FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Computer Engineering

F.E. (Computer) (semester-II) (2018-2019)

Subject: Applied Chemistry-II

<u>Syllabus</u>

Module	Contents						
1	Constant	10					
1	Lorrosion	10					
	Introduction the concept of corrosion						
	Types of corrosion: Dry and Wet Corrosion						
	Galvanic and Concentration cell corrosion						
	Pitting, Intergranular, Waterline corrosion and Stress corrosion, Concept of Passivity, Passivity in prevention of corrosion.						
	Factors influencing rate of corrosion						
	Methods to control Corrosion: Electrochemical methods and Chemical methods of prevention.						
	Electrochemical Methods of preventing corrosion: Cathodic Protection and Anodic Protection:						
	Cathodic protection by Impressed current method and sacrificial anode methods. Anodic Protection by electrochemical passivity.						
	Chemical Methods of prevention by Metal Coating: Hot Dipping, Spraving,						
	Cladding, Electroplating, basic principle and brief description of the method.						
	Paints: Constituents of the paint, Role played by the various constituents.						
2	Allovs	09					
	Introduction to Alloys, Purpose/reasons for preparing different types of alloys.						
	Types of alloys, Classification of alloys as Ferrous alloys and Non- ferrous alloys						
	Composition Properties and uses of some selected alloys:						
	Alloys of Aluminum: Duralumin, Magnalium						
	Brasses: Commercial Brass, German Silver						
	Bronzes: Gun Metal, High Phosphor Bronze						
	Solders: Tinmann Solder, Woods Metal						
	Powder Metallurgy: Advantages and purpose of powder metallurgy.						
	metal powders. Binding, compaction: Methods of compaction, sintering.						
	Manufacture of some important oxide and non-oxide ceramic powders						
3	Fuels	12					
	Introduction to fuels. Characteristics of a good fuel						
	Classification of fuels into solid, liquid and gaseous fuel. Calculating calorific						
	value of fuel by Dulong's formula.						
	Calculation and Numerical for Gross Calorific value and Net Calorific value.	i					

	Comparison of solid, liquid and gaseous fuels	
	Solid Fuels: coal as example of solid fuel. Proximate analysis, Numerical on proximate analysis, Ultimate analysis and Numericals on ultimate analysis. Liquid fuels: Extraction of crude oil from earth's crust, separation of crude oil by fractional distillation, Refining of crude oil Process of fractionation and various fractions obtained their characteristics and their significance. Cracking: Thermal cracking: Liquid phase thermal cracking and Vapour phase thermal cracking. Catalytic cracking: Fixed bed catalytic cracking and moving bed catalytic cracking.	
	Knocking of engine, Factors responsible for knocking, Quality of petrol on octane scales. Diesel engine- Quality of diesel on the basis of cetane value. Combustion: Numericals on combustion	
	Preparation, properties of Bio-diesel	
4	Composite Materials and Adhesives	10
1	<u>composite materials and Auresives</u>	10
	Introduction, Characteristic properties of Composite Materials	
	Constitution of Composite Materials, Concept of matrix and dispersed phase.	
	Classification of composite materials on the basis of	
	Dispersed phase. Fiber reinforced composites	
	Adhesives: Types of Adhesives, Physical and chemical factors involved in	
	adhesive action.	
5	<u>Green Chemistry</u>	04
	Introduction to Green chemistry, Goals of Green Chemistry	
	Twelve principles of Green Chemistry. Description of Green chemistry	
	principles with suitable examples.	
	Calculations of Atom economy Synthesis of Adipic acid, Synthesis of Indigo.	
	Industrial applications of Green Chemistry.	
	Green solvents: Liquid crystals, Super Critical Liquid (SCL)	

Course Outcome

СО	CO Statement
CO 203.1	Your ability to <u>identify</u> different types of fuels.
CO 203.2	Your ability to <u>understand</u> different types of corrosion .
CO 203.3	Your ability to <u>relate</u> with different types of composite materials.
CO 203.4	Your ability study different types of alloys.
CO 203.5	Your ability to <u>relate</u> with principles of Green Chemistry.

Mapping CO to PO/PSO

Course Name	Р 01	PO 2	PO 3	РО 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2													
CO2	2													
CO3	2													
CO4	2													
CO5	х													
CO6	х													

Justification

СО	P01
FE103. 1 FE103. 2 FE103.3 FE103.4 FE103.5	Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems
	PSO1 : All COs are mapped to PSO1 because the graduates will be able to apply fundamental subjects to the Engineering domain.

CO Assessment Tools

	Direct	Meth		Indirect Methods							
	T-1	T-2	L-1	L-2	L- 3	L-4	L-5	A1	A2	Uni. Exam	Course Exit Survey
CO1	20		20	20						40	100%
CO2		50								50	100%
CO3		50								50	100%
CO4		20			10	10	10	10		40	100%
CO5		30							30	40	100%

Assessment Plan

Subject: Applied Chemistry-II Teaching and Marking Scheme

		Teaching Scheme			Credits A			
Course Code	Course Name	Theory	Pract	Tutorial	Theory	TW	Tutorial	Total
FEC103	Applied Chemistry-II	3	1		3	0.5		3.5

Examination and Marking Scheme

		Internal Assessment			University Exam	Total	
Course Code	Course Name	UT-1	UT-2	Average	Theory	TW	
FEC103	Applied Chemistry-II	15M	15M	15M	60M	25M	100M

Internal Assessment:

Internal Assessment consists of two tests.

Test 1: an Institution level central test, is for 20 marks and is to be based on a minimum of 40% of the syllabus.

Test 2: It is also for 20 marks and is to be based on the remaining syllabus.

Internal Assessment Scheme

Course Code	Course Name:	Syllabus Covered	Topics Covered
FEC103	Applied Chemistry-II		
UT-1	15M	40%	Fuel +Alloys
UT-2	15M	60%	Remaining Topics

Term Work:

Course Code	Course Name	Attendance	Laboratory Work	Assignments	Total
FEC103	Applied Chemistry-II	5M	10M	10M	25M

Course Outcomes Target:

СО	CO Statement	CO Target
CO 203.1	Your ability to identify different types of fuels.	60% Students
		Scoring 60% of
		Marks
CO 203.2	Your ability to <u>understand</u> different types of corrosion .	60% Students
		Scoring 60% of
		Marks
CO 203.3	Your ability to <u>relate</u> with different types of composite	60% Students
	materials.	Scoring 60% of
		Marks
CO 203.4	Your ability study different types of alloys .	60% Students
		Scoring 60% of
		Marks
CO 203.5	Your ability to <u>relate</u> with principles of Green Chemistry.	60% Students
		Scoring 60% of
		Marks

Target Range	CO Assigned
0.75 OR 75% and above	3
0.5 to 0.74 OR 50% to 74%	2
0.5 OR 50% and below	1

Lesson Plan:

Subject: Applied Chemistry (II)

Credits-3.5

Lesson Plan:

Branch: Computer Engineering

Sr. No.	Topic Covered	Planned Date	Actual Date	Delivery Mechanisms
2	Module-2 FUELS			
2.1	Introduction Fuels, classification of the fuels Characteristics of good fuel.	01/01/19	01/01/19	Lecturing
2.2	Dulong's formula to calculate GCV and HCV of the fuel.	03/01/19	03/01/19	Lecturing
2.3	Solid Fuel: Coal as example of solid fuel, Types of coal and its classification.	04/01/19	04/01/19	Lecturing
2.4	Proximate analysis and Numericals based on them	07/01/19	07/01/19	Lecturing
2.5	Ultimate Analysis : Determination of C, H ,N, S	08/01/19	08/01/19	Lecturing
2.6	Numericals on Ultimate analysis	10/01/19	10/01/19	Lecturing
2.7	Liquid Fuels: Extraction of Crude oil, Fractions obtained their importance, their characteristics.	11/01/19	11/01/19	Lecturing
2.8	Petrol for four stroke engine, knocking of the engine, Octane value.	14/01/19	14/01/19	Lecturing
2.9	Cetane value for diesel engine, Power alcohol	16/01/19	16/01/19	Lecturing
2.10	Biodiesel, synthesis and its applications	18/01/19	18/01/19	Lecturing
2.11	Numericals on combustion	21/01/19	21/01/19	Lecturing
2.12	Additional problems on Combustion	23/01/19	23/01/19	Lecturing
3	Module-3 ALLOYS			
3.1	Introduction to Alloys and advantages of alloy formation. Classification of alloys into	25/01/19	25/01/19	Lecturing

