Raymond's Tree Based Algorithm2625/02/2020Token Based Algorithms:Comparative

Module 4: Resource and Process Management					
4.1	27	03/03/2020	Desirable Features of global Scheduling algorithm, Task assignment approach		
	28	04/03/2020	Load balancing approach		
	29	05/03/2020	Load sharing approach		
4.2	30	06/03/2020	Introduction to process management, process migration, ,		
	31	10/03/2020	Threads, Virtualization		

	32	11/03/2020	Clients, Servers, Code Migration	
Module	5: Con	sistency, Replication	and Fault Tolerance	I
	33	12/03/2020	Introduction to replication and consistency, Data-Centric	
			Consistency Models, Replica Management	
	34	13/03/2020	Client-Centric Consistency Models, Replica Management	
	35	18/03/2020	Fault Tolerance: Introduction, Process resilience,	
	36	20/03/2020	Reliable client-server and group communication, Recovery	
Module	6: Dist	ributed File Systems	and Name Services	1
	37	24/03/2020	Introduction, good features of DFS,	
	38	25/03/2020	File models, File Accessing models	
	39	26/03/2020	File-Caching Schemes, File Replication	
	40	27/03/2020	Network File System(NFS)	Case Study
	41	31/03/2020	Andrew File System(AFS),	
	42	01/04/2020	Hadoop Distributed File System and Map Reduce	Case Study
	43	02/04/2020	Introduction to Name services and Domain Name System, Directory Services	
	44	03/04/2020	The Global Name Service, The X.500 Directory Service	Case Study
				1
	46	01/04/2020	AFS	Seminar
	47	02/04/2020	Hadoop	Seminar
	48	03/04/2020	CORBA	Seminar