FR. Conceicao Rodrigues College Of Engineering
 Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50
 Department of Humanities \& Sciences

F.E. (E) (semester II) (2019-2020)
 Lesson Plan

Subject: Applied Mathematics II (FEC201)
Credits-4
Syllabus:

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned			
		Theor	Pract.		Tut.	Theory	Tut.	Pract.	Total
FEC201	Engineering Mathematics-II	3	--		1*	3	1	--	4
Course Code	Course Name	Examination Scheme							
		Theo ry					Term Work	Pract. /oral	Total
		Internal Assessment			End Sem. Exam.	Exam. Duration (in Hrs)			
		Test1	Test 2	Avg.					
FEC201	Engineering Mathematics-II	20	20	20	80	3	25	--	125

Objectives

1. The course is aimed to develop the basic Mathematical skills of engineering students that are imperative for effective understanding of engineering subjects. The topics introduced will serve as basic tools for specialized studies in many fields of engineering and technology.
2. To provide hands on experience in using SCILAB software to handle real lifeproblems

Outcomes:

Learners will be able to...

1. Solve various types of First Order differential equation.
2. Solve various types of Higher Order Differentialequation.
3. Illustrate the concepts of Beta and Gamma function,DUIS andrectification.
4. Apply the concepts of Doubleintegral
5. Apply the concept of Tripleintegral.
6. Apply the principles of Numerical Method for solving differential equation and numerical integration analytically and using Scilabalso.

Module	Detailed Contents	Hrs.
01	Differential Equations of First Order and First Degree Exact differential Equations, Equations reducible to exact form by using integratingfactors. Linear differential equations (Review), equation reducible to linear form, Bernoulli‘sequation. \# Self learning topics:Simple application of differential equation of first order and first degree to electrical and Mechanical Engineering problem	4 2
02	Linear Differential Equations With Constant Coefficients and Variable CoefficientsOf Higher Order Linear Differential Equation with constant coefficient- complementary function, particular integrals of differential equation of the type $f(D) y=X$ where X is ()() . Method of variation ofparameters. \# Self learning topics: Cauchy's homogeneous linear differential equation and Legendre's differential equation, Applications of Higher order differential equation.	4 2
03	Beta and Gamma Function, Differentiation under Integral sign and Rectification Pre-requisite: Tracing of curves Beta and Gamma functions and itsproperties. Differentiation under integral sign with constant limits ofintegration.	2
	1.3 Rectification of plane curves.(Cartesian and polar) \# Self learning topics: Rectification of curve in parametric co-ordinates.	$\begin{aligned} & 2 \\ & 2 \end{aligned}$
04	Multiple Integration-1 Double integration- definition, Evaluation of Double Integrals.(Cartesian \&Polar) Evaluation of double integrals by changing the order ofintegration. Evaluation of integrals over the given region. (Cartesian \&Polar) \# Self learning topics: Application of double integrals to compute Area, Mass.	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$
05	Multiple Integration-2 Evaluation of double integrals by changing to polarcoordinates. Application of double integrals to computeArea Triple integration definition and evaluation (Cartesian, cylindrical and spherical polarcoordinates). \# Self learning topics:Application of triple integral to compute volume.	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$
06	Numerical solution of ordinary differential equations of first order and first degree, and, Numerical Integration Numerical solution of ordinary differential equation using (a) Euler‘smethod (b)Modified Euler method, (c) Runge Kuttafourth order method Numerical integration- by (a) Trapezoidal (b) Simpson's $1 / 3 \mathrm{rd}$ (c) Simpson's 3/8th rule(all withproof). \# Selflearningtopics: \quad Numerical solution of ordinary differential equation using Taylorseriesmethod.	3 3

Term Work

General Instructions:

1. Batch wise tutorials are to be conducted. The number of students per batch should be as per University pattern forpracticals.
2. Students must be encouraged to write SCILAB Programs in tutorial class only. Each Student has to write at least 4 SCILAB tutorials (including print out) and at least 6 class tutorials on entiresyllabus.
3. SCILAB Tutorials will be based on (i) Euler Method, (ii) Modified Euler Method, (iii) RungeKuttaMethodoffourthorder,(iv)TrapezoidalRule,(v)Simpson's1/3rdRule
(vi) Simpson's 3/8thrule

The distribution of marks for term work shall be as follows:

- Class Tutorials on entire syllabus : 10marks
- SCILABTutorials : 10marks
- Attendance (Theory and Tutorial) : 05marks

The final certification and acceptance of TW ensures the satisfactory performance of laboratory work and minimum passing in the TW.

Assessment

Internal Assessment Test

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks .
2. Question number 1 will be compulsory and based on maximum contents of thesyllabus
3. Remaining questions will be mixed in nature (for example, if $Q .2$ has part (a) from module 3 then part (b) will be from other than module3)
4. Total four questions need to be solved.

References

1. Higher Engineering Mathematics, Dr. B. S. Grewal, KhannaPublication
2. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Eastern Limited, 9thEd.
3. Engineering Mathematics by Srimanta Pal and Subodh,C. Bhunia, Oxford University Press
4. Applied Numerical Methods with MATLAB for Engineers and Scientists by Steven Chapra, McGrawHill
Elementary Linear Algebra with Application by Howard Anton and Christ Rorres.6th edition. John Wiley \& Sons,INC.

Course Outcomes:

Upon completion of this course students will be able to:

1. Solve first order and higher order differential equations.
2. Apply numerical methods to solve Differential Equations
3. Apply Beta-Gamma functions to solve integration problems.
4. Rectify the given curve(using Cartesian, polar and parametric form)
5. Apply the concept of multiple integrals to find area of the given region and mass of given lamina.

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P01 0	P01 1	P01 2
FEC201.1	3											
FEC201.2	3											
FEC201.3	2											
FEC201.4	2											
FEC201.5	3											
TOTAL												
CO-P0 MATRIX												

】ustification

P01: COs are mapped to this P01 because the students gain basic knowledge on mathematical concepts required for higher semesters (mathematics and technical application)

CO Assessment Tools:

	Direct Methods										
	T-1	T-2	T-3	T-4	T-5	T-6	SCILAB	TEST $\mathbf{1}$	TEST $\mathbf{2}$	Uni. Exam	Coursods Survey
CO1	20%	20%						30%		30%	100%
CO2			20%				30%		20%	30%	100%
CO3				40%				30%		30%	100%
CO4					40%				30%	30%	100%
CO5						40%			30%	30%	100%

Applied Mathematics 2 FE-E			Academic Year: 2019-20 Semester: II	
Sr. No.	Name of the Topic	Planned Date	Executed Date	Remark
	C01:1. Solve first order and higher order differential equations.			
1	Introuduction to Differential Equation	6/1/2020	6/1/2020	
2	Exact differential equation,Integrating factor	7/1/2020	7/1/2020	
3	Integrating factor and problems on that	8/1/2020	8/1/2020	
4	Linear Differential Equation	9/1/2020	9/1/2020	
5	Bernoulli's Differential Equation	10/1/2020	10/1/2020	
6	Reducible to Linear Differential Equation	13/1/2020	13/1/2020	C01: 16 Lect
7	Extra problems on first order	14/1/2020	14/1/2020	
8	Higher order Differential Equation	15/1/2020	15/1/2020	
9	Homogeneous ,Non Homog Differential Equation	16/1/2020	16/1/2020	
10	Particular Integral	17/1/2020	17/1/2020	
11	Particular Integral	21/1/2020	20/1/2020	
12	Problems on Particular Integral	22/1/2020	22/1/2020	
13	Variation of Parameters	23/1/2020	23/1/2020	
14	Practice Problems on above	24/1/2020	24/1/2020	
	CO2: 2. Apply numerical methods to solve Differential Equationsand integration			
15	Numerical Method (Euler's Method)	28/1/2020	28/1/2020	
16	R-K Method of order 2 and 4	29/1/2020	29/1/2020	CO2: 3
17	Taylor's series method	30/1/2020	30/1/2020	
18	Numerical integration	31/1/2020	31/1/2020	
	CO3: 3. Apply Beta-Gamma functions to solve integration problems.			
19	Introuduction to Gamma Function	4/2/2020	3/2/2020(extra lecture)	
20	Examples on Gamma Function	5/2/2020	4/2/2020	CO3: 6
21	Introuduction to Beta Function	6/2/2020	4/2/2020(extra lecture)	
22	Problems on Beta Function	7/2/2020	5/2/2020	
23	DUIS(with one parameter)	11/2/2020	6/2/2020	
	DUIS(with one parameter)	12/2/2020	7/2/2020	
	CO4: 4. Rectify the given curve(using Cartesian, polar and parametric form)			
24	Rectification (cartesian form)	13/2/2020		
25	Polar form	14/2/2020		CO4: 4
	Rectification (parametric form)	3/3/2020		
26	Rectification (cartesian form)	4/3/2020		