	Ferrous and Non-Ferrous alloys.			
3.2	Non-ferrous alloys: Brasses, Bronzes, Solders Alloys of Aluminium.	28/01/19	28/01/19	Lecturing
3.3	Ferrous alloys: Plain Carbon steel, Effects of various elements on the properties of plain carbon steel. Limitations of Plain Carbon Steel	30/01/19	30/01/19	Lecturing
3.4	Alloy Steels: Nichrome steel and stainless steel	01/02/19	01/02/19	Lecturing
3.5	Powder Metallurgy: Steps involved in preparation of powder metallurgy. Preparation of fine powders.	04/02/19	04/02/19	Lecturing
3.6	Compaction: Methods of compactions, Sintering of fine powders.	06/02/19	06/02/19	Lecturing
3.7	Ceramics: Introduction to Ceramics, Properties of a good ceramic material.	08/02/19	08/02/19	Lecturing
3.8	Synthesis and applications of some oxide and Carbide based ceramics e.g. Preparation of Alumina and Silicon Carbide.	11/02/19	11/02/19	Lecturing
1	Module-1 CORROSION			
1.1	Introduction to corrosion, Classification and types of corrosion.	13/02/19	13/02/19	Lecturing
1.2	Dry corrosion, oxidative corrosion and corrosion due to gases.	14/02/19	14/02/19	Lecturing
1.3	Wet corrosion: Galvanic corrosion, concentration cell corrosion	18/02/19	18/02/19	Lecturing
1.4	Factors affecting rate of corrosion	20/02/19	20/02/19	Lecturing
1.5	Methods to control corrosion: Overview	22/02/19	22/02/19	Lecturing
1.6	Cathodic protection: Impression current and sacrificial anode method.	25/02/19	25/02/19	Lecturing
1.7	Anodic protection	27/02/19	27/02/19	Lecturing
1.8	Protection by design	01/03/19	01/03/19	Lecturing
1.9	Metallic Coatings: Galvanizing and tinning Hot Dipping, Electroplating, Metal spraying, Cladding	04/03/19	06/03/19	Lecturing
1.10	Organic coatings: Paints, Enamels and	06/03/19	08/03/19	Lecturing

	Lacquers			
5	Module-5 GREEN CHEMISTRY			
5.1	Introduction to the concept of green Chemistry, 12 Principles of Green Chemistry.	08/03/19	11/03/19	Lecturing
5.2	Brief discussion on each principle with examples.	11/03/19	11/03/19	Lecturing
5.3	Brief discussion on each principle with examples. Contd.	13/03/19	13/03/19	Lecturing
5.4	Brief discussion on each principle with examples Contd.	15/03/19	15/03/19	Lecturing
5.5	Synthesis of Adipic acid and Indigo Dye. Introduction to green solvents such as Super critical solvents and Ionic Micelle solvents.	18/03/19	18/03/19	Lecturing
4	Module-4 COMPOSITE MATERIALS			
4.1	Introduction and classification of Composite materials. Introduction to concept of Matrix and Dispersed Phase.	20/03/19	20/03/19	Lecturing
4.2	Classification of Composite Materials into fiber and particle reinforced composites.	22/03/19	22/03/19	Lecturing
4.3	Detail accounts of various forms of particulate composites.	25/03/19	25/03/19	Lecturing
4.4	Various types of Fiber Reinforced Composites such as Glass reinforced, Carbon Fiber Reinforced etc.	27/03/19	27/03/19	Lecturing
4.5	Structural Composites: Laminates and Sandwiched Composites	29/03/19	29/03/19	Lecturing
4.6	Adhesives; Concept and Introduction, Various types of Adhesives,	01/04/19	01/04/19	Lecturing
4.7	Physical factors and chemical factors involved in adhesive action.	03/04/19	03/04/19	Lecturing
4.8	Applications of Adhesive and overview	05/04/19	05/04/19	Lecturing
1			401.	

Dr. Hemant Khanolkar	Prof. Sundary Prabavarthy
Faculty	Head, Department of Humanities and Science

Practical Plan

FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING Fr. Agnel Ashram, Bandra, Mumbai 400 050 Department of Computer Engineering Academic Term: Jan-April 2017

F.E. SEMESTER II APPLIED CHEMISTRY-II

Time Table (Practicals)	Day	Time
	Batch – A Monday	1.30pm—3.30pm
	Batch – B Thursday	11am1.00pm
	Batch – C Friday	2.30pm- 4.30pm

Teaching Scheme and Credits:

		Teaching Scheme		Credits Assigned				
Course Code	Course Name	Theory	Pract	Tutorial	Theory	TW	Tutorial	Total
FEC103	Applied Chemistry-II	3	1		3	0.5		3.5

Examination and Marking Scheme

		Internal Assessment			University Exam	Total	
Course Code	Course Name	UT-1	UT-2	Average	Theory	TW	
FEC103	Applied Chemistry-II	15M	15M	15M	60M	25M	100M

	Laboratory Course in Applied Chemistry-II
	List of Experiments
Sr. No	(Prescribed by University of Mumbai in its R-2016 revision of the syllabus)
1.	To determine percentage of Iron in the given sample of Plain Carbon Steel
2.	To determine percentage of Copper in the given sample of Brass
3.	To determine percentage of Tin in the given sample of Stannous Chloride dihydrate
4.	To determine percentage of Moisture and Ash in the given sample of coal.
5.	To carry out Flue Gas Analysis by Orsat's method.
6.	To determine percentage of Zinc in the given sample ore by complexo metric titration
7.	To determine percentage of Nickel in the given sample by gravimeterically.
8.	To prepare Biodiesel from simple edible oil.
9.	To determine calorific value of given sample of fuel by Bomb Calorimeter
10.	To determine percentage of Aluminium in the given sample of ore.

Lesson Plan for Practical

Sr. No	Title of the Experiment	Batch	Planned Dates	Actual Dates
1	To determine percentage moisture from the given sample of coal.	А	21/01/19	21/01/19
		В	24/01/19	24/01/19
		С	25/01/19	25/01/19
2	To determine percentage ash from the given sample of coal.	А	21/01/19	21/01/19
		В	24/01/19	24/01/19
		С	25/01/19	25/01/19
3	To determine percentage of copper from the given sample of brass.	А	11/02/19	21/01/19
		В	14/02/19	24/01/19
		С	15/02/19	25/01/19
4	To determine percentage of Iron from the given sample of plain carbon steel.	А	25/02/19	18/02/19
		В	27/02/19	14/03/19
		С	28/02/19	15/03/19
5	To determine amount of Tin from the given sample of stannous chloride dehydrate.	А	11/03/19	18/02/19
		В	14/03/19	14/03/19
		С	15/03/19	15/03/19

Sound Lege College	COURSE:	FIRST YEAR ENGINEERING	
		ALL BRANCHES/ BATCHES	
NINABAR	Semester:	SECOND [II]	
+	Subject:	APPLIED CHEMISTRY-II	
NGINELES INCOCAN BUILD	Academic Year:	2018-19	
MOCLDING THE NATION	DEPARTMENT OF H	HUMANITIES AND SCIENCE	

Text Books/ Reference Books:

List of	List of the Books recommended as per Syllabus Scheme of University of Mumbai							
Sr.No.	Title of the Book	Author/s	Publishers	Remark				
1.	Engineering Chemistry	Dara &Dara	S. Chand Publication	Available in Library				
2.	Engineering Chemistry	Shahsi Chawala	Dhanpat Rai Publication	Available in Library				
3	Engineering Chemistry	Jain and Jain	Dhanpat Rai Publication	Available in Library				
4	Engineering Chemistry	B. Sivasankar	McGraw Hill	Available in Library				
5	Engineering Chemistry	Raghupati Mukhopadyay	New Age Publication	Available in Library				

Assignment Plan

Rubrics for evaluation	Out Of	Exceed Expectation (EE)	Meeting Expectation (ME)	Below Expectation (BE)
Knowledge	02	02	1.5	01
Writing	02	02	1.5	01
Completeness	02	02	1.5	01
Presentation	02	02	02	01
Timeline	02	02	02	01
TOTAL	10			

Sample Assignment Grading Sheet

FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING Fr. Agnel Ashram, Bandra, Mumbai 400 050

Assignment Grading Sheet F.E. SEMESTER- II APPLIED CHEMISTRY-II

ASSIGNMENT -1

Title of Experiment	Alloys			
Module	SECOND			
CO attained	CO 203.4 To study different types of alloys.			
Name of Student				
Batch		Roll No.		
Date of Performance		Date of Submission		
Date of Correction		Academic Year	2018-19	
Grade:		Module of Experiment	03/Alloys	

Rubrics for evaluation	Out Of	Score
Knowledge/ Information	02	
Writing skills	02	
Completeness	02	
Presentation	02	
Timeline	02	
TOTAL	10	

Date & Signature of Teacher

Sample Experiment Grading Sheet

FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING Fr. Agnel Ashram, Bandra, Mumbai 400 050

Experiment Grading Sheet F.E. SEMESTER- II APPLIED CHEMISTRY-II

EXPERIMENT -1

Title of Experiment	DETERMINE PERCENTAGE OF MOISTURE IN THE GIVEN SAMPLE OF COAL			
Module	SECOND			
CO attained	CO 203.1 To identify different types of fuels.			
Name of Student				
Batch		Roll No.		
Date of Performance		Date of Submission		
Date of Correction		Academic Year	2018-19	
Grade:		Module of Experiment	02/Fuels	

Rubrics for evaluation	Out Of	Score
Awareness about Experiment	02	
Experimental Skills	02	
Neatness	02	
Documentation	02	
Timeline	02	
TOTAL	10	

Date & Signature of Teacher

Sample Course Exit Form

Serial Number

Fr.Conceicao Rodrigues College of Engineering

Branch: **FE-**_____

<u>Course Exit Form</u>

Roll Number: _____ Semester- II

Subject: Applied Chemistry-II Name of the Student: Academic Year: - 2018-2019

Course by: Dr. Hemant Khanolkar

Based on the knowledge and skills you attained from this course, how would you rate the following (Please tick $\sqrt{}$)

Rate the achievement on the scale: [Where **1=Low** to **5 =High**]

Sr.	Rating	1	2	3	4	5
NO						
1.	Teaching/Learning methods encouraged interactive participation					
2.	Overall environment in the class was conducive for learning.					
3.	CO 203.1 Your ability to identify different types of fuels.					
4.	CO 203.2 Your ability to <u>understand</u> different types of corrosion .					
5.	CO 203.3 Your ability to <u>relate</u> with different types of composite materials.					
6.	CO 203.4 Your ability <u>study</u> different types of alloys.					
7.	CO 203.5 Your ability to <u>relate</u> with principles of Green Chemistry.					
8.	Provisions of learning sources (Text books, Question Banks, and assignments) were supportive.					
9.	Assignments/Laboratory sessions were conducted on time.					

Any Comments/ Suggestions: