FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Department of Electronics Engineering

Lecture Plan: Subject: DIGITAL SYSTEMS DESIGN (DSD-ELX404) Credits-4

S.E. (ELECTRONICS) (semester IV) (2018-2019)

1. SYLLABUS

Course		Teaching Scheme			Credits Assigned				
Course Code	Course Name	Theory	Practic al	Tutorial	Theor y	TW/Practica l	Tutorial	Total	
ELX404	Digital System Design	04			04			04	

		Examination Scheme									
Course	Course Name		Theor	y Marks	Tomm	Orrol					
Code		Internal assessment			End Sem.	Term Work	Oral &Practical	Total			
		Test1	Test 2	Avg.	Exam	WUIK	arracticar				
ELX404	Digital System Design	20	20	20	80			100			

Module No.	Topics	Hrs.
	Sequential logic design	
1	Mealy and Moore models, state machine notations, clocked synchronous state machine analysis, construction of state diagram, sequence detector (word problem), state reduction techniques (inspection, partition and implication chart method), clocked synchronous state machine design, design examples like a few simple machines and traffic light controller, vending machine.	09
	Algorithmic State Machine (ASM) Chart and Register Transfer	
	Luanguage(RTL)	

2	Standard symbols for ASM Chart, Realization techniques for sequential/logic functions using ASM Chart, Top Down Design Example, Generalized ASM output, ASM Chart representation of control unit, RTL, Construction of data unit using RTL Description, Timing of connection and transfer, sequencing of control, Combinational logic and conditional transfer, Graphical and RTL Bus notation, Design examples of waveform controllable generator ,pulse width adjustor using ASM chart, design data unit and control unit for sequential circuits using RTL Description.	08
3	Sequential logic design practicesSynchronous counter design and applications, MSI asynchronous counters (IC7490, 7493), MSI synchronous counters (IC 74161, 74163, 74168, 74169)and applications, decoding binary counter states, MSI shift registers,Synchronous design methodology, impediments in synchronous design,synchronizer failure and metastability.	09
4	Introduction to VHDL Introduction to Hardware Description Language, Core features of VHDL, data types, concurrent and sequential statements, data flow, behavioral, structural architectures, subprograms, Examples like Adder, subtractor, Multiplexers, De-multiplexers, encoder, decoder.	08
5	Design of Sequential circuits using VHDLVHDL code for flip flop, counters, registers, Moore, Mealy type FSMs, Serialadders, sequence detector.	08
6	Programmable Logic DevicesROM, RAM, SRAM, PLA, PAL, CPLD and FPGA architecture. Numericalbased on PLA and PAL.	06
	Total	48

2. Course Outcomes:

At the end of the course student will be able to

ELX 404.1: Analyze various synchronous sequential logic circuits.

ELX 404.2: Design and implement synchronous sequential logic circuits.

ELX 404.3: Develop simple digital circuits using VHDLand verify using FPGA .

ELX 404.4 : Explain various applications of FPGAs in digital circuits.

ELX 404.5: Create a technical document of the design project and present ideas effectively.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
ELX 404.1	3	2											1	
ELX 404.2	3		2										2	
ELX 404.3	3		2		2								2	
ELX 404.4	2				2									
ELX 404.5	3		3		2			2	3	3		2		
	3	2	3		2			2	3	3		2	2	

3. Mapping of CO with PO/PSO:

4.CO Assessment Tool

Course							Assessm	nent Method	
Outcome					Direct Method (80 %)		Indirect Method (20%)		
	Unit Test		Assig	nments	Labora tory Practic		University Results		Course exit survey
	1	2	1	2	al	Theo	ry	Practical/ Orals	
ELX 404.1	20 %		10%		20%	30%		20%	100%
ELX 404.2	20 %		10%		20%	30%		20%	100%
ELX 404.3		10 %		20%	20%	30%		20%	100%

ELX 404.4		10%	40%	30%	20%	100%
ELX 404.5			50%		50%	100%

5. Curriculum Gap/Content beyond syllabus (if any).

6. Lecture Plan.

6. Lecture Plan.

CLASS		SE Electroni	cs, Sem	ester IV	
Academic Term		Jan – May 20	019		
Subject	ubject			n (ELX	
Periods (Hours) per		4			
week		Practical Tutorial			
Evaluation System			Hours	Marks	
	Theory	3	80		
	Internal		20		
	Practical				
	Oral				
		Term work			
		Total		100	
Time Table	Day		Time		
	Monday	1:30 p	om – 2:30) pm	
	Tuesday 3:30		om – 4:30) pm	
	Wednesday 12:00		pm – 1:0	0 pm	
	Thursday	11:00	am – 12	:00 pm	

