The Pdf document named like SEM II_FEC202.pdf with the contents

- 1. Syllabus.
- 2. CO Statements.
- 3. CO-PO-PSO Mapping.
- 4. CO Assessment tools with target.
- 5. Curriculum Gap/Content beyond syllabus (if any).
- 6. Lecture/Lab/Mini Project/Assignment Plan.

FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Computer Engineering

F.E. (Computer) (semester II) (2018-2019)

Lecture Plan:

Subject: Applied Physics II (FEC202)

Credits-3.5

Course Code	Course Name	Teaching Scheme (Contact Hours)		Credits Assigned					
		Theory	Pract	t. Tut.	Theory	TW/I	Pract	Tut.	Total
FEC202	Applied Physics – II	03	01		03	0.5			3.5
Course		Exami Theory	nation S	Scheme		-			
Code	Course Name	Intern	al Asses	ssment	End	Term Work	Pract	Oral	Total
		Test1	Test2	Av of Test 1 & 2	Sem Exam	VV OFK			
FEC202	Applied Physics – II	15	15	15	60	25			100

Objectives

- 1. To impart knowledge of basic concepts in applied physics.
- 2. To provide the knowledge and methodology necessary for solving problems in the field of engineering.

1. Syllabus of Applied Physics II

Module	Detailed Contents	Hrs.
01	INTERFERENCE AND DIFFRACTION OF LIGHT Interference by division of amplitude and by division of wavefront; Interference in thin film of constant thickness due to reflected and transmitted light; origin of colours in thin film; Wedge shaped film(angle of wedge and thickness measurement); Newton's rings Applications of interference - Determination of thickness of very thin wire or foil; determination of refractive index of liquid; wavelength of incident light; radius of curvature of lens; testing of surface flatness; Anti-reflecting films and Highly reflecting film. Diffraction of Light –Fraunhoffer diffraction at single slit, Fraunhoffer diffraction at double slit, Diffraction Grating, Resolving power of a grating, dispersive power of a grating Application of Diffraction - Determination of wavelength of light with a plane transmission grating	14
02	LASERS Quantum processes as absorption, spontaneous emission and stimulated emission; metastable states, population inversion, pumping, resonance cavity, Einsteins's equations; Helium Neon laser; Nd:YAG laser; Semiconductor laser, Applications of laser- Holography (construction and reconstruction of holograms) and industrial applications(cutting, welding etc), Applications in medical field	04
03	FIBRE OPTICS Total internal reflection; Numerical Aperture; critical angle; angle of acceptance; V number; number of modes of propagation; types of optical fiber; Losses in optical fibre (Attenuation and dispersion) Applications of optical fibre - Fibre optic communication system; sensors (Pressure, temperature, smoke, water level), applications in medical field	04
04	ELECTRODYNAMICS Cartesian, Cylindrical and Spherical Coordinate system, Scalar and Vector field, Physical significance of gradient, curl and divergence, Determination of Maxwell's four equations. Applications-design of antenna, wave guide, satellite communication etc.	08
05	CHARGE PARTICLE IN ELECTRIC AND MAGNETIC FIELDS Fundamentals of Electromagnetism, Motion of electron in electric field (parallel ,perpendicular, with some angle); Motion of electron in magnetic field (Longitudinal and Transverse); Magnetic deflection; Motion of electron in crossed field; Velocity Selector; Velocity Filter, Electron refraction; Bethe's law; Electrostatic focusing; Magnetostatic focusing; Cathode ray tube (CRT); Cathod ray Oscilloscope (CRO) Application of CRO: Voltage (dc,ac), frequency, phase measurement.	05
06	NANOSCIENCE AND NANOTECHNOLOGY Introduction to nano-science and nanotechnology, Surface to volume ratio, Two main approaches in nanotechnology -Bottom up technique and top down technique; Important tools in nanotechnology such as Scanning Electron Microscope, Transmission Electron Microscope, Atomic Force Microscope. Nano materials: Methods to synthesize nanomaterials (Ball milling, Sputtering, Vapour deposition, solgel), properties and applications of nanomaterials.	04

Suggested Experiments: (Any five)