	CO5: 5. Apply the concept of multiple integrals to find area of the given region and mass of given lamina.			
27	Introuduction to Double Integration	$5 / 3 / 2020$		
28	Evaluation of Double Integration	$6 / 3 / 2020$		CO5: 12
29	Find the limits of the region of integration	$11 / 3 / 2020$		
	Change the order of integration	$12 / 3 / 2020$		
30	Change the order of integration and evauation	$13 / 3 / 2020$		
31	Change to polar	$17 / 3 / 2020$		
32	Change to polar and evaluation	$18 / 3 / 2020$		
33	Area of the region	$19 / 3 / 2020$		
34	Mass of the Lamina	$20 / 3 / 2020$		
35	Introuduction to Triple Integration	$24 / 3 / 2020$		
36	Evaluation of Triple Integration	$26 / 3 / 2020$		
37	Find limits (Triple Integration)	$27 / 3 / 2020$		
38	Spherical coordinates	$31 / 3 / 2020$		
40	Cylindrical coordinates	$1 / 4 / 2020$		

4.3 Tutorial Plan

	DIVISION -E			
	SEMESTER- I			
Tut. No	Topic Planned	Planned Date	Actual Date	Mapped with CO
	BATCH-A			
1	Differential equation of First order	$21 / 1 / 2020$	$21 / 1 / 2020$	CO1
2	Differential equation of higher order	$28 / 1 / 2020$	$28 / 1 / 2020$	CO1
3	Numerical Method	$4 / 2 / 2020$	$4 / 2 / 2020$	CO2
4	Beta and Gamma funtion	$11 / 2 / 2020$	$11 / 2 / 2020$	CO3
5	DUIS and Rectification	$3 / 3 / 2020$	$/ 3 / 2020$	CO4
6	Double Integration and Triple integration	$17 / 3 / 2020$	$/ 3 / 2020$	CO5
7	Scilab-I	$24 / 3 / 2020$	$/ 3 / 2020$	
8	Scilab-II	$31 / 3 / 2020$	$13 / 2020$	
	BATCH-B			
1	Differential equation of First order	$23 / 1 / 2020$	$23 / 1 / 2020$	CO1
2	Differential equation of higher order	$30 / 1 / 2020$	$30 / 1 / 2020$	CO1

3	Numerical Method	$6 / 2 / 2020$	$6 / 2 / 2020$	CO2
4	Beta and Gamma funtion	$13 / 2 / 2020$	$13 / 2 / 2020$	CO3
5	DUIS and Rectification	$5 / 3 / 2020$	$13 / 2020$	CO4
6	Double Integration and Triple integration	$12 / 3 / 2020$	$13 / 2020$	CO5
7	Scilab-I	$19 / 3 / 2020$	$13 / 2020$	
8	Scilab-II	$26 / 3 / 2020$	$13 / 2020$	
	BATCH-C			
1	Differential equation of First order	$20 / 1 / 2020$	$20 / 1 / 2020$	CO1
2	Differential equation of higher order	$27 / 1 / 2020$	$27 / 1 / 2020$	CO1
3	Numerical Method	$3 / 2 / 2020$	$3 / 2 / 2020$	CO2
4	Beta and Gamma funtion	$10 / 2 / 2020$	$10 / 2 / 2020$	CO3
5	DUIS and Rectification	$2 / 3 / 2020$	$13 / 2020$	CO4
6	Double Integration and Triple integration	$9 / 3 / 2020$	$13 / 2020$	CO5
7	Scilab-I	$16 / 3 / 2020$	$13 / 2020$	
8	Scilab-II	$23 / 3 / 2020$	$13 / 2020$	

