FR. Conceicao Rodrigues College Of Engineering Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 **Department of Information Technology**

B.E. (IT) (semester VII) (2019-2020)

Lesson Plan

Subject: Soft Computing (ITDLO7035)

Credits-4

SYLLABUS

Sr.	Module	Detailed Content	CO
No.			Mapping
	Prerequisite	Probability and Statistics, C++/Java/ Matlab programming.	
Ι	Fuzzy Set	Fuzzy Sets:	CO1
	Theory	Basic definition and terminology, Basic concepts of fuzzy	CO2
		sets, Fuzzy set operations, Fuzzy relations:	
		Cardinality of fuzzy relations, operations on fuzzy relations,	
		properties of fuzzy relations, Fuzzy Composition	
		Fuzzification and Defuzzification: Features of the	
		membership Functions, Fuzzification, Lambda-Cuts for	
		Fuzzy Sets, Lamoda-Cuts for Fuzzy Relations,	
п	Fuzzy	Euzzy Pules: Euzzy If Then Pules Euzzy Desconing Euzzy	CO1
ш	Rules	Inference System (FIS): Mamdani FIS Sugeno FIS	CO^2
	Reasoning.	Comparison between Mamdani and Sugeno FIS.	002
	and		
	Inference		
	System		
III	Neural	Introduction:	CO1
	Network-I	What is a Neural network? Fundamental Concepts, Basic	CO2
		Models of Artificial Neural Networks, Artificial Intelligence	
		and Neural Networks, McCulloch-Pitts	
		From Correction Learning Memory based Learning	
		Hebbian learning Competitive Learning Boltzmann	
		Learning, Competitive Learning, Doitzmann	
		Perception: Perception Learning Rule, Perceptron Learning	
		Algorithm, Perceptton Convergence Theorem, Perceptron	
		learning and Non-separable sets.	
IV	Neural	Back propaggation:	CO3
	Networks -	Multilayered Network Architecture, Back propagation	CO6
	П	Algorithm, Practical Consideration in impin Implementing	
		the Back propagation Algorithm. Back propagation and	
		XOR problem.	
		Adaptive resonance Theory:	
		Noise-Saturation Dilemma, Solving the Noise-Saturation	

		Dilemma Recurrent On-center-Off-surround Networks	
		Building blocks of Adaptive Resonance Substrate of	
		resonance Structural details of the resonance Model	
		Adaptive Resonance Theory I (APT I) Neuronhysiological	
		Fuidence for APT Machanism Character Bacognition:	
		Evidence for ART Mechanism Character Recognition.	
		Introduction, General Algorithm Architecture for Character	
		Recognition: Binarization, Preprocessing, Filters,	
		Smoothing, Skew Detection and Correction, Slant	
		Correction, Character Normalization, Thinning,	
		segmentation, Multilingual OCR by Rule-Based Approach	
		and ANN Rule-Based Approach: Classification, Tests, Rules	
		Artificial Neural Network: Inputs, Outputs, Identification	
		Results of Multilingual OCR	
05	Genetic	An Introduction to genetic Algorithms:	CO1
	Algorithm	What Are Genetic Algorithms? Robustness of Traditional	CO3
	U	Optimization and Search Methods. The Goals of	CO6
		Optimization. How Are Genetic Algorithms Different from	
		Traditional Methods? A Simple Genetic Algorithm Genetic	
		Algorithms at Work—a Simulation by hand. Grist for the	
		Search Mill—Important Similarities Similarity Templates	
		(Schemata) Learning the Lingo	
		Genetic Algorithms: Mathematical Foundations Who Shall	
		Live and Who Shall Die? The Fundamental Theorem	
		Scheme Processing at Work An Example by Hand	
		Devisited The Two armed and y armed Dendit Droblem	
		Kevisited, The Two-armed and A-armed Bandit Problem,	
		How Many Schemata Are Processed Userully? The Building	
		Block Hypothesis, Another Perspective: The Minimal	
		Deceptive Problem, Schemata Revisited: Similarity	
		Templates as Hyperplanes, Implementation of a Genetic	
		Algorithm: Data Structures, Reproduction, Crossover, and	
		Mutation, A Time to Reproduce, a Time to Cross, Get with	
		the Main Program, How Well Does it Work? Mapping	
		Objective Functions to Fitness Form, Fitness Scaling,	
		Codings, A Multiparameter, Mapped, Fixed-Point Coding,	
		Discretization, Constraints. Algorithm for Handwriting	
		Recognition Using GA Generation of Graph, Fitness	
		Function of GA: Deviation between Two Edges, Deviation	
		of a Graph, Crossover: Matching of Points, Generate	
		Adjacency Matrix, Find Paths, Removing and Adding	
		Edges, Generation of Graph Results of Handwriting	
		Recognition: Effect of Genetic Algorithms, Distance	
		Optimization. Style Optimization	
06	Hybrid	Introduction, Neuro-Fuzzy Hybrid Systems, Adaptive	CO4
	Computing	Neuro-Fuzzy Inference System (ANIFS):	CO6
	20 mp wing	Introduction ANFIS Architecture Hybrid Learning	
		Algorithm ANFIS as a Universal Approximator Simulation	
		Examples: Two-input Sinc Function and Three Input	
		Nonlinear Function Genetic Neuro Hybrid Systems	
		Properties of Genetic Neuro-Hybrid Systems constic	
		Algorithm based Deals propagation Network Advantages of	
1		Argorium based back-propagation Network, Advantages of	

Neuro-Genetic Hybrids, Genetic Fuzzy Hybrid and Fuzzy	
Genetic Hybrid Systems Genetic Fuzzy Rule based Systems,	
Advantages of Genetic Fuzzy Hybrids	

Internal Assessment:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

CO-Statements: Students will be able to:

CO1: List the facts and outline the different process carried out in fuzzy logic, ANN and Genetic Algorithms.

CO2: Explain the concepts and meta-cognitive of soft computing.

CO3: Apply Soft computing techniques the solve character recognition, pattern classification, regression and similar problems.

CO4: Outline facts to identify process/procedures to handle real world problems using soft computing.

CO5: Evaluate various techniques of soft computing to defend the best working solutions.

CO6:Design hybrid system to revise the principles of soft computing in various applications.

CO-PO-PSO	Э Марр	oing	

Cours														
e	PO	PO1	PO1	PO1	PSO	PSO								
Name	1	2	3	4	5	6	7	8	9	0	1	2	1	2
		2	2										1	
CO1	1													
	1													
CO2														
		2	3	2									3	2
CO3														
		2									2		2	
CO4														
				2	2								3	
CO5														
					2								2	2
CO6														

CO Assessment Tools

СО	DIRECT M	IETHODS			INDIRECT METHODS
	TEST1	TEST2	ASSIGNMENT1	ASSIGNMENT2	COURSE EXIT SUR VEY
CO1	50%	50%	20%	20%	100%
CO2			10%		100%
CO3	30%	30%	50%	50%	100%
CO4	20%	20%			100%
CO5			20%		100%
CO6				30%	100%

Lecture Plan:

Lectur	Topic	Planned	Actual	Mode of
e no		date	Date	teaching
1	Introduction of soft computing, difference	02/07/19	03/07/19	black board
	between soft computing and hard			and chalk
	computing			
2	Fuzzy Sets: Basic definition and	03/07/19	04/07/19	black board
	terminology, Basic concepts of			and chalk
	fuzzy sets			
3	Fuzzy set operations,	04/07/19	05/07/19	PPT, black
	Fuzzy relations: Cardinality of fuzzy			board and
	relations			chalk
4	operations on fuzzy	05/07/19	09/07/19	PPT, black
	relations, properties of fuzzy relations			board and
				chalk
5	Fuzzy	9/07/19	10/07/19	PPT, black
	composition			board and
	Fuzzification and Defuzzification			chalk
6	Features of the membership Functions,	10/07/19	16/07/19	PPT, black
	Fuzzification, Lambda-Cuts for Fuzzy			board and
	Sets, Lambda-Cuts for Fuzzy			chalk
	Relations			
7	Defuzzification methods	11/07/19	16/07/19	PPT, black
				board and
				chalk
8	Fuzzy Rules: Fuzzy If-Then Rules	12/07/19	17/07/19	black board
				and chalk
9	Fuzzy Reasoning	16/07/19	17/07/19	PPT, black
	Fuzzy Inference System (FIS): Mamdani			board and
	FIS			chalk
10	FIS example	17/07/19	24/07/19	PPT, black
				board and
				chalk
11	FIS example	18/07/19	24/07/19	PPT, black
				board and
				chalk
12	Sugeno	19/07/19	25/07/19	PPT, black
	FIS, Comparison between, Mamdani and			board and
	Sugeno FIS.			chalk
13	Introduction:	23/07/19	25/07/19	black board
	What is a Neural network? Fundamental			and chalk
	Concepts			
14	Basic	24/07/19	31/7/19	black board
	Models of Artificial Neural Networks			and chalk
15	Arificial	25/07/19	06/08/20	black board
	Intelligence and Neural Networks,		19	and chalk
	McCulloch-Pitts Neuron			
16	Learning:	26/07/19	07/08/19	black board

	Error-Correction Learning, Memory based			and chalk
	Learning			
17	Hebbian learning, Competitive Learning,	30/07/19	08/08/19	black board
	Boltzmann Learning			and chalk
18	Perceprton:	31/017/1	09/08/19	black board
	Perceptton Learning Rule, Perceptron	9		and chalk
	LearningAlgorithm			
19	Perceprton Convergence Theorem,	1/08/19	20/08/19	black board
	Perceptron learning and Non-separable			and chalk
	sets.			
20	Back propaggation:	2/08/19	21/08/19	black board
	Multilayered Network Architecture			and chalk
21	Back propagation Algorithm,	05/08/19	22/08/19	black board
				and chalk
22	Practical Consideration in Implementing	06/08/19	23/08/19	black board
	the Back propagation Algorithm. Back			and chalk
	propagation and XOR problem.			
23	Adaptive resonance Theory:	07/08/19	27/08/19	black board
	Noise-Saturation Dilemma, Solving the			and chalk
	Noise-Saturation Dilemma, Recurrent On-			
	center-Off-surround Networks			
24	Building blocks of Adaptive Resonance,	08/08/19	28/08/19	PPT, black
	Substrate of resonance, Structural details			board and
	of the resonance Model, Adaptive			chalk
	Resonance Theory I (ART I)			
25	Character Recognition:	20/8/19	29/08/19	PPT, black
	Introduction, General Algorithm			board and
	Architecture for Character			chalk
	Recognition: Binarization, Preprocessing,			
	Filters, Smoothing, Skew Detection and			
26	Correction Characteristics Short	21/0/10	20/00/10	DDT 1.11.
26	Character recognition :Slant	21/8/19	30/08/19	PP1, black
	This result of the second seco			board and
07	Multiling, Segmentation	22/9/10	11/00/10	
27	Multilingual OCR by Rule-Based	22/8/19	11/09/19	PP1, black
	Approach and ANN Kule-Dased			obally
	Artificial Neural Network: Inpute Outpute			Chark
	Identification Results of Multilingual OCP			
28	An Introduction to genetic Algorithms:	23/08/10	11/00/10	DDT black
20	What Are Genetic Algorithms? Robustness	23/00/19	11/09/19	hoard and
	of Traditional Optimization and Search			chalk
	Methods. The Goals of			Chark
	Optimization How Are Genetic			
	Algorithms Different from			
	Traditional Methods?			
29	A Simple Genetic Algorithm	27/8/19	17/09/19	PPT black
	Genetic Algorithms at Work—a	2110/17	11/07/17	board and
	Simulation by hand. Grist			chalk
	for the Search Mill—Important			
	for the bearen min mportant			

	Similarities, Similarity			
	Templates (Schemata), Learning the			
	Lingo.			
30	Genetic Algorithms: Mathematical	28/8/19	18/09/19	PPT, black
	Foundations			board and
	Who Shall Live and Who Shall Die? The			chalk
	Fundamental Theorem, Schema Processing			
	at Work			
31	How Many Schemata Are Processed	29/8/19	20/09/19	PPT, black
	Usefully?			board and
	The Building Block Hypothesis, Another			chalk
	Perspective: The Minimal Deceptive			
	Problem, Schemata Revisited:			
	Similarity Templates as Hyperplanes			
32	Implementation of a Genetic Algorithm:	30/8/19	25/09/19	PPT, black
	Data Structures, Reproduction, Crossover,			board and
	and Mutation,			chalk
33	A Time to Reproduce, a Time to Cross,	11/9/19	25/09/19	PPT, black
	Get with the Main Program, How Well			board and
	Does it Work? Mapping Objective			chalk
	Functions to Fitness Form			
34	Fitness Scaling, Codings, A	12/9/19	26/09/19	PPT, black
	Multiparameter, Mapped, Fixed-Point			board and
	Coding, Discretization, Constraints.			chalk
35	Algorithm for Handwriting Recognition	13/9/19	26/09/19	PPT, black
	Using GA			board and
	Generation of Graph, Fitness Function of			chalk
	GA: Deviation between Two Edges			
36	Deviation of a Graph,	17/9/19	01/10/19	PPT, black
	Crossover: Matching of Points, Generate			board and
	Adjacency Matrix, Find Paths, Removing			chalk
	and Adding Edges, Generation of Graph	10/0/10	0.4/10/10	
37	Results of Handwriting Recognition:	18/9/19	04/10/19	PPT, black
	Effect of Genetic Algorithms, Distance			board and
20	Optimization, Style Optimization	10/0/10	04/10/10	chalk
38	Introduction, Neuro-Fuzzy Hybrid	19/9/19	04/10/19	black board
	Systems, Adaptive Neuro-Fuzzy Inference			and chalk
	System (ANIFS):			
20	Introduction, AINFS Architecture	20/0/10	04/10/10	DDT blask
39	Algorithm ANEIS of a Universal	20/9/19	04/10/19	PP1, DIACK
	Algorithm, ANFIS as a Universal			obally
	Two input Sing Eurotion and Three			Chark
	Input Nonlinear Function			
	Genetic Neuro-Hybrid Systems			
40	Properties of Genetic Neuro Unbrid	2//0/10	00/10/10	DDT block
40	Systems genetic Algorithm based Back	2 4 /7/17	07/10/19	board and
	propagation Network			chalk
/1	Advantages	25/0/10	00/10/10	DDT blook
+1	of Neuro-Genetic Hybrids	23/3/17	07/10/19	hoard and
	or real-ochede rigorius,	1	1	

Genetic Fuzzy Hybrid and Fuzzy Genetic		chalk
Hybrid Systems Genetic Fuzzy Rule based		
Systems, Advantages of Genetic Fuzzy		
Hybrids		

Assignment Plan:

Assignment No	Date	Questions	СО
1	20/8/19	On chapter 1,2,3	1,3,5
2	17/9/19	On chapter 4,5,6	1,3,6

Sample Questions of assignment are :

Sr.No.	Questions
1	1. What is the need of fuzzy set theory?
	2. What are different ways of representing fuzzy set.
	3. Determine all possible strong α level sets of $\tilde{A} = \{0.3/1 + 0.4/2 + 0.8/3 + 0.5/4 + 0.3/6\}$
	4. Let universe of discourse $X=Y=[1,2]$. Let fuzzy relation P defined on X and Y as
	$P = \begin{bmatrix} 0.1 & 0.5\\ 0.3 & 0.2 \end{bmatrix}$
	Determine whether the system is stable, oscillating or unstable
2	1. Who introduced fuzzy set theory?
	2. Explain projection and cylindrical extension on fuzzy relation with example.
	3. Define the energy of fuzzy relation and state how it is useful to decide whether system is stable, unstable or oscillatory
	4. Give the universe of discourse for the following :
	Age of a person, Weight of a person, No of rooms in a flat, No of vehicles a family possess. How many of these are continuous?
3	1. Give Difference between classical set and fuzzy set.
	2. Let $\tilde{A} = \{0.4/3 + 1/5 + 0.6/7\}$ B= $\{1/5 + 0.6/6\}$ Find AXB, CON(A), DIL(A)
	3. Write properties of fuzzy set and fuzzy relation
	 4. Let Ã={1/S₁+0.5/S₂+0.2/S₃} B={1/W₁+0.5/W₂+0.2/W₃}Find fuzzy relation R=ÃxB. Let fuzzy set C={0.1/S₁+0.6/S₂+1/S₃}Find fuzzy relation S =C X B. Find R ° S using max-min composition and max-product composition

4	1.	Model cold, warm and hot temp using fuzzy sets.
	2.	Let $\tilde{A}{=}\{0.4/3{+}1/5{+}0.6/7\}$ B= $\{1/5{+}0.6/6\}$ Find A+B(algebraic sum), AOB(bounded difference) , A bounded sum B
	3.	Explain types of fuzzy relation
	4.	Let $\tilde{A}=\{0.9/X_1+0.4/X_2+0.0/X_3\}$ B= $\{0.1/Y_1+0.7/Y_2+1/Y_3\}$ Find fuzzy relation R= $\tilde{A}xB$. Let fuzzy set C= $\{0.3/X_1+1/X_2+0.2/X_3\}$ Find R ° C using max-min composition and max-product composition
5	1.	Model the following as fuzzy set using trapezoidal membership function- "Number close to 10"
	2.	Write true/false. Correct false statement meaningfully
		a. The support of a fuzzy set is a crisp set
		b. Demorgan's theorem do not apply to to fuzzy sets
		c. A membership function for a classical set can not be defined
		d. The values of membership in a given set can never add up to one
		e. The CON operation always reduces the value of membership
		f. AXB=BXA
		g. Continuous membership functions have to be of triangular shape
	3.	Consider the output of fuzzy controller is the union of following two fuzzy sets. Apply any three defuzzification method.
	$\begin{array}{c} \mu \\ 1 \\ 0.5 \\ 0 \end{array}$	$\begin{array}{c} & \mu \\ 1 \\ 1 \\ 2 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ z \\ a \\ a \\ c \\ c$
6		
6	1.	Model the following as fuzzy set using trapezoidal membership function- "middle aged person"
	2.	Let A={(1,0.2),(2,0.5),(3,0.8),(4,1),(5,0.7),(6,0.3)}. Then find all possible α level sets. Consider universe of discourse X={1,2,3,4,5,6,7,8}, find cardinality and relative

	cardinality of set Ã
	 Consider a case of train approaching or leaving the station. The inputs are distance from the station and speed of train. The output is the amount of brakes power used. Write the rule base for this example.
	4. Explain convex fuzzy set and non convex fuzzy set with diagram
7	 Model using triangular membership function fuzzy set "number considerable larger than 11"
	2. What all operations can be performed on fuzzy relations? Write the properties of fuzzy relation
	 Develop graphically membership functions to describe the linguistic variables "cold", "warm", and "hot". The temp. range is 0°c to 100°c. Use the graphs developed to define graphically the following :
	a. NOT warm b. Warm OR cold c. warm AND hot
	4. Explain fuzzy extension principle with example
8	1. Define support, core, normality, height, nucleus, width and crossover points for fuzzy
	set.
	2. Let X={1,2,3,4,5,6,7,8,9,10}, A={(4,0,1),(6,0,2),(8,0,4),(10,0,5)}, B={(0,0,3),(2,0,5),(4,0,7),(5,0,8),(8,0,7)} find AUB, A \cap B, A B
	3. Give the difference between soft computing and hard computing
	4. Determine all α -level sets and all strong a-level sets for the following fuzzy set.
	$A = \{ (2,1), (4,0.2), (5,0.3), (6,0.4), (7,0.6), (8, 0.8), (10,1), (12, 0.8), (14,0.6) \}$
	For $\alpha = 0.3, 0.5, 0.8$
9	1. Given $\tilde{A} = \{1/2 + 0.5/3 + 0.3/4 + 0.2/5\}$
	$B = \{0.5/2 + 0.7/3 + 0.2/4 + 0.4/5\}$
	Find Complement Ã, Complement B, Ã UB, Ã \cap B, Ã B, B Ã, Verify Demorgan's law
	2. Write a short note on Defuzzification techniques.
	3. Define empty fuzzy set and Universal fuzzy set
	 4. Consider a set P={p1, P2, P3, P4} of four varieties of paddy plants set D={D1,D2,D3,D4} of the various diseases affecting the plants and S={S1 S2 S3 S4} be common symptoms of the diseases. Let R be a relation on P*D and S be

		the r	elation	on D*S	. Find R	oS giver	1			
	R=0.6	0.6	0.9	0.8	S =	0.1	0.2	0.7	0.9	
		0.1	0.2	0.9	0.8		1	1	0.4	0.6
	0.9	0.3 ().4	0.8		0	0	0.5	0.9	
	0.9	0.8 ().1	0.2		0.9	1	0.8	0.2	
	Obtain t min con	he associ	ation of	f the pla	unts with	the diff	erent sy	mptoms	of the d	iseases using max-
10		1. Com unive S2 to S2={	pare tw erse of (be S1= 0/0+0.4	ro senso discours ={0/0+0 45/20+0	rs based se X={0 0.5/2+0.6 0.6/40+0	upon th ,20,40,6 55/40+0. .8/60+0	eir detec 0.80,100 85/60+1 .95/80+1	ction lev)} and se 1/80+1/1 1/100}	els and ensor de 00}	gain settings. Given tection levels S1 and
	Find out	the follo	wing S	1US2, S	S1∩S2,	(Comple	ment(S	1)) U S2	, (Comp	element (S1)) \cap S2
	What ar	e standar	d memt	bership	function	s.				
		2. Ther proje	e is a re ction a	elation F long axi	R is a sul is B.	oset of A	X B. F	ind the p	projectio	n along axis A and
		B	b_1	b_2	b_3					
		a_1	0.1	0.2	1.0					
	$M_R =$	a_2	0.6	0.8	0.0					
		a_3	0.0	1.0	0.3					
		3. Expl	ain fuzz	zy contr	oller wi	th a bloc	k diagra	ım		
		4. High meas meas very [I, 2, be D two]	speed : ure the ured w small a 3, 4] w = [), 2, paramet	rail mor deflect ith respo- ingles m where A , 5, 7J w ters has	nitoring ion of th ect to so leasured is the an where D been de	devices ne earth w me dista in rnicro gle in m is distand termined	sometim when a r nce fror oradians licroradi ce in fee l as follo	nes make ail car panthe rai b. Let a u ians, and et, support ows:	e use of asses. T l car and niverse let a un se a rela	sensitive sensors to hese deflections are d, hence are actually of deflection be A = hiverse of distances tion between these

	$R = \begin{array}{ccccccccccccccccccccccccccccccccccc$							
	Now let a universe of rail car weights be W=[1,2], where W is the weight in units of 100,000 pounds. Suppose the fuzzy relation of W to A is given by							
	$S - \begin{array}{c} A_1 & 1 & 0.4 \\ A_2 & 0.5 & 1 \\ A_3 & 0.3 & 0.1 \\ A_4 & 0 & 0 \end{array}$							
	Using the two relations, find the relation $R_0^T S = T$							
	Using Max-min composition and Using Max-product composition							
11	1. What are fuzzy relations?							
	2. Let R be a relation from A to B defines by matrix							
	b1 b2 b3							
	a1 0.4 0.5 0							
	a2 02 0.8 0.2							
	Let S be a relation from B to C defined by matrix							
	c1 c2							
	B1 0.2 0.7							
	B2 0.3 0.8							
	B3 1 0							
	Find a) Max-min composition of R and S b)Max-Product composition of R and S							
	3. Let universe of discourse $X=Y=[1,2]$. Let fuzzy relation P defined on X and Y as							
	$P = \begin{bmatrix} 0.1 & 0.3 \\ 0.7 & 1 \end{bmatrix}$							

Determine whether the system is stable, oscillating of unstable

Sr.No	Questions
1	 Explain McCulloch and Pitts model of Neuron with example. Describe the basic Hopfield model and give the theory of energy minimization in auto associative Hopfield model Explain outstar learning rule and widro Hoff learning rule Explain the single discrete perceptron training algorithm (SDPTA)
2	 Explain common activation functions used in neural network Determine the weights after one iteration for Hebbian learning of a single neuron network starting with initial weights w=[1 -1 0 0.5], inputs as x1=[1 -2 1.5 0], x2=[1 - 0.5 -2 -1.5], x3=[0 1 -1 1.5], c=1. Use bipolar binary activation function. What is competitive learning? Explain Winner-take all learning. Explain the models of artificial neural network
3	(b) For the given network $1 \xrightarrow{0.2} 1^{0.1} \xrightarrow{0.2} 1^{0.1}$ $1 \xrightarrow{0.2} \xrightarrow{0.2} 1^{0.1} \xrightarrow{0.1} 1^{1}$ $1 \xrightarrow{0.2} \xrightarrow{0.2} \xrightarrow{0.1} 1^{1} \xrightarrow{0.1} 1^{1}$
	 Find new weights when net is presented the input pattern (1, 1, 1) and target output is '1'. Use learning rate of 0.1 and bipolar sigmoidal activation function, the bias is set to '1'. Activation function : f(x) = 2/(1+e^{-x}) - 1 and f'(x) = 0.5 (1 + f(x)) (1 - f(x)) 2. Given two input neuron with following parameters: b=1.2, w=[3 2] and p=[-5 6]. Calculate neuron output for the following transfer function : hard limit, symmetrical hard limit, linear, saturating linear and log sigmoid 3. Consider a simple Hopfield network made up of 3 neurons. Assume the bias applied to each neuron is zero. For the attractor states (1 - 1 1) and (-1 1 - 1). Find the weight matrix 4. Using the perceptron learning rule, find the weights required to perform the following classification. Vectors (1 1 1 1), (-1 1 - 1) and (1 - 1 - 1 1) are members of class (having target value 1) and vectors (1 1 1 .7 1) and (1 - 1 - 1 1) are not members of class(having target value -1). Use learning rate of 1 and starting weights zero.
4	 What is learning in neural networks? Differentiate between Supervised and Unsupervised learning Compute the output of the following network using unipolar continuous activation function.

	4.	steps 4,5,6 of training by reusing the sequence (Xt. dt), (X ₂ , d ₂), (X ₃ , d ₃)) Explain generalized delta learning rule
7	1.	Write a short note on Gradient descent method
-	2.	Design XOR problem using RBE network with given data set as (1.1) , (0.1) , (0.0) , (1.0) and
		also find the weight vector
	3	Determine the weights after one iteration for Hebbian learning of a single neuron
	5.	network starting with initial weights w= $[1 - 1 0 0 5]$ inputs as x1= $[1 - 2 1 5 0]$ x2= $[1 - 0 5 - 2 - 2]$
		$1.51 \times 3 = [0.1 - 1.1.5]$ and c=1. Use signum activation function
	4	What are the two processes involved in RBE network design?
8	1	What is learning in neural networks? Compare different learning rules
Ū	2.	Find new weights after one iteration using back propagation for the network shown in
	2.	figure. The network is presented with input pattern [1,0] desired output is 1. Use $\alpha = 0.3$
		and hinolar continuous activation function
		0.2
		K1)K1 0.5 XZ1 0.3
		-0.6 A TY >0/P
		-6.1 0.2 7 1
		X2 - (-0.4
		0.7
		1. 0.4
		G
	3.	A neuron with 4 inputs has the weight vector $w = [1 2 3 4]$. The activation function is
		linear, that is, the activation function is given by $f(net) = 2$ *net. If the input vector is X ==
		[5 6 7 8], then find the output of the neuron.
	4	A two layer network is to have four inputs and six outputs. The range of the outputs is to
		he continuous between 0 and 1. What can you tall about the network architecture?
		Specifically
		(a) How many neurons are required in each layer?
		(a) Now many neurons are required in each ayer:
		(b) what are the dimensions of the materiayer and second layer weight
		(c) What kinds of transfor functions can be used in each layer?
		(c) what kinds of transfer functions can be used in each layer !
0	1	Consider the following orthonormal sets of key pattern applied to a correlation matrix
5	<u>⊥</u> .	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
		Coloulate memory metric M and show that memory accorded a perfectly.
	_	Calculate memory matrix in and snow that memory associates perfectly.
	2.	Explain perceptron learning rule convergence theorem. Design a perceptron
		network to implement an AND function, take first input sample [1, 1, 1]
		network to implement an Arab renotion, take mot input outple [1, 1, 1]