- 1. Determination of radius of curvature of a lens using Newton's ring set up
- 2. Determination of diameter of wire/hair or thickness of paper using Wedge shape film method.
- 3. Determination of wavelength using Diffracion grating. (Hg/ Ne source)
- 4. Determination of number of lines on the grating surface using LASER Sourse.
- 5. Determination of Numerical Aperture of an optical fibre.
- 6. Determination of wavelength using Diffracion grating. (Laser source)
- 7. Use of CRO for measurement of frequency and amplitude.
- 8. Use of CRO for measurement of phase angle.
- 9. Study of divergence of laser beam
- 10. Determination of width of a slit using single slit diffraction experiment (laser source)

The distribution of Term Work marks will be as follows -

- 1. Attendance (Theory and Practical) : 05 marks
- 2. Assignments : 10 marks
- 3. Laboratory work (Experiments and Journal) : 10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 15 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 15 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 3marks will be asked.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in the syllabus.

References:

- 1. A text book of Engineering Physics-Avadhanulu&Kshirsagar, S.Chand
- 2. Fundamentals of Optics by Jenkins and White, McGraw-Hill
- 3. Optics Ajay Ghatak, Tata McGraw Hill
- 4. Concepts of Modern Physics- ArtherBeiser, Tata Mcgraw Hill
- 5. A textbook of Optics N. Subramanyam and Brijlal, S.Chand
- 6. Engineering Physics-D. K. Bhattacharya, Oxford
- 7. Concepts of Modern Physics- ArtherBeiser, Tata Mcgraw Hill
- 8. Classical Electodyamics J. D. Jackson, Wiley
- 9. Introduction to Electrodynamics- D. J. Griffiths, Pearson publication
- 10. Intoduction to Nanotechnology- Charles P. Poole, Jr., Frank J. Owens, Wiley India edition
- 11. Nano: The Essential T. Pradeep, Mcgraw-Hill Education

2. CO Statements.

Course Outcomes: Learner will be able to...

- 1. Apply the principles of interference and diffraction to find conditions for maxima & minima intensities.
- 2. Explain the principle, construction and working of various LASERs and its applications.
- 3. Explain the concepts of optical fibers and their applications.
- 4. Explain the basic principles of electrodynamics and derive Maxwell's equations.
- 5. Explain the concepts of electrostatic and magnetic focusing systems and CRO.
- 6. Explain the basic instruments used for the study of nanotechnology.

3. CO-PO Mapping

со	PO1
FEC202.1	н
FEC202.2	н
FEC202.3	н
FEC202.4	н
FEC202.5	н
FEC202.6	н

4. CO Assessment Tools:

	Tool for Direct Attainment				Indirect tool	
со	Class Test	Assignment	Practical	Semester End	Course Exit	
			performance	Exam	Survey	
FEC202.1	T 1- 20%	A1-20%	10%	50%	100%	
FEC202.2	T2-20%	A1-20%	10%	50%	100%	
FEC202.3	T2-20%	A1-20%	10%	50%	100%	
FEC202.4	T2-30%	A2-20%		50%	100%	
FEC202.5	T2-30%	A2-20%		50%	100%	
FEC202.6		A2-20%		50%	100%	
Target	60% of students will score above 60% marks	60% of students will score above 60% marks	60% of students will score above 60% marks	60% of students will score above 40% marks	60% of students will score above 60%	

5. Rubrics for Assessment

Assignment :

Assignments will be given to the students and graded as per the following rubrics.

Rubrics for Assignment Grading:

Indicator	Poor	Average	Good	Excellent
Punctuality (3)	More than two session late (0)	Two sessions late (1)	One session late (2)	Early or on time (3)
Presentation (3)	Very poor readability and not structured (0)	Poor readability and somewhat structured (1)	Readable with one or two mistakes and structured (2)	Very well written and structured without any mistakes (3)
Content and coverage (4)	Major points are omitted or addressed minimally (1)	All major topics are covered, the information is accurate.(2)	Most major and some minor criteria are included. Information is Accurate (3)	All major and minor criteria are covered and are accurate. (4)

Practical

Five practical will be conducted as per schedule.

Rubrics for practical Grading:

Indicator	Poor	Average	Good	
Punctuality(2)	Two sessions late(0)	One session late (1)	In time submission(2)	
Preparedness (2)	No idea about experiment(0)	Read the manual and have some idea(1)	Read Manual and know the procedure(2)	
Participation (3)	No involvement(1)	Passive involvement(2)	Active involvement(3)	
Presentation(3)	Poor readability and somewhat structured (1)	Readable with one or two mistakes and structured (2)	Very well written and structured without any mistakes (3)	

Lesson Plan:

Name of	Facult	y: Dr. Dipak Anant Bauskar	Academic Year: 2018-19			
Branch: COMPUTER			Semester: II			
No of Lectures	Sr. No.	Name of the Topic	Planned Date	Executed Date	Remark	
Module	1	Interference and Diffraction	•		•	
1	1	Interference in thin films- basic ideas	1/1/2019	1/1/2019		
2	2	Thin uniform film-interference in reflected &transmitted light.	2/1/2019	2/1/2019		
3	3	Wedge shaped film	3/1/2019	3/1/2019		
4	4	Newton's rings.	7/1/2019	7/1/2019		
5	5	Applications of interference	8/1/2019	8/1/2019		
6	6	Numericals	9/1/2019	9/1/2019		
7	7	Numericals	10/1/2019	10/1/2019		
8	8	Diffraction of light – Basic principles	14/1/2019	14/1/2019		
9	9	Diffraction at single slit.	16/1/2019	16/1/2019		
10	10	Diffraction at double slit	17/1/2019	17/1/2019		
11	11	Diffraction at multiple slit – diffraction Grating.	21/1/2019	21/1/2019		
12	12	Resolving power of a grating, dispersive power of a grating	23/1/2019	23/1/2019		
13	13	Application of Diffraction & Numericals	24/1/2019	23/1/2019		
14	14	Numericals	28/1/2019	28/1/2019		
Module	2	Lasers				
15	1	Absorption and emission as quantum processes, Metastable states, population	30/1/2019	30/1/2019		
		inversion and pumping.				
16	2	Einstein's Coefficients – derivation, He-Ne laser.	7/2/2019	7/2/2019		
17	3	Nd-YAG laser and semiconductor laser	11/2/2019	11/2/2019		
18	4	Applications of laser-Holography	18/2/2019	18/2/2019		
Module	3	Fiber optics	1	1	1	
19	1	Basics of optical fiber transmission.	20/2/2019	20/2/2019		
20	2	Numerical aperture and acceptance angle& Types of Optical fibre	21/2/2019	21/2/2019		
21	3	V-number and number of orders, Losses in fiber	25/2/2019	25/2/2019		
22	4	Applications of optical fibre	27/2/2019	27/2/2019		
Modile 4	1	Electrodynamics	1	1	1	
23	1	Cartesian, Cylindrical and Spherical Coordinate system,	28/2/2019	28/2/2019		
24	2	Numericals	6/3/2019	6/3/2019		
25	3	Scaler and Vector field,	7/3/2019	7/3/2019		
26	4	Physical significance of gradient, curl and divergence,	11/3/2019	11/3/2019		
27	5	Determination of Maxwell's 1st and 2nd equations.	13/3/2019	13/3/2019		
28	6	Determination of Maxwell's 3rd and 4th equations.	14/3/2019	14/3/2019		
29	7	Applications-design of antenna, Wave guide, Satellite Communication	18/3/2019	18/3/2019		
30	8	Numericals	20/3/2019	20/3/2019		
Module	5	Electron Optics	1	1	1	
31	1	Fundamentals of Electromagnetism, Motion of electron in electric field	25/3/2019	25/3/2019		
32	2	Motion of electron in magnetic field	27/3/2019	27/3/2019		

33	3	Electrostatic focusing and Magneto static focusing.	28/3/2019	28/3/2019
34	4	Cathode ray tube, Cathode Ray Oscilloscope (CRO) & Applications of CRO	1/4/2019	1/4/2019
Module 6 Nanotechnology				
35	1	Introduction to nano, Two main approaches in nano technology.	3/4/2019	3/4/2019
36	2	Tools used in nano technology- SEM, STM & AFM	4/4/2019	4/4/2019
37	3	Nano materials: Methods to synthesize nanomaterials (Ball milling, Sputtering, Vapour deposition, solgel), properties and applications of nanomaterials.	5/4/2019	5/4/2019