FR. Conceicao Rodrigues College Of Engineering Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 **Department of Production Engineering**

T.E. (Production) (semester V) (2019-2020)

Lecture Plan for CAM/CIM (Cad by Prof. Sudhakar)

Subject: CAD/CAM/CIM (PEC504)

Credits-04

Syllabus.

Objectives:

- 1. To familiarize the concepts of computer aided engineering for design & manufacturing.
- 2. To impart the knowledge on computer graphics used in engineering.
- 3. To familiarize the students with the concepts of computer aided manufacturing and its significance.
- 4. To familiarize the students with interfacing of drive systems with the machines.

Outcomes: Learner will be able to ...

- **1.** Use computer graphics in design.
- 2. Identify proper modeling techniques for geometric modeling.
- **3.** Develop expertise in computer-aided manufacturing.
- 4. Illustrate basic concepts of control systems.
- 5. Write the appropriate code for performing particular tasks in a CNC.
- 6. Solve real life engineering problems using FEA.

Module	Contents	Hrs.
01	 Computer Aided Design: 1.1 Introduction : Need and Utility of CAD systems in industry, Product Cycle, Definition of CAD tools based on their Constituents and Implementation in a design environment. 1.2 CAD Hardware : Types of systems, system considerations, I/O devices, Hardware Integration & Networking. 	04
02	Computer Graphics : Pixel plotting, Scan conversions of lines & circuits, 2D & 3D transformation, 2D Viewing and clipping. Parallel Projection. Elementary treatment of Hidden lines and surfaces. Cubic spines Bezier curves & B- spines, Animation and Color models.	10
03	Solid Modeling : Types of representation of solid models, interactive tools available with solid modeling software's. Introduction to surface modeling. CAD DATA Exchange : File Structure and format of IGES,STEP and DXF	05
04	Introduction : Elements of CAM system, Computer Numerical control of Machine Tools, Fundamental elements of CNC, Benefits of CNC, Computer control concepts, Data processing units & Binary calculation. Basics of control systems: Motion controller, Interpolation-Linear & Circular, Positioning & contouring control loops, Incremental & Absolute system, DNC & CNC systems and Adaptive control system. CNC Hardware Basics: CNC drives, Spindle design, Actuation and Feedback devices	10

05	CNC Programming : Introduction to CNC Lathe & Milling, Touch probe system, Tool length, nose radius & Diameter compensation, Turning & Machining centre programming, CNC part programming using ISO controllers, Canned cycles, Looping Jumping Subroutines Macros, Parametric programming, Computer aided part programming using APT and Post processing.	11
06	CIM : Computer applications in manufacturing, Automation and Integrated Production management systems. Automated Material handling systems, Conveyors, AVG, AS/RS, GT, FMS, Automated inspection procedure, Distributed Numerical control & Benefits of CIM and implementation & computer aided shop floor control system. Concept of "Ghost" factory. FEA: Introduction, Stress and Equilibrium, Boundary Condition, Strain – Displacement Relations, Stress Strain Relation, Potential Energy. One Dimensional Problem: Finite Element Modelling, Coordinate Potential Energy Approach, Galerkin Approach, Assembly of Global Stiffness Matrix, Properties of Stiffness Matrix, Finite Element Equations. Trusses: Introduction, 2D Trusses, Assembly of Global Stiffness Matrix.	10

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

Reference Books:

- 1. CAD/CAM by Groover and Zimmers
- 2. CAD Principles and Applications by Barr, Krimger and Lazaer
- 3. William M Neumann and Robert F.Sproul "*Principles of Computer Graphics*", Mc Graw Hill Book Co. Singapore, 1989.
- 4. Donald Hearn and M. Pauline Baker "*Computer Graphics*", Prentice Hall, Inc., 1992.
- 5. Foley, Wan Dam, Feiner and Hughes *Computer graphics principles & practices, Pearson Education 2003.*
- 6. Reddy, J.N, "An Introduction to the Finite element Method", McGraw Hill, 1985.
- 7. Rao, "Finite Element Method in Engineering", Pergammon Press, 1989.
- 8. CAD / CAM by P.N. Rao (Tata-Mcgraw- Hill) 2

- 9. *Mathematical and Procedural Elements for computer graphics* by Roger and Adams
- 10. Computer Graphics by Hearn and Baker (PHI)
- 11. A first course in FEM by daryl L.Logon(Cengage) 3
- 12. Concepts and applications of FEA by Cook, Malkus (Jhon-wiley)
- 13. Mastering CAD CAM by Ibarahim Zeid (Tata-Mcgraw-Hill) 4

1. CO Statements.

PEC504.1: Student will develop expertise in computer aided manufacturing.

PEC504.2: Student can demonstrate basic concepts of control system.

 $PEC504.3\colon$ Student can formulate code for performing particular task in CNC.

2. CO-PO-PSO Mapping.

CO# / PO#	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEC504.1	2	0	0	-	-	-	-	-	-	-	-	0
PEC504.2	2	0	0	-	-	-	-	-	-	-	-	0
PEC504.3	2	2	2	-	3	-	-	-	-	-	-	2

CO# / PSO#	PSO1	PSO2
PEC504.1	2	-
PEC504.2	2	-
PEC504.3	2	-

3. Curriculum Gap/Content beyond syllabus (if any).

4. CO Assessment tools.

	CO1	(0.6*UTest) +(0.4*Univ Exam)
Direct	CO2	(0.6*UTest) +(0.4*Univ Exam)
	CO3	(0.6*UTest) +(0.4*Univ Exam)

	CO1	(1*Exit Survey)
Indirect	CO2	(1*Exit Survey)
	CO3	(1*Exit Survey)

Week No.	Topics	Module	Hours
Week1(01/7/18-07/07/18)	Course objectives, Course outcomes, Study material, Scheme etc. Elements of CAM system, Computer Numerical control of Machine Tools.	1	2
<u>Week 2</u> (08/7/18 – 14/07/18)	Fundamental elements of CNC, Benefits of CNC, Computer control concepts, Data processing units & Binary calculation.	4	2
<u>Week 3</u> (15/7/18 – 21/07/18)	Motion controller, Interpolation-Linear & Circular, Positioning & Contouring control loops,	4	2
<u>Week 4</u> (22/7/18 – 28/07/18)	Incremental & Absolute system, DNC & CNC systems and Adaptive control system.	4	2
<u>Week 5</u> (29/7/18 – 04/08/18)	CNC drives, Spindle design, Actuation and Feedback devices.	4	2
<u>Week 6</u> (05/08/18 – 11/08/18)	Introduction to CNC Lathe & Milling, Touch probe system.	5	2
<u>Week 7</u> (12/8/18 – 18/08/18)	Unit Test 1 (Aug 13,14,16)		
<u>Week 8</u> (19/08/19 – 25/08/19)	Tool length nose radius & Diameter compensation, Turning & Machining centre programming,	5	2
<u>Week 9</u> (26/8/19 – 01/09/19)	CNC part programming using ISO controllers, Canned cycles, Looping Jumping Subroutines Macros,	5	2
Week 10 - (2/09/19) - 08/09/19) -	Mid term break		
<u>Week 11</u> (09/09/19 – 15/09/19)	CNC part programming using ISO controllers, Canned cycles, Looping Jumping Subroutines Macros,	5	2
<u>Week 12</u> (16/9/19 – 22/09/19)	CNC part programming using ISO controllers, Canned cycles, Looping Jumping Subroutines Macros,	5	2

LECTURE PLAN

<u>Week 13</u> (23/09/19 – 29/09/19)	Computer aided part programming using APT and Post processing. Computer applications in manufacturing.	5	2
Week 14 - (30/09/19) - 06/10/19) -	Computer applications in manufacturing, Automation and Integrated Production management systems. Automated Material handling systems,	5	2
Week 15 (07/10/19 13/10/19)	Conveyors, AVG, AS/RS, GT, FMS, Automated inspection procedure, Distributed numerical control & benefits of CIM and implementation & computer aided shop floor system.	5	2
Week 16 (14/10/19 20/10/19)	Unit Test 1 (Oct 14,15,16) Term ends on 18 Oct.		2