Cour	se Cor	ntent and	Lesson	plan				
Modul	e 1 Sequ	ential Logi	c Design					
Week	Lectu	Date		Торіс	Text	со	РО	Remark
	re No.	Planned	Actual		Book-TB Referen ce Book- RB			s (lf any)
1	1	7 /1 / 19	7 /1 / 19	Discussion of syllabus and Cos of the subject, explain students the importance of course out comes. Revision of digital circuits.	ТВ-2			
	2	8/1/19	8/1/19	Introduction to sequential state machines, classification: Mealy and Moore machine block diagram examples.	TB-1,2	ELX 404.1	PO1	
	3	9/1/19	9/1/19	Examples on analysis of Sequential circuit mealy machines	TB-1,2	ELX 404.1	PO1, PO2	
	4	10/1/19	10/1/19	Examples on analysis of Sequential circuit mealy machines, moore machine	TB-1,2	ELX 404.1	PO1, PO2	
	5	14/1/19	14/1/18	Examples on analysis of Sequential circuit moore machine	TB-1,2	ELX 404.1	PO1, PO2	
	6	15/1/19	15/1/19	Sequence detector examples	TB-1,RB- 1	ELX 404.2	PO1, PO3	

7	17/1/19	17/1/19	Sequence detector examples	TB-1,RB- 1	ELX 404.2	PO1, PO3
8	18/1/19	18/1/19	Sequence detector examples	TB-1,RB- 1	ELX 404.2	PO1, PO3
9	21/1/19	21/1/19	State reduction techniques	TB-1	ELX 404.2	PO1, PO3
10	22/1/19	22/1/19	State reduction techniques	TB-1	ELX 404.2	PO1, PO3
11	24/1/19	24/1/19	Traffic light controller : Examples	TB-1	ELX 404.2	PO1, PO3
12	25/1/19	25/1/19	Vending machine: Examples	TB-1	ELX 404.2	PO1, PO3
Module	e 3 Sequent	ial logic de	esign practices			
13	19/3/19	18/3/19	Synchronous counter design and applications 74161, 74163	TB-2	ELX 404.2	PO1, PO3
14	22/3/19	19/3/19	Synchronous counter design and applications 74168, 74169	TB-2	ELX 404.2	PO1, PO3
15	25/3/19	20/3/19	Asynchronous counter design and applications 7490,7493	TB-2	ELX 404.2	PO1, PO3
16	26/3/19	25/3/19	Synchronous design methodology, Synchronizer failure and metastability	TB-2	ELX 404.2	PO1, PO3

			1		1	1	
	17	28/3/19	25/1/19	Synchronizer failure and metastability	TB-2	ELX 404.2	PO1, PO3
	Module	e:4 Introduc	ction to VH	DL	1		
	18	28/1/19	29/1/19	Introduction to hardware description language	TB-3	ELX 404.3	PO1,P O3,PO5
	19	29/1/19	29/1/19	VHDL data types, concurrent and sequential statements	TB-3	ELX 404.3	PO1,P O3,PO5
	20	7/2/19	7/2/19	Data flow, behavioral models	TB-3	ELX 404.3	PO1,P O3,PO5
	21	8/2/19	7/2/19	VHDL codes for various digital circuits	TB-3	ELX 404.3	PO1,P O3,PO5
	22	11/2/19	8/2/19	VHDL codes for various digital circuits	TB-3	ELX 404.3	PO1,P O3,PO5
	Module	e: 2 Algorith	nmic state	machine(ASM) chart and Re	egister Trar	nsfer La	nguage (RTL)
	23	5/3/19	5/3/19	Standard symbols for ASM chart	TB-2	ELX 404.1	PO1
-	24	7/3/19	5/3/19	Realization techniques for sequential / logic functions using ASM chart	TB-2	ELX 404.1	PO1
	25	8/3/19	7/3/19	ASM chart representation of control unit	TB-2	ELX 404.1	PO1, PO3
-	26	11/3/19	8/3/19	Waveform controllable generator, pulse width adjustor using ASM chart	TB-2	ELX 404.1	PO1, PO3
	27	12/3/19	11/3/19	RTL construction of data unit using RTL description,	TB-2	ELX 404.1	PO1, PO3

			Timing of connection and transfer				
28	14/3/19	12/3/19	Combinational logic and conditional transfer	TB-2	ELX 404.1	PO1, PO3	
29	15/3/19	12/3/19	Graphical and RTL bus notation , Design data unit using RTL description	TB-2	ELX 404.1	PO1. PO3	
30	18/3/19	14/3/19	Design control unit using RTL		ELX 404.1	PO1, PO3	
	Module:5	Design of	sequential circuits using VH	IDL			
31	12/2/19	8/2/19	VHDL code for Flip flop, counters, registers	TB-3	ELX 404.3	PO1, PO5	
32	18/2/19	18/2/19	VHDL code for Flip flop, counters, registers	TB-3	ELX 404.3	PO1, PO5	
33	19/2/19		VHDL code for Moore type FSM	TB-3	ELX 404.3	PO1, PO5	Holi Holiday
34	21/2/19	21/2/19	VHDL code for Mealy type FSM	TB-3	ELX 404.3	PO1, PO5	
35	22/2/19	22/2/19	VHDL code for sequence detectors	TB-3	ELX 404.3	PO1, PO5	
Module	e: 6 Prograi	mmable Lo	gic Devices		_		
36	25/2/19	25/2/1 9	Study of ROM, RAM ,SRAM using PLDs	TB-2,4 Rf-2	ELX 404.4	PO1	
37	26/2/19	26/2/1 9	Design of various digital circuits using PLA	TB-2,4 RF-2	ELX 404.4	PO1, PO3	
38	28/2/19	28/2/1 9	Design of various digital circuits using PAL	TB-2,4 RF-2	ELX 404.4	PO1, PO3	

39	1/3/19	1/3/19	Study of CPLD and FPGA architecture	ELX 404.4	PO1	
	27/3/19	27/3/1 9	ASM Chart Problems	ELX 404.1	PO1	
	28/3/19	28/3/1 9	ASM Chart Problems	ELX 404.1	PO1	
	29/9/19	29/9/1 9	VHDL codes for various digital circuits	ELX 404.3	PO1, PO5	
40	1/4/19	1/4/19	VHDL codes for various digital circuits	ELX 404.3	PO1, PO5	
		2/4/19	University question papers			
		3/4/19	University question papers			

Text Books:

- 1. Digital Logic Applications and Design John M. Yarbrough, Thomson Publications, 2006
- 2. Digital Design, Morris Mano Second Edition, PHI, 2002
- 3. Volnei A. Pedroni, "Circuit Design with VHDL" MIT Press (2004)

Reference Books:

- 1. Digital Design Principles and Practices, 3rd ed. by Wakerly. Prentice Hall, 2000
- 2. Digital Design Morris Mano, M.D.Ciletti, 4th Edition, PHI
- 3. Digital Circuits and Logic Design Samuel C. Lee , PHI
- 4. William I.Flectcher, "An Engineering Approach to Digital Design", PrenticeHall of India.
- 5. Parag K Lala, "Digital System design using PLD", BS Publications, 2003.
- 6. Charles H. Roth Jr., "Fundamentals of Logic design", Thomson Learning, 2004.
- 7. Stephen Brown, Zvonko Vranesic, "Fundamentals of Digital Logic Design" McGraw Hill, 2nd

edition Charles H.Roth Jr "Fundamentals of Logic Design" Thomson Learning 2004

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks.

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. The students need to solve total 4 questions.
- 3. Question No. 1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q2 to Q6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus

Practical Session Plan

CLASS				SE Electronics, Semester IV				
Acader	Academic Term				Jan – May 2019			
Subject				Digital System Design Laboratory (ELXL403)				
Evaluation System					Hours	Marks		
		Practical and Or	al Ex	amination		25		
				Term work		25		
		Total				50		
-	Time Table Day			Batch	Time			
		Monday		С	1:30 pm-3	3:30 pm		
		Tuesday		D	1:30 pm-3	3:30 pm		
		Wednesday		A	2:30 pm-	4:30am		
		Thursday B		В	2:30 pm-4:30am			
Title o	f Experiments							
Sr. No.		Title			Module	Attained Pos		
1	Implementation using IC 7493	Implementation of MOD-N Asynchron using IC 7493			Sequential logic design	PO1,PO3		

			practices	
2	Implementation of MOD-N Up-counters Synchronous using 74163	Sequential logic design practices	PO1,PO3	
3.	Implementation of MOD Up/Down counter (Synchronous) using 74169	Sequential logic design practices	PO1,PO3	
4	Design and implement Sequence Detector using flop	ng flip	Sequential logic design	PO1,PO3
5	Implement the Generic Multiplexer using VHDL all modeling style and simulate the same with X ISE tool and observe the output on Spartan -6 F	Introduction to VHDL	PO1,PO3,PO 5	
6	Design and implement 4 bit counter with VHDL Simulate the same on ModelSim .	Design of sequential circuits using VHDL	PO1,PO3,PO 5	
7	Design and implement frequency divider 10KHz 1Hz with VHDL and simulate the same on Mod e	Design of sequential circuits using VHDL	PO1,PO3,PO 5	
8	Design and Simulate the Finite state machine VHDL	Design of sequential circuits using VHDL	PO1,PO3,PO 5	
Newly	added Experiments			
	entation of MOD Up/Down counter ronous) using 74169	uential logic gn practices	PO1,PO3	
Desigr	and implement 4 bit counter with VHDL and	Desigr	n of sequential	PO1,PO3,PO

Simulate th	e same on Mode l	circuit	s using VHDL	5		
-	implement freque	-	n of sequential s using VHDL	PO1,PO3,PO 5		
Overall (al	l experiments to	gether)	mapping with Pos			
					Programme	e Outcomes
		HI(3)	P01,P03			
				MI(2)	PO2,PO5	
				LI(1)	P08,P09,P01	0,PO12
Practical S	Session Plan				1	
Experimen	nt No. 1	Impler 7493	nentation of MOD-N	Async	hronous counte	er using IC
Batch		Dates			Remarks	
	Planned		Actual			
А	16/1/19		16/1/19			
В	17/1/19		17/1/19			
С	14/1/19		14/1/19			
D	D 15/1/19		15/1/19			
Experiment No. 2 Imp			nplementation of MOD-N Up-counters			
	1	Synch	hronous using 74163			
Batch		Dates			Rem	arks
	Planned		Actual			

A	23/1/19		23/1/19	
В	24/1/19		24/1/19	
С	21/1/19		21/1/19	
D	22/1/19		22/1/19	
Experimen	nt No. 3	Implem 74169	nentation of MOD Up/Dow	n counter (Synchronous) using
Batch		Da	ates	Remark
	Planned		Actual	
A	30/1/19		30/1/19	
В	07/2/19		07/2/19	
С	28/1/18		28/1/18	
D	29/1/19		29/1/19	
Experimen	Experiment No. 4		and implement Sequenc end its approval	e Detector using flip flop/ Project
Batch		Dates		Remark
	Planned		Actual	
A	20/2/19		20/2/19	
В	21/2/19		21/2/19	
С	11/2/19		11/2/19	
D	12/2/19		12/2/19	
Experiment No. 5		-	-	er using VHDL with all modeling Xilinx ISE tool and observe the

		outpu	t on Spartan -6 FPGA.	
Batch		D	Dates	Remark
	Planned	I	Actual	
Α	27/2/19		27/2/19	
В	28/2/19		28/2/19	
С	18/2/19		18/2/19	
D	26/2/19		26/2/19	
Experimen	-		gn and implement 4 bit co on ModelSim .	ounter with VHDL and Simulate the
Batch	h Da		Dates	Remark
	Planned		Actual	
Α	6/3/19		6/3/19	
В	7/3/19		7/3/19	
С	25/2/19		25/2/19	
D	5/3/19		5/3/19	
Ех	periment No.7			frequency divider 10KHz to 1Hz e the same on ModelSim .
Batch		Ľ	Dates	Remark
	Planned	!	Actual	
A	13/3/19		13/3/19	
В	14/3/19		14/3/19	
С	11/3/19		11/3/19	

D	12/3/19		12/3/19	
Experiment No.8			Design and Simulate the Finite state machine using VHDL	
Batch		D	ates	Remark
	Planned		Actual	
Α	20/3/19		20/3/19	
В	28/3/19		28/3/19	
с	18/3/19		18/3/19	
D	19/3/19		19/3/19	
Mini Project		Debu	gging the code	
Batch	Dates			Remark
	Planned		Actual	
Α	27/3/19		27/3/19	
В	28/3/19		28/3/19	
с	25/3/19		25/3/19	
D	26/3/19		26/3/19	
Mini Project		. Proje	ect Presentation	
Batch	Dates			Remark
	Planned		Actual	
Α	4/4/19		4/4/19	
В	4/4/19		4/4/19	

С	1/4/19	1/4/19	
D	2/4/19	2/4/19	

Term Work:

At least 6 experiments covering entire syllabus of ELX 404 (Digital System Design) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. Also each student (in group of 3/4) has to perform a *Mini Project* as a part of the laboratory and report of mini project should present in laboratory journal. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks.